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ABSTRACT. We study a semilinear Robin problem driven by the Laplacian plus an indefinite

and unbounded potential and a Carathéodory reaction term which exhibits linear growth near ±∞

and near zero. Resonance with respect to different eigenvalues can occur at both ±∞ and near zero.

Using the saddle point reduction method and Morse theory (critical groups), we prove a multiplicity

theorem producing two nontrivial smooth solutions.
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1. INTRODUCTION

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper we

study the following semilinear Robin problem:

(1.1)

{
−∆u(z) + ξ(z)u(z) = f(z, u(z)) in Ω,
∂u
∂n

+ β(z)u = 0 on ∂Ω.

In this problem the potential function ξ ∈ Ls(Ω) (with s > N) is in general sign-

changing. So, the linear part of problem (1.1) is indefinite. The reaction term f

is a Carathéodory function (that is, for all ζ ∈ R, z 7−→ f(z, ζ) is measurable and

for a.a. z ∈ Ω, ζ 7−→ f(z, ζ) is continuous). We assume that f(z, ·) exhibits linear

growth near ±∞ and near zero and resonance is possible both at ±∞ and at zero,

but with respect to different eigenvalues of u 7−→ −∆u+ ξ(z)u with Robin boundary

condition. In the boundary condition, the coefficient β ∈ W 1,∞(∂Ω) and β(z) > 0

for all z ∈ ∂Ω. When β ≡ 0, we have the usual homogeneous Neumann problem. We

prove a multiplicity theorem, producing a pair of nontrivial smooth solutions.

Recently semilinear Robin problems were studied by Shi-Li [17] (indefinite po-

tential and superlinear reaction term), Qian-Li [16] (zero potential and superlinear
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reaction term), Zhang-Li-Xue [19] (positive potential, thus a coercive differential op-

erator and an autonomous reaction term with zeros), Papageorgiou-Rădulescu [15]

(indefinite potential and a Carathéodory reaction term of arbitrary growth), D’Agùı-

Marano-Papageorgiou [3] (indefinite potential and an asymmetric reaction term) and

Filippakis-Papageorgiou [5] (indefinite potential and an odd reaction term of arbi-

trary growth). Also we mention the works of Papageorgiou-Papalini [11] (Dirichlet

problems) and Papageorgiou-Rădulescu [12, 14] (Neumann problems) on equations

driven by the Laplacian plus an indefinite potential.

We prove a multiplicity theorem producing two nontrivial smooth solutions. Our

approach is based on a variant of the reduction method of Amann [1] and Castro-

Lazer [2] and on Morse theory (critical groups). However, note that in our case the

reduction is done on an infinite dimensional component space and this makes the

situation more complicated.

2. MATHEMATICAL BACKGROUND

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the

duality brackets for the pair (X∗, X). Given a function ϕ ∈ C1(X; R), we say that ϕ

satisfies the “Cerami condition”, if the following is true:

“Every sequence {un}n>1 ⊆ X such that {ϕ(un)}n>1 ⊆ R is bounded and

(1 + ‖un‖)ϕ
′(un) −→ 0 in X∗ as n→ +∞,

admits a strongly convergent subsequence.”

Our analysis of problem (1.1), will make use of the following three spaces:

H1(Ω), C1(Ω), Lq(∂Ω) (1 6 q 6 +∞).

We know that H1(Ω) is a Hilbert space with inner product given by

(u, v)H1 =

∫

Ω

uv dz +

∫

Ω

(Du,Dv)RN dz ∀u, v ∈ H1(Ω).

The corresponding norm is denoted by ‖ · ‖ and we have

‖u‖ =
(
‖u‖2

2 + ‖Du‖2
2

) 1

2 ∀u ∈ H1(Ω).

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ. Then

using this measure on ∂Ω, we can define in the usual way the Lebesgue spaces Lq(∂Ω)

(1 6 q 6 +∞). From the theory of Sobolev spaces, we know that there exists a unique

continuous linear map γ0 : H1(Ω) −→ L2(∂Ω) known as the “trace map” such that

γ0(u) = u|Ω ∀u ∈ H1(Ω) ∩ C(Ω).

Hence the trace map assigns “boundary values” to every Sobolev function u ∈ H1(Ω).

We know that
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• γ0 is compact into Lq(∂Ω) for all q ∈ [1, 2(N−1)
N−2

) if N > 3 and for all q ∈ [1,+∞)

if N = 1, 2;

• R(γ0) = H
1

2
,2(∂Ω) and ker γ0 = H1

0 (Ω).

In the sequel, for the sake of notational simplicity, we drop the use of the trace

map γ0. All restrictions of Sobolev functions on ∂Ω are understood in the sense of

traces.

We will use the spectrum of u 7−→ −∆u+ ξ(z)u with Robin boundary condition.

So, we consider the following linear eigenvalue problem

(2.1)

{
−∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω,
∂u
∂n

+ β(z)u = 0 on ∂Ω.

