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ABSTRACT. In this paper, using the class of 2-generalized nonspreading mappings which was
defined by [29] in a Banach space and covers 2-generalized hybrid mappings in a Hilbert space, we
prove an attractive point theorem in a Banach space. Then we prove a mean convergence theorem
of Baillon’s type [2] without convexity for commutative 2-generalized nonspreading mappings in a

Banach space.
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1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty subset of H. Let T be a
mapping of C' into H. Then we denote by F(T') the set of fized points of T and by
A(T) the set of attractive points [27) of T, i.e.,

(i) F(T)={z€C:Tz=z};
(ii)) AT)={2z€ H: ||Tz—z| < ||z — 2|, Yz € C}.

We know from [27] that A(T") is closed and convex. This property is important for
proving mean convergence theorems. Such a concept of attractive points was defined
in a Banach space; see [20]. A mapping T': C' — H is said to be nonexpansive [4] if
|Tx — Tyl < ||z —y|| for all x,y € C. Baillon [2] proved the first mean convergence

theorem in a Hilbert space.
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Theorem 1.1 ([2]). Let C be a bounded, closed and convex subset of H and let
T :C — C be nonexpansive. Then for any x € C,

converges weakly to an element z € F(T).

This theorem for nonexpansive mappings has been extended to Banach spaces
by many authors; see, for example, [3, 5. On the other hand, in 2010, Kocourek,
Takahashi and Yao [13] defined a broad class of nonlinear mappings in a Hilbert
space: Let H be a Hilbert space and let C' be a nonempty subset of H. A mapping
T :C — H is called generalized hybrid [13] if there exist a, 3 € R such that

(1.1) o Tz = Ty|* + (1 — a) |z = Tyl|* < BTz —ylI* + (1 = B) |z — y|*

for all x,y € C. Such a mapping T is called («, [3)-generalized hybrid. Notice that
the class of generalized hybrid mappings covers several well-known mappings. For

example, a (1,0)-generalized hybrid mapping is nonexpansive, i.e.,
[Tx = Ty|| < [le —yl, Va,yeC.
It is nonspreading [17, 18] for « = 2 and § =1, i.e.,
2|T2 — Ty|]® < || T2 —y|* + | Ty — «f*, Va,y€C.
It is also hybrid [25] for o = % and [ = %, ie.,
3|7z — Tyl* < |l — ylI® + | T2 — y[|* + | Ty — «f*, Va,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [10]. The mean
convergence theorem by Baillon [2] for nonexpansive mappings has been extended to
generalized hybrid mappings in a Hilbert space by Kocourek, Takahashi and Yao [13].
Furthermore, Takahashi and Takeuchi [27] proved the following mean convergence

theorem without convexity in a Hilbert space.

Theorem 1.2 ([27]). Let H be a Hilbert space and let C' be a nonempty subset of
H. Let T be a generalized hybrid mapping from C into itself. Assume that {T"z} for

some z € C' is bounded and define

for all x € C and n € N. Then {S,z} converges weakly to uy € A(T), where
ug = limy, oo Paer)T™x and Py(ry is the metric projection of H onto A(T).
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Maruyama, Takahashi and Yao [21] also defined a more broad class of nonlinear
mappings called 2-generalized hybrid which covers generalized hybrid mappings in a
Hilbert space. Let C' be a nonempty subset of H and let T" be a mapping of C' into
H. A mapping T': C' — H is 2-generalized hybrid [21] if there exist ay, ag, 81, 02 € R
such that

(12) ol T?e=Ty||* + az|| T — Ty||* + (1 — a1 — aw)llz — Ty||*
< BTz — y|I? + Bol|Tw — ylI* + (1 = B = Bo) |z — g

for all z,y € C.

Recently, Hojo, Takahashi and Takahashi [6] proved attractive and mean conver-
gence theorems without convexity for commutative 2-generalized hybrid mappings in
a Hilbert space. These results generalize Takahashi and Takeuchi’s theorem (The-
orem 1.2) and Kohsaka’s theorem [15] which is a mean convergence theorem for

commutative A\-hybrid mappings in a Hilbert space.

