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ABSTRACT. In this paper, a class of non-linear vector Volterra integro-differential equations

of first order with constant delay is considered. The stability and boundedness of solutions are

investigated. The technique of proofs involves defining appropriate Lyapunov functionals. The

obtained results include and improve the results obtained in literature.
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1. INTRODUCTION

During the last years, many good results have been obtained on the qualitative

behaviors in Volterra integro-differential equations without delay. In particular, for

some works on the stability and boundedness in certain Volterra integro-differential

equations without delay, we referee the interested reader to the papers of Becker ([1],

[2], [3]), Burton ([4], [5], [6]), Burton et al. [7], Burton and Mahfoud [8], Corduneanu

[9], Furumochi and Matsuoka [11], Gripenberg et al. [13], Hara et al.[14], Miller [16],

Staffans [19], Tunç [20], Tunç and Ayhan [22], Vanualailai and Nakagiri [24] and theirs

references.

Besides, concerning stability and boundedness in Volterra integro-differential

equations with delay, we can find a few interesting results in the papers by Graef

and Tunç [12], Raffoul [17], Raffoul and Ünal [18], Tunç [21] and in theirs references.

In 1982, Burton [5] considered the following non-linear homogeneous scalar Volterra

integro-differential equation without delay

(1.1) x′(t) = A(t)f(x(t)) +

∫

t

0

B(t, s)g(x(s))ds,

where t ≥ 0, x ∈ ℜ, A(t) : ℜ → [0,∞) and f, g : ℜ → ℜ are continuous functions

with f(0) = g(0) = 0, and B(t, s) is a continuous function for all 0 ≤ s ≤ t < ∞.

The author studied the stability, boundedness, convergence of bounded solutions of

equation (1.1) by using the Lyapunov functionals.

Received April 11, 2016 1056-2176 $15.00 c©Dynamic Publishers, Inc.



122 C. TUNÇ

Next, in the same paper, Burton [5] considered the following non-linear homoge-

neous vector Volterra integro-differential equation without delay of the form

(1.2) x′(t) = Ax(t) +

∫

t

0

B(t, s)E(x(s))x(s)ds,

where t ≥ 0, x is an n-vector, n ≥ 1, A is an n × n-constant matrix, B(t, s) is an

n × n-continuous matrix function for 0 ≤ s ≤ t < ∞, E(x) is n × n−matrix valued

continuous function for x ∈ ℜn. Burton [5] discussed the stability, boundedness,

convergence of bounded solutions and square integrability of solutions of equation

(1.2) by defining a Lyapunov functional.

Later, in 1999, Furumochi and Matsuoka [11] discussed the stability and bound-

edness of solutions of vector Volterra integro-differential equations without delay of

the form

(1.3) x′(t) = a(x(t)) +

∫

t

0

C(t, s)f(x(s))ds + g(t, x(t)),

when g(t, x(t)) ≡ 0 and g(t, x(t)) 6= 0, respectively. In the proofs, the Lyapunov

functionals are applied by Furumochi and Matsuoka [11].

Recently, the author in [21] considered the non-linear scalar Volterra integro-

differential equation with delay

(1.4) x′(t) = −a(t)f(x(t)) +

∫

t

t−τ

B(t, s)g(x(s))ds,

where t ≥ 0, τ is a positive constant, fixed delay, x ∈ ℜ, a(t) : [0,∞) → (0,∞),

f, g : ℜ → ℜ are continuous functions with f(0) = g(0) = 0, B(t, s) is a continuous

function for 0 ≤ s ≤ t < ∞. The author discussed the stability, boundedness and

convergence of bounded solutions of equation (1.4) when t → ∞ by defining suitable

Lyapunov functionals.

In this paper, we consider the vector Volterra integro-differential equations with

delay of the form:

(1.5) x′ = −Ax + H(x) +

∫

t

t−τ

C(t, s)G(s, x(s))ds + E(t, x),

where t ≥ 0, τ is a positive constant fixed delay, x is an n-vector, n ≥ 1, A is an n×n-

symmetric matrix, H : ℜn → ℜn is a continuous function with H(0) = 0, C(t, s) is an

n×n-continuous symmetric matrix function for 0 ≤ s ≤ t < ∞, G, E : ℜ+×ℜn → ℜn

are continuous functions with G(t, 0) = 0, and ℜ+ = [0,∞).