This problem was studied by D’Agùı-Marano-Papageorgiou [3]. Suppose that ξ ∈

Ls(Ω) with s > N and let γ : H1(Ω) −→ R be the C2-functional defined by

γ(u) = ‖Du‖2
2 +

∫

Ω

ξ(z)u2 dz +

∫

∂Ω

β(z)u2 dσ ∀u ∈ H1(Ω).

Problem (2.1) has a smallest eigenvalue λ̂1 ∈ R given by

(2.2) λ̂1 = inf

{
γ(u)

‖u‖2
2

: u ∈ H1(Ω), u 6= 0

}
.

Then we can find µ > 0 such that

(2.3) γ(u) + µ‖u‖2
2 > c0‖u‖

2 ∀u ∈ H1(Ω),

for some c0 > 0. Using (2.3) and the spectral theory for compact self-adjoint operators

on a Hilbert space, we generate the spectrum of (2.1). This consists of a sequence

{λ̂k}k>1 of distinct eigenvalues such that λ̂k −→ +∞ as k → +∞. Let E(λ̂k) denote

the eigenspace corresponding to the eigenvalue λ̂k. Using the regularity theory of

Wang [18], we know that

E(λ̂k) ⊆ C1(Ω) ∀k > 1.

In addition, from de Figueiredo-Gossez [4], we have that each eigenspace E(λ̂k), k > 1,

exhibits the “unique continuation property”, that is, if u ∈ E(λ̂k) and u vanishes on

a set of positive Lebesgue measure, then u ≡ 0. We set

Hm =

m⊕

k=1

E(λ̂k) and Ĥm = H
⊥

m =
⊕

k>m+1

E(λ̂k).

The space Hm is finite dimensional and we have the following orthogonal direct sum

decomposition

H1(Ω) = Hm ⊕ Ĥm.

For the higher eigenvalues {λ̂m}m>2 we have the following variational description:

λ̂m = inf

{
γ(u)

‖u‖2
2

: u ∈ Ĥm−1, u 6= 0

}
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= sup

{
γ(u)

‖u‖2
2

: u ∈ Hm, u 6= 0

}
, m > 2.(2.4)

From (2.2) and (2.4) we see that we have variational characterizations for all the

eigenvalues. In (2.2) the infimum is realized on E(λ̂1), while in (2.4) both the in-

fimum and supremum are realized on E(λ̂m). We know that λ̂1 is simple (that is,

dimE(λ̂1) = 1) and is the only eigenvalue with eigenfunctions of constant sign. For

every m > 2, the elements of E(λ̂m) are nodal (sign changing). By û1 we denote the

L2-normalized (that is, ‖u‖2 = 1) positive eigenfunction corresponding to λ̂1. The

strong maximum principle implies that û1(z) > 0 for all z ∈ Ω. As a consequence

of the variational characterizations of the eigenvalues (see (2.2) and (2.4)) and of the

unique continuation principle, we have the following useful inequalities.

Proposition 2.1. (a) If ϑ ∈ L∞(Ω), ϑ(z) 6 λ̂m for a.a. z ∈ Ω, for some m > 1

and the inequality is strict on a set of positive measure, then we can find c1 > 0 such

that

γ(u) −

∫

Ω

ϑ(z)u2 dz > c1‖u‖
2 ∀u ∈ Ĥm−1.

(b) If ϑ ∈ L∞(Ω), ϑ(z) > λ̂m for a.a. z ∈ Ω, for some m > 1 and the inequality is

strict on a set of positive measure, then we can find c2 > 0 such that

γ(u) −

∫

Ω

ϑ(z)u2 dz 6 −c2‖u‖
2 ∀u ∈ Hm.

Next we recall some definitions and facts from Morse theory (critical groups)

which will be used in the sequel.

Let X be a Banach space, ϕ ∈ C1(X; R) and c ∈ R. We introduce the following

sets:

ϕc = {u ∈ X : ϕ(u) 6 c},

Kϕ = {u ∈ X : ϕ′(u) = 0},

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

Let (Y1, Y2) be a pair of spaces such that Y2 ⊆ Y1 ⊆ X. For every k > 0, by Hk(Y1, Y2)

we denote the k-th relative singular homology group for the pair (Y1, Y2) with integer

coefficients. Suppose that u ∈ Kc
ϕ is isolated. The critical groups of ϕ at u are defined

by

Ck(ϕ, u) = Hk(ϕ
c ∩ U, ϕc ∩ U \ {u}) ∀k > 0.

Here U is a neighbourhood of u such that Kϕ∩ϕ
c∩U = {u}. The excision property of

singular homology, implies that the above definition of critical groups is independent

of the choice of the isolating neighbourhood U .
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Suppose that ϕ ∈ C1(X; R) satisfies the Cerami condition at inf ϕ(Kϕ) > −∞.

