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VERTICAL AND HORIZONTAL GRAZINGMARAT AKHMET AND AYS�EG�UL KIVILCIMDepartment of Mathemati
s, Middle East Te
hni
al University, Ankara, TurkeyABSTRACT. Grazing solutions of non-autonomous system with variable moments of impulses areexamined. Appropriate de�nitions for verti
al and horizontal grazing in non-autonomous systemsare given and interpreted geometri
ally. The linearization for the periodi
 solutions whi
h haveverti
al or horizontal grazing is obtained. Examples are presented to demonstrate the pra
ti
alityof our results and they are visualized by the simulations.AMS (MOS) Subje
t Classi�
ation. 34A37,34C25.1. INTRODUCTIONThere 
an be found two di�erent approa
hes in the literature for the de�nitionof grazing. One of them is that the grazing o

urs whenever the traje
tory meetswith zero velo
ity to the surfa
e of dis
ontinuity [1℄, [2℄, [3℄. Another one is thatthe traje
tory meets with the surfa
e tangentially [4℄{[11℄. In the light of the papers[4℄{[11℄, we fo
used on the analyti
al expression of the tangen
y at the grazing pointto de�ne the horizontal grazing and verti
al grazing.There are wide ranges of studies about grazing phenomenon [1℄{[12℄. All existingstudies are 
ondu
ted on autonomous systems [3, 13℄, the systems with dis
ontinu-ous right hand side [6, 8℄ and non-autonomous system with autonomous surfa
es ofdis
ontinuity [2℄. In [11℄, a 
riterion for horizontal grazing motions in a dry fri
tion os-
illator is determined by means of the lo
al theory of non-smooth dynami
al systemson the 
onne
tible and a

essible domains. In the study [2℄, the 
reation of periodi
orbits asso
iated with grazing bifur
ations in the models of impa
ting systems andsome suÆ
ient 
onditions are obtained for the existen
e of a family of periodi
 solu-tions. In [14℄, two distin
t types of grazing bifur
ations are taken into a

ount. Oneis that the stable motion disappears and system stabilized onto an already existingattra
ting solution and the other in whi
h there is an immediate jump to 
haos aspart of an orbit grazes at a stop. In the paper [1℄, the stable periodi
 orbits and
haoti
 motions are determined analyti
ally by utilizing the limit mapping. In [2℄,some suÆ
ient 
onditions are obtained to determine the existen
e of a family of pe-riodi
 orbits whose 
reation is 
aused by rami�
ation from the grazing bifur
ationRe
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132 M. AKHMET AND A. KIVILCIMpoint. The smallest appropriate parameter alteration for the horizontal grazing in ahybrid system is determined by applying numeri
al methods [7℄. A general method ispresented for the 
onstru
tion of suitable lo
al maps near a horizontal grazing pointfor n-dimensional PWS systems in [8℄. In our paper [9℄, we have taken into a

ountthe grazing properties of dis
ontinuous dynami
al systems and we prove the orbitalstability theorem for them.Horizontal and verti
al grazing should be 
onsidered be
ause they 
annot betaken into a

ount by utilizing the existing results in the literature. In a geometri
alsense, the horizontal grazing o

urs when the surfa
e of dis
ontinuity has a tangentplane at the grazing point whi
h is parallel to the time axis and the verti
al grazingo

urs whenever the tangent plane at the grazing point is perpendi
ular to the timeaxis. The horizontal and verti
al grazing are depi
ted in Figures 1a and 1b, respe
-tively. The appropriate de�nitions of the horizontal and verti
al grazing for non-autonomous system whose ve
tor �eld and surfa
es are de�ned by non-autonomousfun
tions and the de�nition of horizontal grazing for non-autonomous system with
ylindri
al surfa
e of dis
ontinuity are given. The periodi
 solutions whi
h have verti-
al or horizontal grazing are obtained in spe
i�
 examples. The stabilities of them areexamined by 
onstru
ting proper linearization systems around the periodi
 solutions.The periodi
 solutions and their stabilities are observed through simulations and theresults are depi
ted.1.1. Motivation. Take into a