In this paper, using the class of 2-generalized nonspreading mappings which was
defined by [29] in a Banach space and covers 2-generalized hybrid mappings in a
Hilbert space, we prove an attractive point theorem in a Banach space. This theorem
generalizes Hojo, Takahashi and Takahashi’s attractive point theorem [6] in a Hilbert
space. Then we prove a mean convergence theorem of Baillon’s type [2] without
convexity for commutative 2-generalized nonspreading mappings in a Banach space.
This result is a general mean convergence theorem which extends Baillon’s theorem

(Theorem 1.1) to a Banach space.

2. PRELIMINARIES

Let E be a real Banach space with norm || - || and let E* be the topological dual
space of E. We denote the value of y* € E* at « € E by (z,y*). When {z,} is a
sequence in F, we denote the strong convergence of {x,} to x € E by x,, — = and
the weak convergence by x,, — x. The modulus ¢ of convexity of E is defined by

5(¢) = inf {1

S e < < e - 2

for every € with 0 < ¢ < 2. A Banach space F is said to be uniformly convez if
d(e) > 0 for every € > 0. A uniformly convex Banach space is strictly convex and
reflexive. Let C' be a nonempty subset of a Banach space E. A mapping T': C' — E
is nonezpansive if |Tx — Ty|| < ||z —y]| for all ,y € C. A mapping T': C — E is
quasi-nonezpansive if F(T) # 0 and ||[Tz —y|| < ||z —yl| for all z € C and y € F(T),
where F(T) is the set of fixed points of T. If C' is a nonempty, closed and convex
subset of a strictly convex Banach space F and T : ' — E is quasi-nonexpansive,
then F(T) is closed and convex; see Itoh and Takahashi [11].
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Let E be a Banach space. The duality mapping J from E into 2%" is defined by
Jov={2" € E": (x,2") = ||z||* = [|"|]*}
for every z € E. Let U = {x € E : ||z]| = 1}. The norm of E is said to be Gateauz
differentiable if for each x,y € U, the limit

o ety ]
' t—0 t

exists. In this case, F is called smooth. We know that E' is smooth if and only if J is
a single-valued mapping of E into E*. We also know that E is reflexive if and only
if J is surjective, and F is strictly convex if and only if J is one-to-one. Therefore, if
E' is a smooth, strictly convex and reflexive Banach space, then J is a single-valued
bijection. The norm of E is said to be uniformly Gateaux differentiable if for each
y € U, the limit (2.1) is attained uniformly for z € U. It is also said to be Fréchet
differentiable if for each x € U, the limit (2.1) is attained uniformly for y € U. A
Banach space E is called uniformly smooth if the limit (2.1) is attained uniformly
for z,y € U. It is known that if the norm of E is uniformly Gateaux differentiable,
then J is uniformly norm to weak* continuous on each bounded subset of F, and if
the norm of E is Fréchet differentiable, then J is norm to norm continuous. If E is
uniformly smooth, J is uniformly norm to norm continuous on each bounded subset
of E. For more details, see [23, 24].

Lemma 2.1 ([23, 24]). Let E be a smooth Banach space and let J be the duality
mapping on E. Then (x —y, Jr — Jy) > 0 for all x,y € E. Furthermore, if E is
strictly conver and (x —y, Jx — Jy) = 0, then x = y.

Let F be a smooth Banach space. The function ¢: E X E — (—00, 00) is defined
by

(2.2) ¢z, y) = llzlI* = 2{z, Jy) + lly|I”

for z,y € E, where J is the duality mapping of F; see [1] and [12]. We have from
the definition of ¢ that

for all x,y,2z € E. From (||z| — ||y]|)? < ¢(x,y) for all z,y € E, we can see that
¢(x,y) > 0. Furthermore, we can obtain the following equality:

(2.4) 20—y, Jz = Jw) = ¢(x,w) + ¢(y, 2) — d(x, 2) = ¢(y, w)

for z,y,z,w € E. If F is additionally assumed to be strictly convex, then from

Lemma 2.1 we have
(2.5) O(r,y) =02z =1y.