The objective of this paper is to investigate sufficient conditions for the stability of

zero solution and boundedness of solutions of equation (1.5) by employing Lyapunov

functionals, when E(t, x) ≡ 0 and E(t, x) 6= 0, respectively. It is clear that equation

(1.1)–(1.3) and equation (1.4) are special cases of equation (1.1) when τ = 0 and

τ 6= 0, respectively.
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It should be noted any investigation of the stability and boundedness in a Volterra

integro-differential equation, using the Lyapunov functional method, first requires the

definition or construction of a suitable Laypunov functional. In fact, this case can be

an arduous task. The situation becomes more difficult when we replace the ordinary

differential equation with a functional integro-differential equation. However, once a

viable Lyapunov functional has been defined or constructed, researchers may end up

with working with it for a long time, deriving more more information about stabil-

ity. To arrive at the objective of this paper, we define two new suitable Lyapunov

functionals.

In view of the mentioned information, it follows that the Volterra integro-differen-

tial equations discussed by Burton [5] and Furumochi and Matsuoka [11] are without

delay. However, in this paper, the Volterra integro-differential equations to be studied

are with delay. This is a novelty and improvement for the case without delay to the

case with delay. That is from the ordinary case to the functional case. Besides, our

equation, equation (1.5) includes and extends the equations discussed by Burton [4],

and Furumochi and Matsuoka [11], when τ = 0. In addition, our equation includes

and improves equation (1.4) in [21] from the scalar case to the system form.

Our results will also be different from that obtained in the literature (see, Becker

([1], [2], [3]), Burton ([4], [5], [6]), Burton et al. [7], Burton and Mahfoud [8], Cor-

duneanu [9], Furumochi and Matsuoka [11], Gripenberg et al. [13], Hara et al. [14],

Miller [16], Rafffoul [17], Raffoul and Ünal [18], Staffans [19], Tunç ([20], [21]), Van-

ualailai and Nakagiri [24] and the references thereof). By this way, we mean that the

Volterra integro-differential equations considered and the assumptions to be estab-

lished here are different from that in the mentioned papers above. This paper has also

a contribution to the subject in the literature, and it may be useful for researchers

working on the qualitative behaviors of solutions to Volterra integro-differential equa-

tions. In view of all the mentioned information, it can be checked the novelty and

originality of the present paper.

We give some basic information related equation (1.5).

We use the following notation throughout this paper.

For any t0 ≥ 0 and initial function ϕ ∈ [t0 − τ, t0], let x(t) = x(t, t0, ϕ) denote

the solution of equation (1.5) on [t0 − τ,∞) such that x(t) = ϕ(t) on ϕ ∈ [t0 − τ, t0].

Let C[t0, t1] and C[t0,∞) denote the set of all continuous real-valued functions

on [t0, t1], [t0,∞), respectively.

For ϕ ∈ C[0, t0], |ϕ|t0 := sup{|ϕ(t)| : 0 ≤ t ≤ t0}.

Definition 1.1. The zero solution of equation (1.5) with E(t, x) ≡ 0 is stable if for

each ε > 0 and each t0 ≥ 0, there exists δ = δ(ε, t0) > 0 such that ϕ ∈ C[0, t0] with

|ϕ(t)|
t0

< δ and t ≥ t0 imply |x(t, t0, ϕ)| < ε.
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Definition 1.2. The solutions of equation (1.5) are bounded with E(t, x) 6= 0 if for

each T > 0, there exists D > 0 such that t0 ≥ 0, ϕ ∈ C[0, t0], |ϕ(t)|
t0

< T and t ≥ t0

imply |x(t)| < D.

The following lemma plays a key role in proving our main results.