ount the following di�erential equation(1.1) x00 + a(t)x0 + b(t)x = f(t; x; x0);where a(t) is a variable damping fun
tion, b(t) is a variable spring fun
tion andf(t; x; x0) is a for
e applied to the system. Assume that it is subje
t to impa
ts witha 
ylindri
al surfa
e � = f(t; x; x0) j �(x; x0) = 0g. The type of the barrier is 
ommonfor impa
t me
hanisms. To illustrate, the surfa
es x = X0 and x0 = X 00 in (t; x; x0)are 
ylindri
al surfa
es. Thus, if the grazing o

urs in the non-autonomous equation(1.1), then it is mainly a horizontal one as expe
ted.In the paper [10℄, the system of leaky integrate-and-�re neuron model is presentedas(1.2) dudt = �ku+ S(t);u(t+) = 0 if u(t) = �;where u is the internal state, k is the leaky parameter and S(t) is the input time serieswhi
h is positive. If the internal state u rea
hes the threshold � the spike o

ursand the internal state immediately resets to the resting state u = 0. In the leakyintegrate and �re neuron model, the grazing takes pla
e whilst there exists a time Tsu
h that dudt t=T = �ku + S(T ) = 0. (See Fig. (A), it is taken from the paper [10℄.)
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(a) Horizontal grazing inneural networks. t
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(b) Verti
al grazing.This demonstrates that the horizontal grazing 
an be observed in neural networks.Moreover, it is determined that the bifur
ation results in the breaking of inter spikeinterval attra
tors. In [4℄, it is demonstrated that the grazing bifur
ation 
an beutilized to �nd the Arnol'd tongue diagram for mode-lo
ked responses and determinedthat the horizontal grazing phenomenon in integrate-and-�re neuron model 
auses thepassing to a regular �ring either from a fast �ring or from a doublet �ring and it 
ausesthe diminish of the stability of sub-threshold os
illations.Verti
al grazing whi
h is depi
ted in Fig. (B) is supposed to be useful for theanalysis of singularities. The presentation of the verti
al grazing is bene�
ial sin
ethe method of analysis 
an be applied for models with singularities under impa
ts.Su
h systems 
an be seen in the models of ele
tri
ally driven robot manipulatorwhi
h has slower me
hani
al dynami
s and faster ele
tri
al dynami
s. In this type ofsystems, we should 
onsider the problem in two parts su
h as one part is slower andone part is faster dynami
s [15℄. For whi
h the verti
al grazing 
an be utilized in theanalysis of faster dynami
s.2. Grazing non-autonomous system with variable impulse momentsLet R, N and Z be the sets of all real numbers, natural numbers and integers,respe
tively. Let G � Rn be an open and 
onne
ted set. The non-autonomoussystems with variable moments of impulses 
onsist of two di�erent systems. Oneis that the ve
tor �eld as well as surfa
es are de�ned by non-autonomous fun
tionsand the other is the ve
tor �eld de�ned as non-autonomous fun
tion bu the surfa
esde�ned as an autonomous fun
tions in other words the surfa
es are 
ylindri
al.The �rst type 
an be 
onsidered as a following system(2.1) x0 = f(t; x);�xjt=�i(x) = Ji(x);where (t; i; x) 2 R�Z�G, the fun
tion f(t; x) is 
ontinuously di�erentiable in x andt on R � G, and T -periodi
 in t, i.e. f(t + T; x) = f(t; x), fun
tions Ji(x) and �i(x),i 2 Z, are di�erentiable on G and Ji(x) satis�es the following equality, Ji+p(x) = Ji(x)