The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕ
c) ∀k > 0,

with c < inf ϕ(Kϕ). This definition is independent on the level c < inf ϕ(Kϕ). Indeed,

if c′ < c < inf ϕ(Kϕ), then ϕc
′

is strong deformation retract of ϕc (see for example

Motreanu-Motreanu-Papageorgiou [10, Theorem 5.34, p. 110]). Therefore

Hk(X,ϕ
c) = Hk(X,ϕ

c′) ∀k > 0

(see Motreanu-Motreanu-Papageorgiou [10, Theorem 6.15, p. 145]).

Assume that Kϕ is finite. We introduce the following quantities:

M(t, u) =
∑

k>0

rankCk(ϕ, u)t
k ∀t ∈ R, u ∈ Kϕ,

P (t,∞) =
∑

k>0

rankCk(ϕ,∞)tk ∀t ∈ R.

Then the “Morse relation” says that

(2.5)
∑

u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) ∀t ∈ R,

where Q(t) =
∑
k>0

βkt
k is a formal series in t ∈ R with nonnegative integer coefficients

βk.

Suppose that X = H is a Hilbert space, ϕ ∈ C2(H ; R) and u ∈ Kϕ. We say that

u is “nondegenerate”, if ϕ′′(u) ∈ L(H) is invertible. The “Morse index” m of u is

defined to be the supremum of the dimensions of the vector subspaces of H on which

ϕ′′(u) is negative definite. If u ∈ Kϕ is isolated, nondegenerate, then

Ck(ϕ, u) = δk,mZ ∀k > 0,

where m is the Morse index of u and δk,m is the Kronecker symbol, that is,

δk,m =

{
1 if k = m,

0 if k 6= m.

3. PAIRS OF NONTRIVIAL SOLUTIONS

In this section we prove the existence of two nontrivial smooth solutions for

problem (1.1) under conditions which permit resonance at ±∞ and at zero.

More precisely the conditions on the reaction term f are the following:

H(f): f : Ω×R −→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω

and
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(i): for every ̺ > 0, there exists a̺ ∈ L∞(Ω)+ such that

|f(z, ζ)| 6 a̺(z) for a.a. z ∈ Ω, all |ζ | 6 ̺;

(ii): there exist m > 1 and a function ϑ ∈ L∞(Ω) such that

ϑ(z) > λ̂m for a.a. z ∈ Ω, ϑ 6≡ λ̂m,

and

(f(z, ζ) − f(z, y))(ζ − y) > ϑ(z)(ζ − y)2 for a.a. z ∈ Ω, all ζ, y ∈ R;

(iii): lim sup
ζ→±∞

f(z,ζ)
ζ

6 λ̂m+1 uniformly for a.a. z ∈ Ω;

(iv): if F (z, ζ) =
∫ ζ

0
f(z, s) ds, then

lim
ζ→±∞

(f(z, ζ)ζ − 2F (z, ζ)) = +∞ uniformly for a.a. z ∈ Ω;

(v): there exist l ∈ N, l > m and δ > 0 such that

λ̂lζ
2
6 f(z, ζ)ζ 6 λ̂l+1ζ

2 for a.a. z ∈ Ω, all |ζ | 6 δ.

Remark 3.1. Hypothesis H(f)(iii) implies that at ±∞ we can have resonance with

respect to any nonprincipal eigenvalue. Similarly, hypothesis H(f)(v) says that at

zero we can have double resonance at any spectral interval higher than the one cor-

responding to the asymptotic behaviour of f(z,ζ)
ζ

and ζ → ±∞.

The hypotheses on the potential function ξ and the boundary coefficient β are

the following:

H(ξ): ξ ∈ Ls(Ω) with s > N .

H(β): β ∈W 1,∞(∂Ω) with β(z) > 0 for all z ∈ ∂Ω.

Let ϕ : H1(Ω) −→ R be the energy (Euler) functional for problem (1.1) defined

by

ϕ(u) =
1

2
γ(u) −

∫

Ω

F (z, u) dz ∀u ∈ H1(Ω).

Evidently ϕ ∈ C1(H1(Ω)). We set

Y =

m⊕

k=1

E(λ̂k) and V = Y ⊥ =
⊕

k>m+1

E(λ̂k).

We have the following orthogonal direct sum decomposition:

H1(Ω) = Y ⊕ V.

Proposition 3.2. If hypotheses H(f), H(ξ) and H(β) hold, then there exists a con-

tinuous map τ : V −→ Y such that

ϕ(v + τ(v)) = max
y∈Y

ϕ(v + y) ∀v ∈ V.
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Proof. Fix v ∈ V and consider the C1-functional ϕv : H
1(Ω) −→ R defined by

ϕv(u) = ϕ(v + u) ∀u ∈ H1(Ω).

Let iY : Y −→ H1(Ω) be the inclusion map. We set

ϕ̃v = ϕv ◦ i.