Lemma 1.3 (Horn and Johnson [15]). Let A be a real symmetric n×n-matrix. Then,

for any X ∈ ℜn,

a1 ‖X‖2 ≤ 〈AX, X〉 ≥ a0 ‖X‖2 ,

where a0 and a1 are the least and greatest eigenvalues, respectively, of A.

The stability result in this paper is based in the following theorem.

Theorem 1.4 (Driver [10]). If there exists a functional V (t, φ(·)), defined whenever

t ≥ t0 ≥ 0 and φ ∈ C([0, t],ℜn), such that

(i) V (t, 0) ≡ 0, V is continuous in t and locally Lipschitz in φ,

(ii) V (t, φ(.)) ≥ W (|φ(t)|), W : [0,∞) → [0,∞) is a continuous function with

W (0) = 0, W (r) > 0 if r > 0, and W strictly increasing (positive definiteness),

and

(iii) V ′(t, φ(.)) ≤ 0,

then the zero solution of equation (1.5) is stable, and

V (t, φ(.)) = V (t, φ(s) : 0 ≤ s ≤ t)

is called a Lyapunov functional for system (1.5).

2. STABILITY

In this section we use a Lyapunov functional and establish sufficient conditions

to obtain a stability result on zero solution of equation(1.5).

Let

E(t, x) ≡ 0

and

β(t) = 2γ ‖B‖ + ‖B‖

∫

t

0

‖C(t, s)‖ ds + δ2 ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du.

A. Assumptions. We assume the following holds:

(A1) There exist a symmetric matrix B and positive constants δ and γ such that

AT B + BA = I, xT Bx > 0 for x ∈ ℜn, x 6= 0,

(A2) G(t, 0) = 0, ‖G(t, x)‖ ≤ δ‖x‖ for t ≥ 0 and x ∈ ℜn,

H(0) = 0, ‖H(x)‖ ≤ γ‖x‖ for x ∈ ℜn.
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Theorem 2.1. Let assumptions (A1) and (A2) hold, K is a positive constant. If

β(t) ≤ K < 1 holds for t ≥ t0 − τ ≥ 0, then the zero solution of equation (1.5) is

stable.

Proof. We define a functional W0 = W0(t) = W0(t, x(t)) defined by

W0 = xT (t)Bx(t) + ‖B‖

∫

t

0

∫

∞

t−τ

‖|C(u + τ, s)|‖ du ‖G(s, x(s))‖2 ds.

If the assumptions of Theorem 2.1 hold, then it is clear that the functional W0 is

positive definite.

Differentiating the functional W0 with respect to t, we obtain

W ′

0 = [−xT A + HT (x)]Bx +

[
∫

t

t−τ

GT (s, x(s))CT (t, s)ds

]

Bx

+ xT B

[

−Ax + H(x) +

∫

t

t−τ

C(t, s)G(s, x(s))ds

]

+ ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du ‖G(t, x)‖2 − ‖B‖

∫

t

0

‖C(t, s)‖ ‖G(s, x(s))‖2 ds

= −xT ABx − xT BAx + 2HT (x)Bx

+ 2xT B

∫

t

t−τ

C(t, s)G(s, x(s))ds

+ ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du ‖G(t, x)‖2

− ‖B‖

∫

t

0

‖C(t, s)‖ ‖G(s, x(s))‖2 ds

= −xT (AB + BA)x + 2HT (x)Bx

+ 2xT B

∫

t

t−τ

C(t, s)G(s, x(s))ds

+ ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du ‖G(t, x)‖2

− ‖B‖

∫

t

0

‖C(t, s)‖ ‖G(s, x(s))‖2 ds

≤ −‖x‖2 + 2 ‖x‖ ‖B‖ ‖H(x)‖

+ 2 ‖x‖ ‖B‖

∫

t

t−τ

‖C(t, s)‖ ‖G(s, x(s))‖ ds

+ ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du ‖G(t, x)‖2

− ‖B‖

∫

t

0

‖C(t, s)‖ ‖G(s, x(s))‖2 ds

≤ −‖x‖2 + 2γ ‖B‖ ‖x‖2
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+ ‖B‖

∫

t

t−τ

‖C(t, s)‖ {‖x‖2 + ‖G(s, x(s))‖2}ds

+ δ2 ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du ‖x‖2

− ‖B‖

∫

t

0

‖C(t, s)‖ ‖G(s, x(s))‖2 ds

= −‖x‖2 + 2γ ‖B‖ ‖x‖2 + ‖B‖

∫

t

t−τ

‖C(t, s)‖ ‖x‖2 ds

+ ‖B‖

∫

t

t−τ

‖C(t, s)‖ ‖G(s, x(s))‖2 ds + δ2 ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du ‖x‖2