134 M. AKHMET AND A. KIVILCIMfor a natural number p and �i(x) has (T; p)-property, i.e. �i(x) + T = �i+p(x) for alli 2 Z.The other type of system 
an be de�ned by the following system of impulsivedi�erential equations(2.2) x0 = f(t; x);�xjx2� = Ji(x);where � is a 
ylindri
al surfa
e of dis
ontinuity and de�ned as � = f(t; x)j�(x) =0; t 2 R; x 2 Gg. The fun
tion f(t; x) is 
ontinuously di�erentiable in x and t onR � G, and T -periodi
 in t, i.e. f(t + T; x) = f(t; x), fun
tions Ji(x) and �(x) = 0are di�erentiable on G and Ji(x) satis�es the following equality, Ji+p(x) = Ji(x) fora natural number p and for all i 2 Z.To simplify the notation, we need the following system of ordinary di�erentialequations(2.3) y0 = f(t; y):In what follows, the 
onditions will be needed.(N1) �i(x+ Ji(x)) � �i(x) for all i 2 Z and x 2 G;(N2) if �(t; �i(
); 
+Ji(
)), 
 2 G, i 2 Z, is a solution of (2.3), then t 6= �i(�(t; �i(
); 
+Ji(
))) for all t > �i(
) and i 2 Z and x 2 G;(N3) There exist positive numbers C and N su
h that CN < 1max(t;x)2R�D kf(t; x)k � C; maxx2D k��i(x)�x k � N; max0���1���i(x+ �Ji(x))�x ; Ji(x)� � 0;where h; i is the usual dot produ
t and D is a 
ompa
t subspa
e of the phasespa
e and for all (t; x) 2 R �D and i 2 Z and x 2 G;Assume that the 
onditions (N1){(N3) are valid. Then, the solution of (2.1) interse
tsthe surfa
es of dis
ontinuity exa
tly on
e [16℄. The surfa
e divides 
l� into two parts.Consider a point (t0; x0) 2 s�. Take z 2 
l� su
h that there exists t < �l and z =x(t; t0; x0). Denote the union of all of these z, for all (t0; x0) 2 sl� as bl�. Moreover,denote Kl = Smlj=1 �K(j)l nSi 6=m(K(i)l \K(m)l ), where �S is the 
losure of a set S.Consider a periodi
 solution 	(t) of (2.1). Denote by �i, i 2 Z; the moment ofmeeting of a the periodi
 solution with the surfa
e t = �i(x), i 2 Z. The interse
tionmoments satisfy the property that �i+p = �i+T , i 2 Z, where p is a positive number.De�nition 2.1. There is a horizontal grazing of the periodi
 solution 	(t) of (2.1)at a point (�l;	(�l)), l = 1; 2; : : : ; p, if for some j = 1; 2; : : : ; n, the 
onditions areful�lled:(i) fj(�l;	(�l)) = 0,



VERTICAL AND HORIZONTAL GRAZING 135(ii) a fun
tion t = �(xj) � �l(	1(�l);	2(�l); : : : ;	j�1(�l); xj;	j+1(�l); : : : ;	n(�l)) isinvertible near xj = x0j = 	j(�l) for xj � x0j or xj � x0j , and the one sidedderivative [��1(t)℄0�jt=�l or [��1(t)℄0+jt=�l is equal to zero, respe
tively.De�nition 2.2. A verti
al grazing of the periodi
 solution 	(t) of (2.1) at a point(�l;	(�l)) exits at the point (�l;	(�l)) l = 1; 2; : : : ; p, if for some j = 1; 2; : : : ; n, thefollowing 
onditions are ful�lled:(i) a fun
tion xj = 	j(t) is invertible near xj = x0j = 	j(�l) for xj � x0j or/andxj � x0j , and the one sided derivative [	�1j (xj)℄0�jx=xj or/and [	�1j (xj)℄0+jx=xj isequal to zero, respe
tively.(ii) �lxj (	(�l)) = 0.Consider a periodi
 solution 	(t) of (2.2). Denote by �i, i 2 Z, the meetingmoments of 	(t) with the surfa
e �(x) = 0. They satisfy the property for all i 2 Z,�i+p = �i + T , where p is a positive number.De�nition 2.3. There is a horizontal grazing of the periodi
 solution 	(t) of thesystem (2.2) at a point (�l;	(�l)), where l = 1; 2; : : : ; p, if the equality at the pointh�(	(�l)); f(�l;	(�l)) = 0 is valid.Next, we will 
onstru
t B-equivalent system to the system (2.1) [16℄, whi
h re-du
es the systems with variable moments of impulses to that with �xed momentsof impulses. For the system (2.2), it 
an be obtained similarly. Consider a point(�i; x) 2 R � G on the periodi
 solution with a �xed i 2 Z. Let �i = �i(x) be themeeting moment of the solution x(t) = x(t; �i; x) of (2.3). Additionally, assume thatthe solution x1(t) = x(t; �i; x(�i)) of (2.3) exists on\[�i; �i℄. The B-mapW : x! x1(�)
an be 
onstru
ted as(2.4) Wi(x) = Z �i�i f(u; x(u))du+ Ji�x+ Z �i�i f(u; x(u))du�+ Z �i�i f(u; x1(u))du:Let us take into a

