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VERTICAL AND HORIZONTAL GRAZING
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ABSTRACT. Grazing solutions of non-autonomous system with variable moments of impulses are
examined. Appropriate definitions for vertical and horizontal grazing in non-autonomous systems
are given and interpreted geometrically. The linearization for the periodic solutions which have
vertical or horizontal grazing is obtained. Examples are presented to demonstrate the practicality

of our results and they are visualized by the simulations.
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1. INTRODUCTION

There can be found two different approaches in the literature for the definition
of grazing. One of them is that the grazing occurs whenever the trajectory meets
with zero velocity to the surface of discontinuity [1], [2], [3]. Another one is that
the trajectory meets with the surface tangentially [4]-[11]. In the light of the papers
[4]-[11], we focused on the analytical expression of the tangency at the grazing point

to define the horizontal grazing and vertical grazing.

There are wide ranges of studies about grazing phenomenon [1]-{12]. All existing
studies are conducted on autonomous systems [3, 13], the systems with discontinu-
ous right hand side [6, 8] and non-autonomous system with autonomous surfaces of
discontinuity [2]. In [11], a criterion for horizontal grazing motions in a dry friction os-
cillator is determined by means of the local theory of non-smooth dynamical systems
on the connectible and accessible domains. In the study [2], the creation of periodic
orbits associated with grazing bifurcations in the models of impacting systems and
some sufficient conditions are obtained for the existence of a family of periodic solu-
tions. In [14], two distinct types of grazing bifurcations are taken into account. One
is that the stable motion disappears and system stabilized onto an already existing
attracting solution and the other in which there is an immediate jump to chaos as
part of an orbit grazes at a stop. In the paper [1], the stable periodic orbits and
chaotic motions are determined analytically by utilizing the limit mapping. In [2],
some sufficient conditions are obtained to determine the existence of a family of pe-

riodic orbits whose creation is caused by ramification from the grazing bifurcation
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point. The smallest appropriate parameter alteration for the horizontal grazing in a
hybrid system is determined by applying numerical methods [7]. A general method is
presented for the construction of suitable local maps near a horizontal grazing point
for n-dimensional PWS systems in [8]. In our paper [9], we have taken into account
the grazing properties of discontinuous dynamical systems and we prove the orbital

stability theorem for them.

Horizontal and vertical grazing should be considered because they cannot be
taken into account by utilizing the existing results in the literature. In a geometrical
sense, the horizontal grazing occurs when the surface of discontinuity has a tangent
plane at the grazing point which is parallel to the time axis and the vertical grazing
occurs whenever the tangent plane at the grazing point is perpendicular to the time
axis. The horizontal and vertical grazing are depicted in Figures la and 1b, respec-
tively. The appropriate definitions of the horizontal and vertical grazing for non-
autonomous system whose vector field and surfaces are defined by non-autonomous
functions and the definition of horizontal grazing for non-autonomous system with
cylindrical surface of discontinuity are given. The periodic solutions which have verti-
cal or horizontal grazing are obtained in specific examples. The stabilities of them are
examined by constructing proper linearization systems around the periodic solutions.
The periodic solutions and their stabilities are observed through simulations and the

results are depicted.

1.1. Motivation. Take into account the following differential equation
(1.1) 2" +a(t)r +b(t)x = f(t,z,2"),

where a(t) is a variable damping function, b(¢) is a variable spring function and
f(t,z,2") is a force applied to the system. Assume that it is subject to impacts with
a cylindrical surface I' = {(¢, z,2) | ®(x,2") = 0}. The type of the barrier is common
for impact mechanisms. To illustrate, the surfaces + = X and 2’ = X in (¢, z,2")
are cylindrical surfaces. Thus, if the grazing occurs in the non-autonomous equation

(1.1), then it is mainly a horizontal one as expected.

In the paper [10], the system of leaky integrate-and-fire neuron model is presented

as

du

— = —ku+ S(t),
(1.2) dt (®)

uw(tt) =0 if wu(t) =0,

where u is the internal state, k is the leaky parameter and S(¢) is the input time series
which is positive. If the internal state u reaches the threshold © the spike occurs
and the internal state immediately resets to the resting state v = 0. In the leaky
integrate and fire neuron model, the grazing takes place whilst there exists a time 7’

such that % = —ku + S(T) = 0. (See Fig. (A), it is taken from the paper [10].)
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(t",u)

t
(A)' Horizontal grazing in

neural networks. (B) Vertical grazing.