The following lemma is in Xu [33].
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Lemma 2.2 ([33]). Let E be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convez function g : [0,00) — [0, 00)
such that g(0) =0 and

Az + (1= Nyll? < M=) + (1= Nllyl? = A1 = Vgl = yl)
for all x,y € B, and A with 0 < A <1, where B, ={z € E : ||z| <r}.

Using Lemma 2.2, we have the following lemma by Kamimura and Takahashi
[12].

Lemma 2.3 ([12]). Let E be a smooth and uniformly conver Banach space and let

r > 0. Then there exists a strictly increasing, continuous and convexr function g :

0,2r] — R such that g(0) =0 and

g(llz =yl < ¢(z,y)

for all x,y € B,, where B, ={z € E : ||z]| <r}.

Let E be a smooth Banach space. Let C' be a nonempty subset of E and let T’
be a mapping of C' into E. We denote by A(T) the set of attractive points of T', i.e.,
A(T)={2z€ E: ¢(2,Tx) < ¢(2,x), Yo € C}; see [20].

Lemma 2.4 ([20]). Let E be a smooth Banach space and let C' be a nonempty subset
of E. Let T be a mapping from C into E. Then A(T) is a closed and convex subset
of E.

Let E be a smooth Banach space and let C' be a nonempty subset of E. Then a
mapping T : C' — E is called generalized nonexpansive [8] if F(T') # 0 and

o(Tz,y) < ¢(x,y)

for all x € C' and y € F(T'); see also [32]. Let D be a nonempty subset of a Banach
space /. A mapping R : E — D is said to be sunny if

R(Rx +t(x — Rx)) = Rx

for all x € E and t > 0. A mapping R : E — D is said to be a retraction or
a projection if Rx = x for all x € D. A nonempty subset D of a smooth Banach
space FE is said to be a generalized nonexpansive retract (resp. sunny generalized
nonexpansive retract) of E if there exists a generalized nonexpansive retraction (resp.
sunny generalized nonexpansive retraction) R from E onto D; see [8] for more details.
The following results are in Ibaraki and Takahashi [8].

Lemma 2.5 ([8]). Let C be a nonempty closed sunny generalized nonexpansive re-
tract of a smooth and strictly conver Banach space E. Then the sunny generalized

nonexpansive retraction from E onto C' is uniquely determined.
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Lemma 2.6 ([8]). Let C be a nonempty closed subset of a smooth and strictly convex

Banach space E such that there exists a sunny generalized nonexpansive retraction R
from E onto C and let (x,z) € E x C. Then the following hold:

(i) z = Rz if and only if (x — z,Jy — Jz) <0 for ally € C,
(ii) ¢(Rz, z) + ¢(x, Rr) < ¢(x, 2).

In 2007, Kohsaka and Takahashi [16] proved the following results:

Lemma 2.7 ([16]). Let E be a smooth, strictly convex and reflexive Banach space

and let C' be a nonempty closed subset of E.. Then the following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;

(¢) JC is closed and convex.

Lemma 2.8 ([16]). Let E be a smooth, strictly convex and reflexive Banach space
and let C' be a nonempty closed sunny generalized nonexpansive retract of E. Let R be
the sunny generalized nonexpansive retraction from E onto C' and let (x,z) € E x C.

Then the following are equivalent:
(i) z = Rx;
(11) ¢($, Z) = minyEC ¢($, y)

Ibaraki and Takahashi [9] also obtained the following result concerning the set of

fixed points of a generalized nonexpansive mapping.

Lemma 2.9 ([9]). Let E be a reflexive, strictly convex and smooth Banach space and
let T' be a generalized nonexpansive mapping from E into itself. Then F(T) is closed

and JF(T) is closed and conver.

The following theorem is proved by using Lemmas 2.7 and 2.9.

Lemma 2.10 ([9]). Let E be a reflexive, strictly conver and smooth Banach space
and let T be a generalized nonexpansive mapping from E into itself. Then F(T) is a

sunny generalized nonexpansive retract of E.

Using Lemma 2.7, we also have the following result.