ount the following system of di�erential equations with �xedmoments of impulses(2.5) y0 = f(t; y);�yjt=�i = Wi(y):Due to the way of 
onstru
tion of Wi(x) systems (2.1) and (2.5) are B-equivalent[16, 17℄ in the neighborhood of 	(t). That is, if x(t) : U ! G is a solution of (2.1),then 
oin
ides with a solution y(t) : U ! G when y(t0) = x(t0), for t0 2 Un[i2Z\[�i; �i℄.Parti
ularly, x(�i) = y(�i+), x(�i) = y(�i), if �i > �i, x(�i) = y(�i), x(�i+) = y(�i), if�i < �i. It is easy to see that 	(t) is also a solution of (2.5) as well. In the remainingpart of the paper, we will 
onsider (2.5) instead of (2.1).



136 M. AKHMET AND A. KIVILCIMAssume that the periodi
 solution 	(t) of (2.1) meets the surfa
e t = �i(x) atthe moment t = �i, transversally. Let us start with the derivative of the equation�i(x) = �i(x(�i(x))), [16℄,(2.6) r�i(	(�i)) = r�i(	(�i))U(�i)1�r�i(	(�i))f(�i;	(�i)) ;where U(t), is a fundamental matrix of u0 = fx(t;	(t))u with U(�i) = I, where I isn� n identity matrix.By taking the derivative of the B-map de�ned by (2.4) with respe
t to x, we 
andetermine the matrix Di asDi = Wix(	(�i)) = (f(�i;	(�i))� f(�i;	(�i)))�0i(	(�i))+J(	(�i))�0i(x) + Jix(I+ f(�i;	(�i))�0i(	(�i)));(2.7)where the Ja
obian matrix 
an be obtained as Wix(	(�i)) = [�Wi�x1 ; �Wi�x2 ; : : : ; �Wi�xn ℄.It is easy to see that the linearization at the point (�i;	(�i)) 
an be obtained as(2.8) �ujt=�i = Diu;with Di+p = Di, i 2 Z.For Examples 2.5 and 2.6, one 
an utilize the formulas (2.6) and (2.7) to obtaina linearization at the point (�i;	(�i)), i 2 Z. For Example 2.4, we 
annot applyformulas due to the appearan
e of singularity in the formula (2.7) at the grazingpoint. For this example, we will 
onsider another approa
h to obtain a linearizationat the grazing point.Example 2.4. In this example, the motion of one degree of freedom me
hani
alos
illator whi
h is subje
ted to impa
ts with a rigid wall is 
onsidered and it 
an beexpressed as(2.9) x00 + 0:22x0 + x = 1 + 0:22 sin(t);�x0j(t;x;x0)2� = �(1 + 0:9x0)x0;where the surfa
e of dis
ontinuity is � = f(t; x; x0) j x = 0, t 2 Rg. System (2.9) ad-mits 2�-periodi
 
ontinuous solution of the form 	(t) = 1�
os(t). De�ning variablesas x = x1 and x0 = x2, we have(2.10) x01 = x2;x02 = �0:22x2 � x1 + 1 + 0:22 sin(t);�x2j(t;x1;x2)2� = �(1 + 0:9x2)x2;where � = f(t; x1; x2) j x1 = 0; t 2 Rg and the points (�i;	(�i);	0(�i)) = (2�i; 0; 0),i 2 Z, are grazing as well. Denote by x(�i) = (x1(�i); x2(�i)). In what follows, we willapply formula (2.7) in the basis of system (2.10).