− ‖B‖

∫

t

0

‖C(t, s)‖ ‖G(s, x(s))‖2 ds

= −‖x‖2 + 2γ ‖B‖ ‖x‖2 + ‖B‖

∫

t

t−τ

‖C(t, s)‖ ‖x‖2 ds

+ δ2 ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du ‖x‖2

= −

{

1 − 2γ ‖B‖ − ‖B‖

∫

t

t−τ

‖C(t, s)‖ ds − δ2 ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du

}

‖x‖2

= −

{

1 − 2γ ‖B‖ − ‖B‖

∫

t

0

‖C(t, s)‖ ds − δ2 ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du

}

‖x‖2

− ‖B‖

∫

t−τ

0

‖C(t, s)‖ ds

≤ −

{

1 − 2γ ‖B‖ − ‖B‖

∫

t

0

‖C(t, s)‖ ds − δ2 ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du

}

‖x‖2

= −{1 − β(t)} ‖x‖2

≤ −(1 − K) ‖x‖2 ≤ 0.

Thus, in view of the discussion made and Theorem 1.4, we can arrive at that the zero

solution of equation (1.5) is stable. This completes the proof of Theorem 2.1.

3. BOUNDEDNESS

Let E(t, x) 6= 0 and

β1(t) = −K ‖x‖2 + 2θ(t) ‖B‖ ‖x‖2 + 2θ(t) ‖B‖ ‖x‖ − Lθ(t).

B. Assumptions.

(B1) ‖E(t, x)‖ ≤ θ(t)(‖x‖+1), θ : ℜ+ → ℜ+, ℜ+ = [0,∞), θ is a continuous function

such that
∫

∞

0

θ(s)ds < ∞ and θ(t) → 0 as t → ∞.
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(B2) There exists a positive constant K1 such that β1(t) ≤ −K1 ‖x‖
2.

Theorem 3.1. We suppose that assumptions (A1), (A2), (B1) and (B2) hold. Then

all solutions of equation (1.5) are bounded.

Proof. We define a functional W1 = W1(t) = W1(t, x(t)) by

W1 =

[

1 + xT (t)Bx(t) + ‖B‖

∫

t

0

∫

∞

t−τ

‖|C(u + τ, s)|‖ du ‖G(s, x(s))‖2 ds

]

× exp

(

−L

∫

t

0

θ(s)ds

)

,

where L is a positive constant.

In the light of the assumptions of Theorem 3.1, it follows that the functional W1

is positive definite.

Differentiating the functional W1 with respect to t, using the assumptions of

Theorem 3.1 and the inequality |mn| ≤ 2−1(m2 + n2) we have

W ′

1 ≤ −Lθ(t)W1

+ exp

(

−L

∫

t

0

θ(s)ds

)

× [−xT A + HT (x)]Bx

+ exp

(

−L

∫

t

0

θ(s)ds

)

×

[
∫

t

t−τ

GT (s, x(s))CT (t, s)ds + ET (t, x)

]

Bx

+ exp

(

−L

∫

t

0

θ(s)ds

)

× xT B

[

−Ax + H(x) +

∫

t

t−τ

C(t, s)G(s, x(s))ds + E(t, x)

]

+ exp

(

−L

∫

t

0

θ(s)ds

)

× ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du ‖G(t, x)‖2

− exp

(

−L

∫

t

0

θ(s)ds

)