Lemma 2.11 ([26]). Let E be a smooth, strictly convex and reflexive Banach space
and let {C; i € I} be a family of sunny generalized nonexpansive retracts of E such

that N;erC; 1s nonempty. Then M;crCi is a sunny generalized nonexpansive retract of
E.

Let [*° be the Banach space of bounded sequences with supremum norm. Let u be
an element of ({°°)* (the dual space of [*°). Then, we denote by p(f) the value of u at
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f = (x1,29,23,...) € [*°. Sometimes, we denote by p,(z,) the value pu(f). A linear
functional p on [* is called a mean if p(e) = ||u]| = 1, where e = (1,1,1,...). A mean
w is called a Banach limit on 1% if p,(x,41) = pn(2z,). We know that there exists a

Banach limit on (. If x is a Banach limit on [*°, then for f = (1, %9, 23,...) € [*,

liminf x, < p,(z,) <limsupz,.

In particular, if f = (21, 29,23,...) € [* and z,, — a € R, then we have u(f) =
tn(x,) = a. For the proof of existence of a Banach limit and its other elementary

properties, see [23].

3. FIXED POINT THEOREMS

Let E be a smooth Banach space and let C' be a nonempty subset of E. Then
a mapping T : C' — FE is called 2-generalized nonspreading [29] if there exist aq, as,
B, B2y 71,72, 01,02 € R such that

a1¢(T%z, Ty) + asp(Tx, Ty) + (1 — o — ag)(z, Ty)
(3.1) +{6(Ty, T?x) — &(Ty, x)} +12{¢(Ty, Tw) — §(Ty, x)}
< Bi¢(T?x,y) + Bad(Tx,y) + (1= 1 = Bo)o(,y)
+0{o(y, T?x) — d(y, 2)} + 02{o(y. Tx) — ¢y, 2)}
for all z,y € C; see also [30]. Such a mapping is called (ay, ag, 81, 52,71, V2, 01, 02)-

generalized nonspreading. We know that a (0, as, 0, 32,0, 72, 0, d2)-generalized non-
spreading mapping is generalized nonspreading in the sense of [14]. We also know
that a (0,1,0,1,0,1,0,0)-generalized nonspreading mapping is nonspreading in the
sense of [18].

Now we prove an attractive point theorem for commutative 2-generalized non-
spreading mappings in a Banach space. Before proving it, we prove the following

result.

Lemma 3.1. Let E be a smooth, strictly convex and reflexive Banach space with the
duality mapping J and let C' be a nonempty subset of E. Let S and T be mappings
of C into itself. Let {x,} be a bounded sequence of E and let 1 be a mean on [*.
Suppose that

fn®(Zn, SY) < pin@ (@0, y) and pnd(2n, Ty) < pnd(Tn, y)

for ally € C. Then A(S) N A(T) is nonemppty. Additionally, if C' is closed and
convex and {z,} C C, then F(S)N F(T) is nonempty.

Proof. Using a mean p and a bounded sequence {x, }, we define a function g : E* — R

as follows:

9(x") = pin (T, %)
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for all * € E*. Since p is linear, g is also linear. Furthermore, we have
|9(27)] = |ptn (20, )]
< |[pll sup [{zn, 27)]
neN

< [lpll sup [l |l l2*]]
neN

= sup ||z, |[|2"
neN

for all x* € E*. Then g is a linear and bounded real-valued function on E*. Since FE

is reflexive, there exists a unique element z of £ such that

9(2") = pn{n, 27) = (2,27)

for all * € E*. From (2.3) we have that for y € C'and n € N,

(T, y) = O(2n, Sy) + &(Sy, y) + 2(x, — Sy, JSy — Jy).
So, we have that for y € C,
pn®(Tn, Y) = pn®(Tn, SY) + und(Sy, y) + 2pn{x, — Sy, JSy — Jy)
= pn®(n, Sy) + ¢(Sy,y) + 2(z — Sy, JSy — Jy).