Using the chain rule, we have

(3.1) ϕ̃′
v = pY ∗ ◦ ϕ′

v,

with pY ∗ being the orthogonal projection of H1(Ω)∗ onto Y ∗. In the sequel by 〈·, ·〉

we denote the duality brackets for the pair (Y ∗, Y ). For y1, y2 ∈ Y we have

〈ϕ̃′
v(y1) − ϕ̃′

v(y2), y1 − y2〉Y

= 〈ϕ′
v(y1) − ϕ′

v(y2), y1 − y2〉

= γ(y1 − y2) −

∫

Ω

(f(z, v + y1) − f(z, v + y2))(y1 − y2) dz

6 γ(y1 − y2) −

∫

Ω

ϑ(z)(y1 − y2)
2 dz

6 −c2‖y1 − y2‖
2(3.2)

(see (3.1), hypothesis H(f)(ii) and Proposition 2.1(b)).

Therefore −ϕ̃′
v is strongly monotone and −ϕ̃v is strictly convex. Note that

(3.3) 〈ϕ̃′
v(y), y〉Y = 〈ϕ̃′

v(y) − ϕ̃′
v(0), y〉Y + 〈ϕ̃′

v(0), y〉Y 6 −c2‖y‖
2 + c3‖y‖,

for some c3 > 0 (see (3.2)), so

(3.4) −ϕ̃′
v is coercive.

Since −ϕ̃′
v is continuous, monotone, it follows that

(3.5) −ϕ̃′
v is maximal monotone.

From (3.4) and (3.5) we infer that −ϕ̃′
v is surjective (see Gasiński-Papageorgiou [6,

Corollary 3.2.31, p. 319]). Therefore we can find y0 ∈ Y such that

(3.6) ϕ̃′
v(y0) = 0.

Since −ϕ̃′
v is strongly monotone, the solution y0 ∈ Y of (3.6) is unique and is the

unique minimizer of the strictly convex functional −ϕ̃v = −ϕv|Y . Now, let τ : V −→

Y be the map which to each v ∈ V assigns the unique solution y0 ∈ Y of (3.6). From

(3.1) and (3.6), we have

(3.7) pY ∗ϕ′(v + τ(v)) = 0 and ϕ(v + τ(v)) = max
y∈Y

ϕ(v + y).

We examine the continuity of the map τ : V −→ Y . So, let vn −→ v in V . We have

0 = 〈ϕ̃′
vn

(τ(vn), τ(vn)) 6 −c2‖τ(vn)‖
2 + c3‖τ(vn)‖
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(see (3.6) and (3.3)), so the sequence {τ(vn)}n>1 ⊆ Y is bounded. Since Y is finite

dimensional, by passing to a subsequence if necessary, we may assume that

(3.8) τ(vn) −→ ỹ ∈ Y in Y.

From the continuity of ϕ, we have

(3.9) ϕ(v + ỹ) = lim
n→+∞

ϕ(vn + τ(vn))

(see (3.8)). From (3.7), we have

ϕ(vn + y) 6 ϕ(vn + τ(vn)) ∀y ∈ Y, n > 1,

so

ϕ(v + y) 6 ϕ(v + ỹ) ∀y ∈ Y,

(see (3.9)), thus ỹ = τ(v) (see (3.7)).

By the Urysohn criterion for the convergence of subsequences (see, for example,

Gasiński-Papageorgiou [7, Problem 1.3, p. 33]), for the original sequence we have

τ(vn) −→ τ(v) in Y,

so τ : V −→ Y is continuous.

We set

ψ(v) = ϕ(v + τ(v)) ∀v ∈ V.

From Proposition 3.2 it follows that ψ ∈ C(V ; R). In fact we can say more, namely

that ψ is continuously differentiable on V .

Proposition 3.3. If hypotheses H(f), H(ξ) and H(β) hold, then ψ ∈ C1(V ; R) and

ψ′(v) = pV ∗ϕ(v + τ(v)) ∀v ∈ V,

here pV ∗ is the orthogonal projection of H1(Ω)∗ onto V ∗.

Proof. Let v, w ∈ V and t > 0. We have

1

t
(ψ(v + tw) − ψ(v)) >

1

t
(ϕ(v + tw + τ(v)) − ϕ(v + τ(v)))

(see (3.7)), so

(3.10) lim inf
t→0+

1

t
(ψ(v + tw) − ψ(v)) > 〈ϕ′(v + τ(v)), w〉.

Also, we have

1

t
(ψ(v + tw) − ψ(v)) 6

1

t
(ϕ(v + tw + τ(v + tw)) − ϕ(v + τ(v + w)))

(see (3.7)), so

(3.11) lim sup
t→0+

1

t
(ψ(v + tw) − ψ(v)) 6 〈ϕ′(v + τ(v)), w〉
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(since τ is continuous by Proposition 3.2 and ϕ ∈ C1(H1(Ω); R)). Then from (3.10)

and (3.11) it follows that

(3.12) lim
t→0+

1

t
(ψ(v + tw) − ψ(v)) = 〈ϕ′(v + τ(v)), w〉.

In a similar fashion we show that

(3.13) lim
t→0−

1

t
(ψ(v + tw) − ψ(v)) = 〈ϕ′(v + τ(v)), w〉.