This demonstrates that the horizontal grazing can be observed in neural networks.
Moreover, it is determined that the bifurcation results in the breaking of inter spike
interval attractors. In [4], it is demonstrated that the grazing bifurcation can be
utilized to find the Arnol’d tongue diagram for mode-locked responses and determined
that the horizontal grazing phenomenon in integrate-and-fire neuron model causes the
passing to a regular firing either from a fast firing or from a doublet firing and it causes
the diminish of the stability of sub-threshold oscillations.

Vertical grazing which is depicted in Fig. (B) is supposed to be useful for the
analysis of singularities. The presentation of the vertical grazing is beneficial since
the method of analysis can be applied for models with singularities under impacts.
Such systems can be seen in the models of electrically driven robot manipulator
which has slower mechanical dynamics and faster electrical dynamics. In this type of
systems, we should consider the problem in two parts such as one part is slower and
one part is faster dynamics [15]. For which the vertical grazing can be utilized in the

analysis of faster dynamics.

2. Grazing non-autonomous system with variable impulse moments

Let R, N and Z be the sets of all real numbers, natural numbers and integers,
respectively. Let G C R"™ be an open and connected set. The non-autonomous
systems with variable moments of impulses consist of two different systems. One
is that the vector field as well as surfaces are defined by non-autonomous functions
and the other is the vector field defined as non-autonomous function bu the surfaces

defined as an autonomous functions in other words the surfaces are cylindrical.
The first type can be considered as a following system
o' = f(t @),
(2.1)
Ax|t:’ri(a:) - JZ(I),

where (¢,i,2) € Rx Z x G, the function f(¢,x) is continuously differentiable in = and
t on R x G, and T-periodic in ¢, i.e. f(t+T,x) = f(t,x), functions J;(z) and 7;(x),
i € Z, are differentiable on G and J;(x) satisfies the following equality, J;1,(x) = J;(z)
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for a natural number p and 7;(x) has (T, p)-property, i.e. 7;(z) + T = 7;4,(x) for all
1 € L.
The other type of system can be defined by the following system of impulsive

differential equations

v’ = f(t,.’L‘),

2.2
( ) Ax|z€I‘ - Jl(x)a

where I' is a cylindrical surface of discontinuity and defined as I' = {(¢, z)|®(z) =
0,t € R,z € G}. The function f(¢,x) is continuously differentiable in x and ¢ on
R x G, and T-periodic in ¢, i.e. f(t+T,z) = f(t,x), functions J;(z) and ®(z) =0
are differentiable on G and J;(x) satisfies the following equality, J;1,(z) = J;(x) for

a natural number p and for all © € Z.

To simplify the notation, we need the following system of ordinary differential

equations
(2.3) y' = f(ty).
In what follows, the conditions will be needed.

(N1) 7i(x + Ji(z)) < 7i(x) for all i € Z and x € G;

(N2) it &(t, 75(c), e+ Ji(c), c € G, i € Z, is a solution of (2.3), then ¢ # 7;(£(t, 74(c), c+
Ji(¢))) for all t > 7;(¢) and i € Z and z € G}

(N3) There exist positive numbers C' and N such that CN < 1

max [ (to) <O max ]| 25 < W, maX<8Ti(xgg']i(x)),.]i(x)>§0,

(t,z)eERx D €D ox 0<o<1

where (,) is the usual dot product and D is a compact subspace of the phase
space and for all (t,2) € Rx D and i € Z and x € G,

Assume that the conditions (N1)—(N3) are valid. Then, the solution of (2.1) intersects
the surfaces of discontinuity exactly once [16]. The surface divides ¢! into two parts.
Consider a point (ty,zy) € s.. Take z € cl6 such that there exists t < (; and z =
x(t, ty, 79). Denote the union of all of these z, for all (¢y,zy) € st as bL. Moreover,
denote I; = |J;%, I_(l(j) \ UZ.#m(Kl(i) N Kl(m)), where S is the closure of a set S.
Consider a periodic solution ¥(t) of (2.1). Denote by 6;, i € Z, the moment of
meeting of a the periodic solution with the surface t = 7;(), i € Z. The intersection

moments satisfy the property that 0,,, = 0; + 1", © € Z, where p is a positive number.