× ‖B‖

∫

t

0

‖C(t, s)‖ ‖G(s, x(s))‖2 ds

≤ −Lθ(t)W1 − exp

(

−L

∫

t

0

θ(s)ds

)

×

{

1 − 2γ ‖B‖ − ‖B‖

∫

t

t−τ

‖C(t, s)‖ du − δ2 ‖B‖

∫

∞

t−τ

‖C(u + τ, t)‖ du

}

‖x‖2

+ 2 exp

(

−L

∫

t

0

θ(s)ds

)

‖B‖ ‖x‖ ‖E(t, x)‖

≤ −Lθ(t)W1 − K exp

(

−L

∫

t

0

θ(s)ds

)

‖x‖2

+ 2 exp

(

−L

∫

t

0

θ(s)ds

)

‖B‖ ‖x‖ θ(t)(‖x‖ + 1)

= −Lθ(t)W1 − α1 exp

(

−L

∫

t

0

θ(s)ds

)

‖x‖2

+ 2θ(t) exp

(

−L

∫

t

0

θ(s)ds

)

‖B‖ ‖x‖2 + 2θ(t) exp

(

−L

∫

t

0

θ(s)ds

)

‖B‖ ‖x‖
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≤ exp

(

−L

∫

t

0

θ(s)ds

)

{−K ‖x‖2 + 2θ(t) ‖B‖ ‖x‖2 + 2θ(t) ‖B‖ ‖x‖ − Lθ(t)}

≤ exp

(

−L

∫

t

0

θ(s)ds

)

β1(t) ‖x‖
2

≤ −K1 ‖x‖
2 ≤ 0.

Integrating the estimate W ′

1(t) ≤ 0 from zero t0 to t, we get
[

1 + xT (t)Bx(t) + ‖B‖

∫

t

0

∫

∞

t−τ

‖|C(u + τ, s)|‖ du ‖G(s, x(s))‖2 ds

]

= W1(t) ≤ W0(t0) = M > 0

Then, the boundedness of solutions can be readily followed.

Example 3.2. For the case n = 1, as a special case of equation (1.5), we consider

the nonlinear Volterra integro-differential equation with delay, τ ≥ 0,

x′ = −100x + sin x − 2

t
∫

t−τ

C(t, s) (x(s) + sin x(s)) ds +
x

1 + t2
,

for t − τ ≥ 0, x ∈ ℜ.

When we compare this equation with equation (1.5) and consider the assumption

of Theorem 2.1 and Theorem 3.1, it follows that

A = 100, B = 1/200,

AT B + BA = 1,

H(x) = sin x,

|sin x| ≤ |x| , γ = 1,

G(t, x) = x + sin x,

|G(t, x)| ≤ |x + sin x| ≤ |x| + |sin x| ≤ 2 |x| , δ = 2,

E(t, x) =
x

1 + t2
,

|E(t, x)| =
|x|

1 + t2
≤

1

1 + t2
(|x| + 1) ,

θ(t) =
1

1 + t2
, and θ(t) → 0 as t → ∞,

∞
∫

0

θ(s)ds =

∞
∫

0

1

1 + s2
ds =

π

2
< ∞,

β(t) = 2γ |B| + |B|

∫

t

0

|C(t, s)| ds + δ2 |B|

∫

∞

t−τ

|C(u + τ, t)| du

=
1

100
+

1

200

∫

t

0

|C(t, s)| ds +
1

50

∫

∞

t−τ

|C(u + τ, t)| du,
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β1(t) = −K |x|2 + 2θ(t) |B| |x|2 + 2θ(t) |B| |x| − Lθ(t)

= −K |x|2 +
1

100(t2 + 1)
|x|2 +

1

100(t2 + 1)
|x| −

L

t2 + 1
.

Hence, all the assumptions of Theorem 2.1 and Theorem 3.1 hold if β(t) ≤ K < 1

and β1(t) ≤ −K1x
2.

4. CONCLUSION

A class of vector non-linear Volterra integro-differential equations of first order is

considered. The stability and boundedness of solutions are studied by means of the

Lyapunov’s functional approach. The obtained results improve some results in the

literature.
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