By 〈·, ·〉V we denote the duality brackets for the pair (V ∗, V ). From (3.12) and (3.13),

we conclude that

〈ψ′(v), w〉V = 〈ϕ′(v + τ(v)), w〉 ∀v, w ∈ V,

so

ψ′(v) = pV ∗ϕ′(v + τ(v)),

thus ψ ∈ C1(V ; R) (recall that τ is continuous; see Proposition 3.2).

Note that in contrast to the usual reduction method (see Amann [1] and Castro-

Lazer [2]), in our case the reduction is done on infinite dimensional space (the space

V ). This is a consequence of hypothesis H(f)(ii) (in the spectral interval [λ̂m, λ̂m+1]

at ±∞ we can have resonance with λ̂m+1, but only nonuniform nonresonance with

respect to λ̂m). In addition, here the reaction term f is only a Carathéodory function

(no differentiability condition on f(z, ·) is required) and so the energy functional

is only C1 and not C2 on H1(Ω). These special features, lead to some technical

difficulties. Nevertheless, with no extra conditions, we are able to overcome these

difficulties and prove the following result.

Proposition 3.4. If hypotheses H(f), H(ξ) and H(β) hold, then the functional ψ is

coercive.

Proof. Let ϕ̂ = ϕ|V . Clearly ϕ̂ ∈ C1(V ; R) and so as before via the chain rule, we

have

(3.14) ϕ̂′ = pV ∗ ◦ ϕ′

(recall that pV ∗ denotes the orthogonal projection of H1(Ω)∗ onto V ∗).

Claim 1. The functional ϕ̂ satisfies the Cerami condition.

We consider a sequence {vn} ⊆ V such that

|ϕ̂(vn)| 6 M1 ∀n ∈ N (for some M1 > 0),(3.15)

(1 + ‖vn‖)ϕ̂
′(vn) −→ 0 in V ∗ as n→ +∞.(3.16)

From (3.16), we have

|〈ϕ̂(vn), h〉V | 6
εn‖h‖

1 + ‖vn‖
∀n > 1, h ∈ V,
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with εn → 0+, so

(3.17) 〈ϕ(vn), h〉 6
εn‖h‖

1 + ‖vn‖
∀n > 1, h ∈ V

(see (3.14)).

In (3.17) we choose h = vn ∈ V . Then

(3.18) γ(vn) −

∫

Ω

f(z, vn)vn dz 6 εn ∀n > 1.

We will show that the sequence {vn} ⊆ V is bounded. Arguing by contradiction,

suppose that at least for a subsequence, we have

(3.19) ‖vn‖ −→ +∞.

Let v̂n = vn

‖vn‖
, n > 1. Then ‖v̂n‖ = 1 for all n > 1 and so passing to a next

subsequence if necessary, we may assume that

(3.20) v̂n
w

−→ v̂ in H1(Ω) and v̂n −→ v̂ in L2(Ω) and in L2(∂Ω).

Hypotheses H(f) imply that

(3.21) |f(z, ζ)| 6 c4|ζ | for a.a. z ∈ Ω, all ζ ∈ R,

for some c4 > 0. We return to (3.18) and use (3.21). We obtain

γ(vn) − c4‖vn‖
2
2 6 εn ∀n > 1,

so

γ(vn) + µ‖vn‖
2
2 − (c4 + µ)‖vn‖

2
2 6 εn,

with µ > 0 as in (2.3). Using also (2.3), we get

c0‖vn‖
2 − (c4 + µ)‖vn‖

2
2 6 εn,

so

c0 − (c4 + µ)‖v̂n‖
2
2 6

εn

‖vn‖2
∀n > 1,

thus by (3.19) and (3.20), we get

c0 6 (c4 + µ)‖v̂‖2
2,

hence

(3.22) v̂ 6= 0.

Let Ω∗ = {z ∈ Ω : v̂(z) 6= 0}. We have |Ω∗|N > 0, with | · |N being the Lebesgue

measure on R
N and

|vn(z)| −→ +∞ for a.a. z ∈ Ω∗,

so

f(z, vn(z))vn(z) − 2F (z, vn(z)) −→ +∞ for a.a. z ∈ Ω∗
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(see hypothesis H(f)(iv)), thus

(3.23)

∫

Ω∗

(f(z, vn)vn − 2F (z, vn)) dz −→ +∞

(see hypothesis H(f)(iv) and use Fatou’s lemma).

Hypothesis H(f)(iv) implies that we can find M2 > 0 such that

(3.24) f(z, ζ)ζ − 2F (z, ζ) > 0 for a.a. z ∈ Ω, all |ζ | > M2.