Definition 2.1. There is a horizontal grazing of the periodic solution ¥(t) of (2.1)
at a point (6,,¥(6,)), [ = 1,2,...,p, if for some j = 1,2,...,n, the conditions are
fulfilled:

(i) f5(6h, ¥ (6:)) =0,
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T( (Hl) \Ifg(el), Ceey \Ifj,l(Ql), .l‘j, \Ifj+1(9l), ceey \Iln(ﬁl)) iS
29 = W;(0;) for z; < af or z; > 29, and the one sided

g or [ 1(t)]', =g, is equal to zero, respectively.

(i) a function t = n(x;) =
invertible near x; =
=0

derivative [n~1(¢)]_

Definition 2.2. A vertical grazing of the periodic solution W(¢) of (2.1) at a point
(6, (6,)) exits at the point (6, ¥(6;)) I =1,2,...,p, if for some j = 1,2,... n, the

following conditions are fulfilled:

(i) a function x; = W,(t) is invertible near x; = x7 = W;(6;) for z; < 2% or/and
T; > x?, and the one sided derivative [\Ifjfl(xj)]ﬂw:xj or/and [\If;l(xj)]’+|$:,c] is
equal to zero, respectively.

(ii) 7ia, (¥(6:)) = 0.

Consider a periodic solution W(t) of (2.2). Denote by 0;, i € Z, the meeting
moments of W(t) with the surface ®(x) = 0. They satisfy the property for all i € Z,

0irp = 0; + 1", where p is a positive number.

Definition 2.3. There is a horizontal grazing of the periodic solution W(¢) of the
system (2.2) at a point (6, V(6;)), where | = 1,2,...,p, if the equality at the point
(D(T(6)), f(0,9(0,)) =0 is valid.

Next, we will construct B-equivalent system to the system (2.1) [16], which re-
duces the systems with variable moments of impulses to that with fixed moments
of impulses. For the system (2.2), it can be obtained similarly. Consider a point
(0;,x) € R x G on the periodic solution with a fixed i € Z. Let & = &;(z) be the
meeting moment of the solution x(t) = x(t,6;, ) of (2.3). Additionally, assume that
the solution x;(t) = (¢, 0;, x(6;)) of (2.3) exists on m The B-map W : z — x,(§)
can be constructed as

0;

& &
(2.4) W;(z) = fu, z(u))du+ J; <x + ) f(u,x(u))du) + f(u, z1(u))du.

Let us take into account the following system of differential equations with fixed

moments of impulses

v =rty),

(2.5) Ay, = Wily).

Due to the way of construction of W;(x) systems (2.1) and (2.5) are B-equivalent
[16, 17] in the neighborhood of W¥(t). That is, if 2(¢) : U — G is a solution of (2.1),
then coincides with a solution y(t) : U — G when y(ty) = z(to), for ty € U\UieZ[Q/i,f\i].
Particularly, 2(6;) = y(0;+), ©(&) = y(&), if 0; > &, x(0;) = y(0:), x(&+) = y(&), if
0; < &. It is easy to see that W(¢) is also a solution of (2.5) as well. In the remaining

part of the paper, we will consider (2.5) instead of (2.1).
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Assume that the periodic solution W(t) of (2.1) meets the surface ¢t = 7;(x) at

the moment ¢t = #;, transversally. Let us start with the derivative of the equation

0i(x) = 7i(x(0:(x))), [16],

(26) VOO0 = 1ot
w

where U(t), is a fundamental matrix of u' = f, (¢,

v(6:))’
t))u with U(¢;) = I, where I is

n X n identity matrix.

By taking the derivative of the B-map defined by (2.4) with respect to x, we can

determine the matrix D; as

2.1 D; = Wig(¥(6:)) = (f(0:, W (0:)) — f (03, W(6:)))05(¥(6:))
' +J (U (0:))0;(w) + Jia(1+ f (0, W (6:))0; (¥ (6:))),
where the Jacobian matrix can be obtained as Wi, (¥(¢;)) = [%Z’, %‘;‘2 e g?:].

It is easy to see that the linearization at the point (6;, U(6;)) can be obtained as
(2.8) Auli=p, = Diu

with Dy, = D;, @ € Z.