VERTICAL AND HORIZONTAL GRAZING 137Fix i 2 Z, and 
onsider a near solution x(t) = (x1(t); x2(t)) = x(t; �i;	(�i)+�x),to 	(t) of the di�erential part of the system (2.10). The solution x(t) impa
ts thebarrier at a moment t = �i near to t = �i and at the point (x1; x2) = (x1(�i); x2(�i)).Let also, ~x(t) = (~x1(t); ~x2(t)) be a solution of the equation su
h that ~x(�i) = x(�i) +J(x(�i)). De�ne the following mapWi(x) = Z �i�i " x2(s)x1(s)� 0:22x2(s) + 1 + 0:22 sin(s)# ds+ J0�x + �iZ�i " x2(s)�x1(s)� 0:22x2(s) + 1 + 0:22 sin(s)# ds1A(2.11) + �iZ�i " ~x2(s)�~x1(s)� 0:22~x2(s) + 1 + 0:22 sin(s)# ds:Let us start with a linearization for inside 
ontinuous solutions. The solutions, in-side of the 
y
le, do not impa
t the barrier with non-zero velo
ity and are 
ontinuous.Thus, the linearization for these solutions is the following system [18℄,(2.12) u01 = u2;u02 = �u1 � 0:22u2:The multipliers of the system are �(1)1 = 0:5006 � 0:0191i, �(1)2 = 0:5006 + 0:0191i,where i2 = �1. Sin
e the multipliers are inside the unit 
ir
le, the 
y
le 	(t) isasymptoti
ally stable with respe
t to inside 
ontinuous solutions.Now, we will 
ontinue with the linearization for the outside dis
ontinuous solu-tions. The linearization system around the 
y
le 	(t) for solutions whi
h are outsideof the 
y
le has the form, [16℄,(2.13) u01 = u2;u02 = �u1 � 0:22u2;�ujt=�i = Wix(x�)u;where �i = 2�i and u = (u1; u2)T , where T denotes transpose of a matrix. The matri-
es Wix(x�) will be evaluated below. Assume that the solution x(t) meets the barrierat the moment t = � and denote the meeting point as �x = x(�) = (x1(�); x2(�)),where x1(�) = 0, x2(�) < 0 and � � 2�. It is easy to see that any impa
ting so-lution near to 	(t) meets the barrier transversely. Taking derivative of (2.11) and



138 M. AKHMET AND A. KIVILCIMsubstituting x = �x to the derivative, we obtain that�Wi(�x)�x01 = " �x2��x1 � 0:22�x2 + 1 + 0:22 sin(�)# ��i(�x)�x01 + "1 00 1:96�x2#� e1 + " �x2��x1 � 0:22�x2 + 1 + 0:22 sin(�)# ��i(�x)�x01 !(2.14) � " �0:98(�x2)2��x1 + 0:2156(�x2)2 + 1 + 0:22 sin(�)# ��i(�x)�x01 :Moreover, di�erentiating �(x(�i(x))) = 0, we have(2.15) ��i(x(�i))�xj = � �x(x(�i))�x(�i)�x0j�x(x(�i))f(�i; x(�i)) ; j = 1; 2;for the transversal point �x = (�x1; �x2), the �rst 
omponent ��i(�x)�x01 
an be evaluated as��i(�x)�x01 = � 1�x2 . From the last equality, it is seen how the singularity appears at thegrazing point x� = (x�1; x�2) = (0; 0). Finally, we obtain that�Wi(�x)�x01 = " �x2��x1 � 0:22�x2 + 1 + 0:22 sin(�)#��1�x2 �+ "1 00 1:96�x2# e1 � " �x2�x1 + 0:22(�x2 � sin(�))� 1#��1�x2 �!+ " 0:98(�x2)2�x1 + 0:2156(�x2)2 � 1� 0:22 sin(�)#��1�x2 �= " �1 + 0:98�x20:22 + 0:2156�x2 + 1:96(�x1 � 0:22 sin(�) + 0:22�x2 � 1)# ;(2.16)where e1 = (1; 0)T .The last expression demonstrates that the derivative is a 
ontinuous fun
tion ofits arguments in a neighborhood of the grazing point. Sin
e �x is a transversal point,one 
an evaluate the limit as(2.17) lim�x!x� �Wi(�x)�x01 = B;where B = " �1�1:74#.To linearize system at the grazing point x�, we should verify that the fun
tionWi(x) is di�erentiable at x�. The di�erentiability requests that the partial derivatives�Wi(x)�x0j , j = 1; 2, exist in a neighborhood of the grazing point and they are 
ontinuousat the point [19℄. To 
ompute the derivative �Wi(x)�x01 at x�, the following expression