Then we have ∫

Ω

(f(z, vn)vn − 2F (z, vn)) dz

=

∫

(Ω\Ω∗)∩{|vn|>M2}

(f(z, vn)vn − 2F (z, vn)) dz

+

∫

(Ω\Ω∗)∩{|vn|<M2}

(f(z, vn)vn − 2F (z, vn)) dz

+

∫

Ω∗

(f(z, vn)vn − 2F (z, vn)) dz

> −c5|Ω|N +

∫

Ω∗

(f(z, vn)vn − 2F (z, vn)) dz ∀n > 1,

for some c5 > 0 (see (3.24) and hypothesis H(f)(i)), so

(3.25)

∫

Ω

(f(z, vn)vn − 2F (z, vn)) dz −→ +∞ as n→ +∞

(see (3.23)).

From (3.15), we have

(3.26) γ(vn) −

∫

Ω

2F (z, vn) dz 6 2M1 ∀n > 1.

Also from (3.17) with h = vn ∈ V , we have

(3.27) −γ(vn) +

∫

Ω

f(z, vn)vn dz 6 εn ∀n > 1.

We add (3.26) and (3.27) and obtain

(3.28)

∫

Ω

(f(z, vn)vn − 2F (z, vn)) dz 6 M3 ∀n > 1,

for some M3 > 0. Comparing (3.25) and (3.28) we get a contradiction. This proves

that the sequence {vn}n>1 ⊆ V is bounded.

Therefore, passing to a subsequence if necessary, we may assume that

(3.29) vn
w

−→ v in H1(Ω) and vn −→ v in L2(Ω) and in L2(∂Ω).

From (3.17), we have

〈A(vn), h〉 +

∫

Ω

ξ(z)vnh dz +

∫

∂Ω

β(z)vnh dσ −

∫

Ω

f(z, un) dz
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6
εn‖h‖

1 + ‖un‖
∀h ∈ H1(Ω),(3.30)

with εn → 0+. Choosing h = vn − v ∈ H1(Ω) in (3.30), passing to the limit as

n→ +∞ and using (3.29), we obtain

lim
n→+∞

〈A(vn), vn − v〉 = 0,

so

‖Dvn‖2 −→ ‖Dv‖2,

thus, by the Kadec-Klee property for Hilbert spaces (see (3.29)), we get

vn −→ v in H1(Ω),

hence ϕ̂ satisfies the Cerami condition. This proves Claim 1.

Claim 2. λ̂m+1ξ
2 − 2F (z, ξ) −→ +∞ uniformly for a.a. z ∈ Ω as ξ → +∞.

Hypothesis H(f)(iv) implies that given η > 0, we can find M4 = M4(η) > 0 such

that

(3.31) f(z, ζ)ζ − 2F (z, ζ) > η for a.a. z ∈ Ω, all |ζ | > M4.

We have

d

dζ

(
F (z, ζ)

|ζ |2

)
=
f(z, ζ)|ζ |2 − 2ζF (z, ζ)

|ζ |4

=
f(z, ζ)ζ − 2F (z, ζ)

|ζ |2ζ
{

>
η

ζ3
for a.a. z ∈ Ω, all ζ > M4,

6
η

|ζ|2ζ
for a.a. z ∈ Ω, all ζ 6 −M4

(see (3.31)), so

F (z, y)

|y|2
−
F (z, u)

|u|2
>
η

2

(
1

|u|2
−

1

|y|2

)

for a.a. z ∈ Ω, all |y| > |u| > M4.(3.32)

Hypotheses H(f)(ii) and (iii) imply that

ϑ(z) 6 lim inf
ζ→±∞

f(z, ζ)

ζ
6 lim sup

ζ→±∞

f(z, ζ)

ζ
6 λ̂m+1

uniformly for a.a. z ∈ Ω,

so

ϑ(z) 6 lim inf
ζ→±∞

2F (z, ζ)

ζ2
6 lim sup

ζ→±∞

2F (z, ζ)

ζ2
6 λ̂m+1

uniformly for a.a. z ∈ Ω.(3.33)

In (3.32) we let |y| → +∞. Using (3.33) we obtain

λ̂m+1|u|
2 − 2F (z, u) > η for a.a. z ∈ Ω, all |u| > M4.
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Since η > 0 is arbitrary, it follows that

λ̂m+1|u|
2 − 2F (z, u) −→ +∞ uniformly for a.a. z ∈ Ω, as u→ ±∞.

This proves Claim 2.

For every v ∈ V , we have

2ϕ̂(v) = γ(v) − 2

∫

Ω

F (z, v) dz >

∫

Ω

(λ̂m+1v
2 − 2F (z, v)) dz > −c5,

for some c5 > 0 (recall that ϕ̂ = ϕ|V , see (2.4), Claim 2 and hypothesis H(f)(i)), so

(3.34) ϕ̂ is bounded below.

Then (3.34), Claim 1 and Proposition 5.22 of Motreanu-Motreanu-Papageorgiou [10,

p. 103] imply that ϕ̂ is coercive. From Proposition 2.1 we have

ψ(v) = ϕ(v + τ(v)) = max
y∈Y

ϕ(v + y) > ϕ(v) = ϕ̂(v) ∀v ∈ V,

so ψ is coercive (since ϕ̂ is coercive).