For Examples 2.5 and 2.6, one can utilize the formulas (2.6) and (2.7) to obtain
a linearization at the point (6;,V(6;)), i € Z. For Example 2.4, we cannot apply
formulas due to the appearance of singularity in the formula (2.7) at the grazing
point. For this example, we will consider another approach to obtain a linearization

at the grazing point.

Example 2.4. In this example, the motion of one degree of freedom mechanical
oscillator which is subjected to impacts with a rigid wall is considered and it can be
expressed as

2" +0.222 + x =1+ 0.22sin(t),

(2.9)
Az |(tz@yer = —(1+0.92")a

where the surface of discontinuity is I' = {(¢,x,2") | x = 0, t € R}. System (2.9) ad-
mits 27-periodic continuous solution of the form W(¢) = 1 —cos(t). Defining variables
as r = x; and 2’ = x5, we have

Ty = @,

(2.10) ry = —0.22z9 — 1 + 1 + 0.225sin(¢),

(tar,a)er = — (14 0.922) 9,

where I' = {(¢,21,22) | 1 = 0,t € R} and the points (6;, ¥(6;), ¥'(6;)) = (271,0,0),
i € Z, are grazing as well. Denote by x(6;) = (x,(6;), 22(0;)). In what follows, we will
apply formula (2.7) in the basis of system (2.10).
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Fix i € Z, and consider a near solution z(t) = (x(t), z2(t)) = z(t, 6;, ¥(6;) + Ax),
to W(¢) of the differential part of the system (2.10). The solution z(t) impacts the
barrier at a moment ¢ = & near to t = 6; and at the point (zq,22) = (21(&), 22(&)).
Let also, Z(t) = (Z1(t), Z2(t)) be a solution of the equation such that (&) = (&) +
J(z(&;)). Define the following map

B & xg(s)
Wi(x) = /0 z1(s) — 0.22z5(s) + 1 +0.22 sin(s)] ds

&i

To($)
(2.11) A +/ —21(s) — 0.222(s) + 1 + 0.22 sin(S)] -
A0
+! —71(s) — 0.22F5(s) + 1 + 0.22 sin(S)] s

Let us start with a linearization for inside continuous solutions. The solutions, in-
side of the cycle, do not impact the barrier with non-zero velocity and are continuous.

Thus, the linearization for these solutions is the following system [18],

uy = ug,
(2.12)
uly, = —uy — 0.22us.

The multipliers of the system are p{" = 0.5006 — 0.01914, pi"” = 0.5006 + 0.01914,
where i = —1. Since the multipliers are inside the unit circle, the cycle W(t) is

asymptotically stable with respect to inside continuous solutions.

Now, we will continue with the linearization for the outside discontinuous solu-
tions. The linearization system around the cycle ¥(¢) for solutions which are outside
of the cycle has the form, [16],

uy = uy,
(2.13) UIZ = —uq — 0.22us,
Auf|t:0i = Ww:(x*)ua

where ; = 2mi and u = (uy, uy)”, where T denotes transpose of a matrix. The matri-
ces Wi, (x*) will be evaluated below. Assume that the solution z(¢) meets the barrier
at the moment ¢ = 7 and denote the meeting point as T = z(7) = (x1(7), z2(7)),
where x1(7) = 0, 25(7) < 0 and 7 &~ 27. It is easy to see that any impacting so-

lution near to W(t) meets the barrier transversely. Taking derivative of (2.11) and
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substituting = T to the derivative, we obtain that

oW;(#) _ [ 7 ] 0i(z) [1 0 ]

oxY —Z, — 0.227, + 1 +0.22sin(7) | 02} 0 1.96%,

X2 agz( )
—7; — 0227 + 1 4+ 0.22sin(r) | 0]

—0.98(72)* 9 (z)
—7; + 0.2156(72)% + 1 + 0.22sin(7)| O]

(2.14) X <e1 +

Moreover, differentiating ®(z(&;(z))) = 0, we have

(2.15) 9i((6:)) _ P, ((6:)) Gacd P
0z (I)x(:r(gz))f(gz,x( i)’ o
for the transversal point & = (Z1, Z), the first component ( ) can be evaluated as
8%;3”) = —é. From the last equality, it is seen how the smgulanty appears at the
1

grazing point z* = (x}, z3) = (0,0). Finally, we obtain that

oWi(z)
0x?