VERTICAL AND HORIZONTAL GRAZING 139will be taken into a

ount�Wi(x�1; x�2)�x01 = limx1!x�1 Wi(x1; x�2)�Wi(x�1; x�2)x1 � x�1= limx1!x�1 Wi(x1; x�2)�Wi(x�1; x�2)x1 � x�1 � B +B:(2.18)Applying the Mean Value Theorem [19℄, we obtain that(2.19) limx1!x�1 �Wi(�;x�2)�x01 (x1 � x�1)� B(x1 � x�1)x1 � x�1 +B;where � lies between x1 and x�1.From (2.19), 
onsidering (2.17), we have that(2.20) �Wi(x�1; x�2)�x01 = B:So, the derivative exists and is 
ontinuous at x�.Now, let us 
he
k the existen
e and 
ontinuity of the derivative �Wi(x)�x02 at x�. Toa

omplish these, we should 
ontinue with di�erentiating (2.11) again and substitut-ing �x = (�x1; �x2). Then, we obtain�Wi(�x)�x02 = " �x2��x1 � 0:22�x2 + 1 + 0:22 sin(�)# ��i(�x)�x02+ "1 00 1:96�x2# i e2 + " �x2��x1 � 0:22(�x2 � sin(�)) + 1# ��i(�x)�x02 !+ " 0:98(�x2)2�x1 � 0:2156(�x2)2 � 1� 0:22 sin(�)# ��i(�x)�x02= " �x2 � 0:98(�x2)2��x1 � 0:22(�x2 � 0:98(�x2)2)# ��i(�x)�x02+ "1 00 1:96�x2# e2 + " �x2��x1 � 0:22(�x2 � sin(�)) + 1# ��i(�x)�x02 !(2.21)where e2 = (0; 1)T . To evaluate the derivative ��i(�x)�x02 in (2.21), we apply formula (2.15)for the transversal point �x = (�x1; �x2) and it is equal to ��i(�x)�x02 = 0: This and formula(2.21) imply(2.22) lim�x!x� �Wi(�x)�x02 = C;where C = "00#.Similar to above dis
ussion for the �rst derivative, one 
an obtain that �Wi(x�)�x02 = Cand the derivative is 
ontinuous at x�. Thus, both derivatives �Wi(x)�x01 and �Wi(x)�x02 exist in



140 M. AKHMET AND A. KIVILCIMa neighborhood of x� and they are 
ontinuous at x�. That is,Wi(x) is di�erentiable atx�. Sin
e of the periodi
ity, the linearization 
an be obtained for all grazing moment�i, i 2 Z.Joining (2.20) and (2.22), it is obtained that(2.23) Wix(x�) = " �1 0�1:74 0# :The multipliers of (2.13) are �1 = 0 and �2 = 0:5339. Due to the fa
t that themultipliers are less than unity in norm, we 
an 
on
lude that the periodi
 solution	(t) is asymptoti
ally stable.Despite the grazing, the singularity is not obtained in the derivative (2.6) inExamples 2.5 and 2.6. So, the method presented in [16℄ 
an be utilized in the followingexamples to �nd a linearization at the grazing point.Example 2.5. We will 
onsider the system(2.24) x0 = 0;�xjt=�i(x) = �0:2x;where �i(x) = 10 ar

os(x+ 0:1) + i�. One 
an easily determine that the system haszero solution x(t) = 0. We will 
onsider it as a �-periodi
 solution of (2.24).By means of the fa
t that �i(x) is an in
reasing fun
tion, it is easy to seethat 
ondition (N1) is valid. For 
onstants C = 1=11, and N = 10p0:99 , su
h thatCN < 1 and the following inequalities are valid max(t;x)2R�D kf(t; x)k = 0 � C,maxx2D k��i(x)�x k = maxx2D k 10p1�(x+0:1)2k � N , and max0���1h��i(x+�Ji(x))�x ; Ji(x)i =max0���1 �2p1�((1�0:2�)x)2 � 0: So, (N2) is valid. The 
ondition (N3) is also true forthis example.The integral line x(t) � 0 is tangent to the surfa
e t = �0(x) at the point(�1;	(�1)) = (0; 0). Indeed, sin
e the right hand side f(t; x) is 
onstantly zero, the
ondition (i) is valid. Take into a