Corollary 3.5. If hypotheses H(f), H(ξ) and H(β) hold, then ψ is bounded below,

satisfies the Cerami condition and

Ck(ψ,∞) = δk,0Z ∀k > 0.

We assume that Kϕ is finite. Otherwise we already have an infinity of solutions

and so we are done.

Proposition 3.6. If hypotheses H(f), H(ξ) and H(β) hold, then

Ck(ϕ, 0) = δk,dl
Z ∀k > 0,

with dl = dim
l⊕

k=1

E(λ̂k).

Proof. Let

Ỹ =

l⊕

k=1

E(λ̂k) and Ṽ =
⊕

k>l+1

E(λ̂k).

We have the following orthogonal direct sum decomposition

H1(Ω) = Ỹ ⊕ Ṽ .

Then every u ∈ H1(Ω) admits a unique sum decomposition of the form

(3.35) u = ỹ + ṽ, with ỹ ∈ Ỹ , ṽ ∈ Ṽ .

Let λ ∈ (λ̂l, λ̂l+1) and consider the C2-functional ϕ0 : H1(Ω) −→ R defined by

ϕ0(u) =
1

2
γ(u) −

λ

2
‖u‖2

2 ∀u ∈ H1(Ω).



322 L. GASIŃSKI AND N. S. PAPAGEORGIOU

We consider the homotopy h(t, u) defined by

h(t, u) = (1 − t)ϕ(u) + tϕ0(u) ∀(t, u) ∈ [0, 1] ×H1(Ω).

Suppose that we can find two sequences {tn}n>1 ⊆ [0, 1] and {un}n>1 ⊆ H1(Ω) \ {0}

such that

(3.36)

{
tn −→ t in R, un −→ 0 in H1(Ω)

h′u(tn, un) = 0 ∀n > 1.

Since Kϕ is finite, we may assume that tn 6= 0 for all n > 1. We have

(3.37) (1 − tn)〈ϕ
′(un), h〉 + tn〈ϕ

′
0(un), h〉 = 0 ∀n > 1, h ∈ H1(Ω),

so

〈A(un), h〉 +

∫

Ω

ξ(z)unh dz +

∫

∂Ω

β(z)unh dσ

=

∫

Ω

((1 − tn)f(z, un) + tnλun) dz ∀h ∈ H1(Ω), n > 1,(3.38)

so {
−∆un(z) + ξ(z)un(z) = (1 − tn)f(z, un(z)) + tnλun(z) for a.a. z ∈ Ω,
∂un

∂n
+ β(z)un = 0 on ∂Ω

(see Papageorgiou-Rădulescu [13]). The regularity theory of Wang [18] implies that

there exists α ∈ (0, 1) and M5 > 0 such that

(3.39) un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) 6 M5 ∀n > 1.

Recall that C1,α(Ω) is embedded compactly into C1(Ω). So, from (3.36) and (3.39),

we have

(3.40) un −→ 0 in C1(Ω) as n→ +∞.

From (3.40) it follows that we can find n0 > 1 such that

(3.41) un(z) ∈ [−δ, δ] ∀z ∈ Ω, all n > n0.

In (3.38) we choose h = ṽn − ỹn ∈ H1(Ω) (see (3.35)). Exploiting the orthogonality

of the component spaces, we have

(3.42) γ(ṽn) − γ(ỹn) =

∫

Ω

((1 − tn)f(z, un) + tnλun)(ṽn − ỹn) dz.

Note that when un(z) 6= 0, we have

f(z, un(z))(ṽn − ỹn)(z)

=
f(z, un(z))

un(z)
un(z)(ṽn − ỹn)(z)

6

{
λ̂l+1(ṽn(z)

2 − ỹn(z)
2) if un(z)(ṽn − ỹn)(z) > 0,

λ̂l(ṽn(z)
2 − ỹn(z)

2) if un(z)(ṽn − ỹn)(z) 6 0

6 λ̂l+1ṽn(z)
2 − λ̂lỹn(z)

2 ∀n > n0(3.43)
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(see (3.35) and hypothesis H(f)(v)).

When un(z) = 0, then f(z, un(z)) = 0 and ṽn(z) = −ỹn(z) (see (3.35)). Hence

(3.43) remains valid.

We return to (3.42) and use (3.43). Recalling that tn 6= 0 for all n > 1 and that

λ ∈ (λ̂l, λ̂l+1), we have

γ(ṽn) −

∫

Ω

((1 − tn)λ̂l+1 + tnλ)ṽ2
n dz 6 γ(ỹn) −

∫

Ω

((1 − tn)λ̂l + tnλ)ỹ2
n dz,

so

c1‖ṽn‖
2
6 −c2‖ỹn‖

2 ∀n > n0

(see Proposition 2.1), thus

ṽn = ỹn = 0 ∀n > n0,

hence

un = 0 ∀n > n0,

a contradiction. This shows that (3.36) cannot occur. Then the homotopy invariance

of critical groups (see Gasiński-Papageorgiou [8, Theorem 5.125, p. 836]) implies that

(3.44) Ck(ϕ, 0) = Ck(ϕ0, 0) ∀k > 0.