; (=)
—T1 — 0.22Z5 + 1+ 0.22sin(7) | \ T2

* (1) 1.925:52] (el B :1:1+0.22(:cji sin(r)) — 1] <;_21>>

N 0.98(,) (-1)
1+ 0.2156(2)% — 1 — 0.22sin(7) | \ T»
—1+ 0.981,
0.22 + 0.2156F; + 1.96(Z1 — 0.22sin(7) 4 0.222, — 1)

(2.16)

where e; = (1,0)7.

The last expression demonstrates that the derivative is a continuous function of
its arguments in a neighborhood of the grazing point. Since z is a transversal point,

one can evaluate the limit as

(2.17) lim 27 (2)

T—x* 8;5‘1
-1
—1.74|

To linearize system at the grazing point x*, we should verify that the function

=B,

where B =

W;(x) is differentiable at 2*. The differentiability requests that the partial derivatives
oW, (z)
8x? !

Jj = 1,2, exist in a neighborhood of the grazing point and they are continuous

OW;(x)
8x(1)

at the point [19]. To compute the derivative at z*, the following expression
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will be taken into account

OWi (a7, x5) Wilry, 25) — Wilat, 75)

= 1

3:1:(1) wlgriff T — .ZUI

(2.18) N LA COTEs, j(xl’x?) — B+B.
$1~>II T — .ZEI
Applying the Mean Value Theorem [19], we obtain that
. 8Wé(fff$;) (v1 — 27) — B(x1 — 7)
(2.19) lim . + B,
wlawf T — fL'l

where ( lies between z; and z7.
From (2.19), considering (2.17), we have that
OWi (i, 3)
ox?

So, the derivative exists and is continuous at z*.

(2.20) = B.

32”5;”) at z*. To
T2

accomplish these, we should continue with differentiating (2.11) again and substitut-

Now, let us check the existence and continuity of the derivative

ing T = (Z1,Z2). Then, we obtain

oWi(z) Ty O&; ()
Oy —T; — 02275 + 1 + 0.22sin(r) | 0}
10 |, G 96, (z
+ |t lex+ _ ;762 . 3 (Ox)
0 1.967, —7 —0.22(7y —sin(7)) + 1| Oy
| 0.98(z2)?2 ¢ ()
T - \2 - 0
71 — 0.2156(22)2 — 1 — 0.22sin(r)| 0
B Ty — 0.98(3)* 0&()
1 0 T o0& (T
(2.21) v et | e 3 (f)
0 1.967, —T; — 0.22(7y —sin(7)) + 1| 0Oz
where e, = (0,1)”. To evaluate the derivative 821';53) in (2.21), we apply formula (2.15)

9¢(z)

s~ = 0. This and formula

for the transversal point Z = (1, ) and it is equal to
(2.21) imply

(2.22) lig, 2Vil®)

T—T* ajtg
0
0 .

Similar to above discussion for the first derivative, one can obtain that 8”{;"796(3”*) =C
2

OW;(x)
ax?

=,

where C' =

and the derivative is continuous at z*. Thus, both derivatives and 3?;5“*’) exist in
2
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a neighborhood of z* and they are continuous at z*. That is, W;(z) is differentiable at
x*. Since of the periodicity, the linearization can be obtained for all grazing moment
0,1 € Z.

Joining (2.20) and (2.22), it is obtained that

(2.23) Wi(a") = [_]_174 8] -

The multipliers of (2.13) are p; = 0 and py = 0.5339. Due to the fact that the
multipliers are less than unity in norm, we can conclude that the periodic solution

U (t) is asymptotically stable.

Despite the grazing, the singularity is not obtained in the derivative (2.6) in
Examples 2.5 and 2.6. So, the method presented in [16] can be utilized in the following

examples to find a linearization at the grazing point.

Example 2.5. We will consider the system

' =0,
(2.24)
Ax|t:n-(x) = —0.21‘,
where 7;(z) = 10 arccos(z 4 0.1) + im. One can easily determine that the system has

zero solution x(t) = 0. We will consider it as a m-periodic solution of (2.24).