ount the fun
tion t = �(x) � 10 ar

os(x + 0:1),whi
h is invertible near x = 	(�1) = 0, for x � 0 and the one sided derivative[��1(t)℄0�jt=�1 = 0:1 sin(�1) = 0. So, it validates the 
ondition (ii). Therefore, the zerosolution has horizontal grazing at the point (�1;	(�1)) = (0; 0). Moreover, one 
anvalidate easily that (�i; 0), i 2 Z are also horizontal grazing points. Let us obtaina linearization system around zero solution. For a solution, x(t) = x(t; 0; �x); with�x > 0; there exists no interse
tion with the surfa
es of dis
ontinuity. This is why, thelinearization system has the form(2.25) u0 = 0:Next, 
onsider another solution x(t) = x(t; 0; �x), with �x < 0 of (2.24). One 
aneasily �nd that the solution meets ea
h of the surfa
es of dis
ontinuity. Due to the
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ity of the system, linearization near the zero solution at all points (i�; 0)is the same, if exists. So, it is suÆ
ient to 
onsider the linearization around thegrazing point (0; 0) for those points where �x < 0. Let us start with the fun
tion�(x) = 10 ar

os(x(�(x)) + 0:1). By taking derivative of it, we get(2.26) �0(x) = �10f(�(x); x(�(x)))�0(x) + 1p1� (x(�(x) + 0:1)2) ;and substituting the grazing point into the equation (2.26), one 
an obtain that�0(0) = �10=p0:99.The 
oeÆ
ients in the impulsive part of the linearization system have to beevaluated by formulaDi = (f(�(0); x(�(0)))� f(�(0); x(�(0)) + J(x(�(0)))))�0(0)+ Jx(1 + f(�(0); x(�(0))))�0(0) = �0:2;for all i 2 Z.So, linearization system for the interse
ting solutions with initial value �x < 0 
anbe determined as(2.27) u0 = 0;�ujt=�i = �0:2u:Consider solutions with �x < 0. The linearization for them is the system (2.27)and its multiplier 
an be evaluated as � = 0:8 < 1, and 
onsequently solutions withnegative initial values are attra
ted by the zero solution. Nevertheless, the solutionswith positive initial values are 
onstant. That is, one 
an say that the zero solutionis stable for neighbors from above. On the basis of the dis
ussion, one 
an 
on
ludethat zero solution is stable. It is pi
tured in Figure 1. The solutions 	(t) = 0, andx(t; 0; �x) with initial values �x > 0 and �x < 0 are depi
ted in bla
k, red and magenta,respe
tively in Fig. 1 and the stability of the zero solution is apparently seen by virtueof simulation.Through the last examples, it is seen that the tangent at the grazing point isparallel to the time axis. This approves why we 
all the phenomenon as horizontalgrazing.Example 2.6. In order to demonstrate verti
al grazing, we take into a

ount thefollowing system(2.28) x0 = 1pi� t ; t 2 [i� 1; i);�xjt=�i(x) = �1;
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Figure 1. The blue 
urves are the dis
ontinuity surfa
es t = �i(x),i = 0; 1; 2; : : : ; 7. The solutions 	(t) = 0, and x(t; 0; �x) with initialvalues �x = 0:01 and �x = �0:03 are depi
ted in bla
k, red and magenta,respe
tively.where f(t; x) = 1pi�t and �i(x) = p16� x2 � 3 + i, i 2 Z. The domain is equal toG = (�0:6; 0:6). One 
an easily determine that the system has a 1-periodi
 solution	(t) = 8<:�2 if t = 0,�2p1� t if t 2 (0; 1℄.The integral 
urve of the solution is tangent to the 
urve of dis
ontinuity �0(x) =p1� x2+1 at the point (�1;	(�1)), and the tangent is verti
al. That is, one 
an �ndthat the fun
tion x = 	(t) is invertible near x = 	(�1) = 0 and for x < 0, and the lefthand derivative is equal to [	�1j (xj)℄0�jx=xj = �212x(�1)2 = 0 and let �0(x) = �(x), and�x(x) = � x(�1)p16�x2 = 0. Conditions (i) and (ii) are veri�ed and the periodi
 solution	(t) has verti
al grazing at the point (�1;	(�1)). Similarly, the points are (i; 0), i 2 Zare verti
al grazing ones. The periodi
 solution, 	(t), is exhibited through simulationin Fig. 2.Now, we will validate the 
onditions from (N1) to (N4). Every solution whi
hmeets a dis
ontinuity surfa
e does not interse
t the same one again, whi
h validates(N1) and instead of the equation x0 = 1pi�t , t 2 [i � 1; i), we will take into a