Recall that λ ∈ (λ̂l, λ̂l+1). Hence Kϕ0
= {0} and u = 0 is a nondegenerate critical

point of ϕ0 with Morse index dl = dim
l⊕

k=1

E(λ̂k). Since ϕ0 ∈ C2(H1(Ω)), we can

apply Theorem 6.51 of Motreanu-Motreanu-Papageorgiou [10, p. 155] and have that

Ck(ϕ0, 0) = δk,dl
Z ∀k > 0,

so

Ck(ϕ, 0) = δk,dl
Z ∀k > 0

(see (3.44))

Using Proposition 3.6 and Theorem 1.2 of Li-Liu [9], we obtain the following

result.

Corollary 3.7. If hypotheses H(f), H(ξ) and H(β) hold, then

Ck(ϕ, 0) = Ck−dm
(ψ, 0) = δk,dl

Z ∀k > 0.

The next result is an easy observation which relates the critical sets Kϕ and Kψ.

Proposition 3.8. If hypotheses H(f), H(ξ) and H(β) hold, then v ∈ Kψ if and only

if v + τ(v) ∈ Kϕ.
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Proof. “=⇒”: We have

(3.45) 0 = ψ′(v) = pV ∗ϕ′(v + τ(v))

(see Proposition 3.3). We know that H1(Ω)∗ = Y ∗ ⊕ V ∗. So, from (3.45), it follows

that ϕ′(v+τ(v)) ∈ Y ∗. But from (3.7), we have pY ∗ϕ′(v+τ(v)) = 0, so ϕ′(v+τ(v)) =

0, thus v + τ(v) ∈ Kϕ.

“⇐=”: Follows from Proposition 3.3.

Now we are ready for the multiplicity theorem for problem (1.1). We produce

two nontrivial smooth solution.

Theorem 3.9. If hypotheses H(f), H(ξ) and H(β) hold, then problem (1.1) admits

at least two nontrivial solutions

u0, û ∈ C1(Ω), u0 6= û.

Proof. From Proposition 3.4 we know that ψ is coercive. Also, the Sobolev embedding

theorem, the compactness of the trace operator and the continuity of the map τ (see

Proposition 3.2) imply that ψ is sequentially weakly lower semicontinuous. So, by

the Weierstrass-Tonelli theorem, we can find v0 ∈ V such that

ψ(v0) = inf
v∈V

ψ(v),

so

(3.46) Ck(ψ, v0) = δk,0Z ∀k > 0.

From Corollary 3.7, we have

(3.47) Ck(ψ, 0) = δk,dl−dm
Z ∀k > 0.

According to hypothesis H(f)(v), l > m. Hence dl > dm. So, comparing (3.46) and

(3.47), we infer that v0 6= 0, therefore u0 = v0+τ(v0) ∈ Kϕ\{0} (see Proposition 3.8).

Hypotheses H(f) imply that

(3.48) |f(z, ζ)| 6 c6|ζ | for a.a. z ∈ Ω, all ζ ∈ R,

for some c6 > 0. We have

(3.49)

{
−∆u0(z) + ξ(z)u0(z) = f(z, u0(z)) for a.a. z ∈ Ω,
∂u0

∂n
+ β(z)u0 = 0 on ∂Ω.

We define

η(z) =

{
f(z,u0(z))
u0(z)

if u0(z) 6= 0,

0 if u0(z) = 0.

Evidently η ∈ L∞(Ω) (see (3.48)). From (3.49), we have
{

−∆u0(z) = η̂(z)u0(z) for a.a. z ∈ Ω,
∂u0

∂n
+ β(z)u0 = 0 on ∂Ω,
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with η̂ = η − ξ ∈ Ls(Ω), s > N (see hypothesis H(ξ)). From Lemma 5.1 of Wang

[18], we have that u0 ∈ L∞(Ω). Then using the Calderon-Zygmund estimates (see

Lemma 5.2 of Wang [18]), we obtain

u0 ∈ W 2,s(Ω),

so

u0 ∈ C1,α(Ω),

with α = 1 − N
s
> 0 (by the Sobolev embedding theorem).

Suppose that Kψ = {0, v0}. Then from (3.46), (3.47), Corollary 3.5 and the

Morse relation with t = −1 (see (2.5)), we have

(−1)dl−dm = 0,

a contradiction. So, there exists v̂ ∈ Kψ \ {0, v0}. Then

û = v̂ + τ(v̂) ∈ Kϕ \ {0, u0}

and as before using the regularity theory of Wang [18], we have û ∈ C1(Ω).
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[14] N. S. Papageorgiou and V. D. Rădulescu, Multiplicity of solutions for resonant Neumann

problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367:8723–8756,

2015.
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