By means of the fact that 7;(z) is an increasing function, it is easy to see
that condition (N1) is valid. For constants C' = 1/11, and N = 3999, such that
CN < 1 and the following inequalities are valid max zerxp ||f(t,2)|| = 0 < C,
8Ti(z+aJi(z))7Ji(x)> _

3

o (x) o 10
maxgep || 5.~ || = maxeep ||\/1:|| < N, and maxp<s<i 5
—(2+0.1)2 S0 ©
maxg<,<1 ——=——— < 0. So, (N2) is valid. The condition (N3) is also true for

1—((1-0.20)x)?
this example.

The integral line x(t) = 0 is tangent to the surface ¢ = 7p(x) at the point
(61,%(61)) = (0,0). Indeed, since the right hand side f(¢,x) is constantly zero, the
condition (z) is valid. Take into account the function ¢t = n(z) = 10 arccos(z + 0.1),
which is invertible near + = ¥(6;) = 0, for z < 0 and the one sided derivative
(771 (t)]_|s=9, = 0.1sin(#;) = 0. So, it validates the condition (i¢). Therefore, the zero
solution has horizontal grazing at the point (6,, ¥(#,)) = (0,0). Moreover, one can
validate easily that (74,0), i € Z are also horizontal grazing points. Let us obtain
a linearization system around zero solution. For a solution, z(t) = x(¢,0,z), with
Z > 0, there exists no intersection with the surfaces of discontinuity. This is why, the

linearization system has the form
(2.25) u' =0,

Next, consider another solution z(t) = z(¢,0,%z), with Z < 0 of (2.24). One can

easily find that the solution meets each of the surfaces of discontinuity. Due to the
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periodicity of the system, linearization near the zero solution at all points (imr,0)
is the same, if exists. So, it is sufficient to consider the linearization around the
grazing point (0,0) for those points where T < 0. Let us start with the function
0(z) = 10 arccos(z(f(x)) + 0.1). By taking derivative of it, we get

1
(2.26) o (z) = 10 f @), ( (2)))0' (=) +
V1= (2(0(x) +0.1)2)
and substituting the grazing point into the equation (2.26), one can obtain that
0'(0) = —10/+/0.99.

The coefficients in the impulsive part of the linearization system have to be

)

evaluated by formula

Di = (£(6(0), z(6(0))) — f(6(0), z(0(0)) + J(x(6(0)))))¢"(0)
Je(1+ £(0(0),2(0(0))))6'(0) = 0.2,

for all 7 € Z.

So, linearization system for the intersecting solutions with initial value £ < 0 can
be determined as
u =0,

(2.27)
Atli—ri = —0.2u.

Consider solutions with Z < 0. The linearization for them is the system (2.27)
and its multiplier can be evaluated as p = 0.8 < 1, and consequently solutions with
negative initial values are attracted by the zero solution. Nevertheless, the solutions
with positive initial values are constant. That is, one can say that the zero solution
is stable for neighbors from above. On the basis of the discussion, one can conclude
that zero solution is stable. It is pictured in Figure 1. The solutions ¥(¢) = 0, and
x(t,0,Z) with initial values Z > 0 and T < 0 are depicted in black, red and magenta,
respectively in Fig. 1 and the stability of the zero solution is apparently seen by virtue

of simulation.

Through the last examples, it is seen that the tangent at the grazing point is
parallel to the time axis. This approves why we call the phenomenon as horizontal

grazing.

Example 2.6. In order to demonstrate vertical grazing, we take into account the

following system

(2.28) i—t



142 M. AKHMET AND A. KIVILCIM

0.05

-0.05- ]
-0.1f 8
-0.15 8
-0.2 ‘ : : ‘ : : ‘ :
0 5 20 25 30 3B

X

5 10 40 45

FIGURE 1. The blue curves are the discontinuity surfaces t = 7;(z),
i =0,1,2,...,7. The solutions ¥(t) = 0, and x(¢,0,Z) with initial
values z = 0.01 and z = —0.03 are depicted in black, red and magenta,

respectively.

where f(t,x) = \/% and 7;(r) = V16 —2? — 3 44, i € Z. The domain is equal to

G = (—0.6,0.6). One can easily determine that the system has a 1-periodic solution

—2 if t =0,
—2yT—¢ ifte(0,1).