ountthe di�erential equation dtdx = 1pi�t , t 2 [i � 1; i). For C = 1 and N = 0:7, su
hthat CN < 1 and the following inequalities are valid max(t;x)2R�D kf(t; x)k = 1,maxx2D k��i(x)�x k = maxx2D k 10p1�(x+0:1)2k � N; and max0���1h��i(x+�Ji(x))�x ; Ji(x)i =max0���1 �2p1�((1�0:2�)x)2 � 0: So, (N2) is veri�ed. Conditions (N3) and (N4) 
an bevalidated easily.Consider a near solution x(t) = x(t; 0; �x) of (2.28) to 	(t) with �x 6= 0. It is easy todetermine that all near solutions interse
ts the surfa
e of dis
ontinuity �(x) = �0(x).We 
ould not evaluate the derivative �0(x) at the grazing point, by 
onsidering theoriginal system. For this reason, let us inter
hange the dependent and independent



VERTICAL AND HORIZONTAL GRAZING 143variables in the equation. Consider the system(2.29) dtdx = p1� t:Sin
e the fun
tion 	(t) is invertible on the interval [0; 1℄, its inverse satis�es the equa-tion (2.29), as well as the surfa
e �0(x) 
an be written as X(t) = �p16� (t� 3)2,for negative values of x. It is easy to 
he
k that the solution(2.30) 	�1(x) = 8<:0 if x = �2,1� x24 if x 2 (�2; 0℄,of the equation (2.29) has a horizontal grazing point, (	�1(�1); �1) = (0; 1).Introdu
e the fun
tion �(t) as an analogue of �(x) for the last equation. It iseasy to �nd that(2.31) �0(0) = 1�0(1) ;sin
e the fun
tions are mutually inverse. Let us evaluate �0(1). Issuing from the equa-tion �(t) = �p16� (t(�(t))� 3)2, we obtain �0(1) = ��2(t(�(1))�3)(p1�t(�(1))�0(1)+1)2p16�(t(�(1))�3)2and �0(1) = � 1p3 , i.e. �0(0) = �p3. Taking into a

ount the periodi
ity of system(2.28) as well as 	(t), one 
an 
on
lude that �0i(0), is equal to �p3, for all i 2 Z. Byutilizing this dis
ussion and equation (2.7), one 
an obtain that Di � D = �p3.Thus, the variational system for all solutions near 	(t) has the form(2.32) u0 = 0;�u = �p3u:The multiplier for (2.32) 
an be found as � = �p3 + 1, and it is less than onein absolute value. So, the periodi
 solution 	(t) is asymptoti
ally stable. One 
anobserve through simulations results exhibited in Fig. 2 that near solutions approa
hto th orbit of the 
y
le 	(t) as time in
reases.3. Dis
ussionThis paper in
ludes information about a non-autonomous system with non-�xedmoments of impulses whose solutions have verti
al and grazing points. For the hori-zontal grazing, a system with a non-autonomous ve
tor �eld and a 
ylindri
al surfa
eof d is
ontinuity is 
onsidered as an example and for the verti
al grazing the systemswith non-autonomous ve
tor �eld and the surfa
es of dis
ontinuity is exempli�ed.By applying a novel te
hnique, we 
onstru
t a linearization system around the graz-ing periodi
 solution. Con
rete models are demonstrated and some simulations arepresented to visualize theoreti
al results. Grazing solutions are widely investigatedin me
hani
al systems, but there is a few studies 
an be found in neural networks
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Figure 2. The blue 
urve is for the 
y
le 	(t), the magenta and green
urves are the solutions whi
h start with an initial 
ondition �1:9 and�2:1, respe
tively. The red 
urves are the surfa
es of dis
ontinuityt = �i(x), i = 0; 1; : : : ; 6.whi
h in
ludes grazing. Further, we will apply our methods to investigate the stabil-ity of neural network models whi
h have grazing points in other words whi
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