The integral curve of the solution is tangent to the curve of discontinuity m5(x) =
V1 — 22 +1 at the point (8;, ¥(6;)), and the tangent is vertical. That is, one can find
that the function x = U(¢) is invertible near x = ¥(6,) = 0 and for x < 0, and the left
hand derivative is equal to [\Ifj_l(xj)]’_|$zmj = —212(61)? = 0 and let 79(x) = 7(x), and
mp(z) = =8 — (. Conditions (i) and (i) are verified and the periodic solution

V16—z2
U (t) has vertical grazing at the point (6,, ¥(7,)). Similarly, the points are (,0), 7 € Z

U(t) =

are vertical grazing ones. The periodic solution, ¥(¢), is exhibited through simulation
in Fig. 2.

Now, we will validate the conditions from (N1) to (N4). Every solution which
meets a discontinuity surface does not intersect the same one again, which validates

(N1) and instead of the equation z' = \/%, t € [i —1,i), we will take into account

the differential equation 3—; = \/z'l—*t’ t €li—1,4). For C =1 and N = 0.7, such
that CN < 1 and the following inequalities are valid maxg g yerxp ||f(t, 2)| = 1,
max,ep | 58| = maxyep | 75!l < NV, and Maxoe <t (A 1)) =
maxg<,<1 ——=——— < 0. So, (N2) is verified. Conditions (N3) and (N4) can be

1—((1-0.20)x)?
validated easily.
Consider a near solution z(t) = x(t,0, Z) of (2.28) to W(¢) with Z # 0. It is easy to
determine that all near solutions intersects the surface of discontinuity 7(x) = 79(z).
We could not evaluate the derivative §'(x) at the grazing point, by considering the

original system. For this reason, let us interchange the dependent and independent
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variables in the equation. Consider the system
dt

=
Since the function W(¢) is invertible on the interval [0, 1], its inverse satisfies the equa-

tion (2.29), as well as the surface 79(z) can be written as X (t) = —/16 — (t — 3)2,
for negative values of x. It is easy to check that the solution

(2.29) 1—1t.

0 if v = -2,

(2.30) U lz) = ,
1-Z ifxe (-2,0],

of the equation (2.29) has a horizontal grazing point, (¥~*(6,),6;) = (0, 1).

Introduce the function ¢(t) as an analogue of #(x) for the last equation. It is

easy to find that
1
(2.31) 0'(0) = —,
¢'(1)
since the functions are mutually inverse. Let us evaluate ¢'(1). Issuing from the equa-
t D = — /16 — (t(o(D) — 3)2 btain ¢/ (1) = — 231 )¢ 1)+1)
fon 9(t) = —/16 = (1(6(0)) — 3%, we obtain ¢/(1) LW

and ¢'(1) = —%, i.e. 0(0) = —v/3. Taking into account the periodicity of system

(2.28) as well as ¥(t), one can conclude that 6/(0), is equal to —/3, for all i € Z. By
utilizing this discussion and equation (2.7), one can obtain that D; = D = —/3.

Thus, the variational system for all solutions near W(¢) has the form

u =0,
2.32
(2:32) Au = —V3u.
The multiplier for (2.32) can be found as p = —/3 + 1, and it is less than one

in absolute value. So, the periodic solution ¥(¢) is asymptotically stable. One can
observe through simulations results exhibited in Fig. 2 that near solutions approach

to th orbit of the cycle U(t) as time increases.

3. Discussion

This paper includes information about a non-autonomous system with non-fixed
moments of impulses whose solutions have vertical and grazing points. For the hori-
zontal grazing, a system with a non-autonomous vector field and a cylindrical surface
of d iscontinuity is considered as an example and for the vertical grazing the systems
with non-autonomous vector field and the surfaces of discontinuity is exemplified.
By applying a novel technique, we construct a linearization system around the graz-
ing periodic solution. Concrete models are demonstrated and some simulations are
presented to visualize theoretical results. Grazing solutions are widely investigated

in mechanical systems, but there is a few studies can be found in neural networks
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FIGURE 2. The blue curve is for the cycle ¥(¢), the magenta and green
curves are the solutions which start with an initial condition —1.9 and
—2.1, respectively. The red curves are the surfaces of discontinuity
t=m(x),1=0,1,...,6.

which includes grazing. Further, we will apply our methods to investigate the stabil-
ity of neural network models which have grazing points in other words which meet

the threshold tangentially.
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