Since, by assumption, p,¢(z,, SY) < pnd(z,,y) for all y € C, we have

pin® (T, y) < pind( T, y) + O(Sy, y) + 2(z = Sy, JSy — Jy).
This implies that
0 < ¢(Sy,y) +2(z — Sy, JSy — Jy).
Using (2.4), we have that

0 < ¢(Sy,y) + o(z,y) + ¢(Sy, Sy) — ¢(z, Sy) — ¢(Sy, y)

and hence ¢(z, Sy) < ¢(z,y). This implies that z is an element of A(S). Similarly, we
have that ¢(z, Ty) < ¢(z,y) and hence z € A(T"). Therefore we have z € A(S)NA(T).
Additionally, if C'is closed and convex and {x,} C C, we have that z € ¢o{x, : n €
N} € C. In fact, if z ¢ C, then there exists y* € E* by the separation theorem [23]
such that (z,y*) < infyec(y,y*). So, from {z,} C C we have

*) < inf *<'fna*<nna*:>*'
(z,9%) ;gc<y,y>_gll;N<af Y*) < pn (2, y") = (2,97)

This is a contradiction. Then we have z € C. Since z € A(S)N A(T) and z € C, we
have that

¢(2,52) < ¢(z,2) =0 and  @(z,T2) < ¢(z,2) =0
and hence ¢(z,S5z) = 0 and ¢(z,7z) = 0. Since E is strictly convex, we have
z € F(S)N F(T). This completes the proof. O
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Using Lemma 3.1, we prove an attractive point theorem for commutative 2-

generalized nonspreading mappings in a Banach space.

Theorem 3.2. Let C' be a nonempty subset of a smooth, strictly convezr and reflexive
Banach space E and let S and T be commutative 2-generalized nonspreading mappings
of C into itself. Suppose that there exists an element z € C' such that {S*T'z : k,l €
NU{0}} is bounded. Then A(S) N A(T) is nonempty. Additionally, if C is closed
and convex, then F(S) N F(T) is nonempty.

Proof. Since S is a 2-generalized nonspreading mapping of C' into itself, there exist
oy, g, B1, P2, 71, V2, 01,02 € R such that for all z,y € C,

a19(S%z, Sy) + azp(Sz, Sy) + (1 — ar — a)P(x, Sy)
(3.2) +71{¢(Sy, S%x) — ¢(Sy, )} + 12{¢(Sy, Sx) — ¢(Sy, x)}
< B19(S%x,y) + ad(Sx,y) + (1 — b1 — Ba) (2, y)
+0{8(y, S%x) — ¢(y, 2)} + da{0(y, Sx) — By, x)}.

By assumption, we can take z € C such that {S*T'z : k,I € NU {0}} is bounded.
Replacing x by S*T"'z in (3.2), we have that for any y € C and k,l € NU {0},

a1 d(SFT 2, Sy) + cudp(SFIT 2, Sy) + (1 — o — o) p(S*T' 2, Syy)
+{0(Sy, S*T"2) — 6(Sy, S*T'2)} + 712{6(Sy, S T'2) — 6(Sy, S*T'2)}
< Bio(STHET 2, y) + Bod (ST 2, y) + (1 = i — B2)o(S*T"2, y)
+0u{e(y, S"T'2) — ply, S*T'2)} + da{(y, S*'T'2) — by, S*T'2)}
= Bi{o(S* T2, Sy) + ¢(Sy, y) + 2(S Tz — Sy, JSy — Jy)}
+ Oo{¢(S™ T2, Sy) + ¢(Sy. y) + 2(S*T2 — Sy, TSy — Jy)}
+ (1= 81— Bo){o(S Tz, Sy) + ¢(Sy,y) + 2(S"T"2 — Sy, ISy — Jy)}
+0u{e(y, S*T'2) — oy, S*T'2)} + da{(y, S*'T'2) — d(y, S*T'2)}.
This implies that
0 < (81— a){o(S*T'z, Sy) — ¢(S*T'z, Sy)}
+ (Br = ax){¢(S* Tz, Sy) — 6(S*T"z, Sy)} + &(Sy, y)
+ 2(SFT 2 — Sy + B1(SFH2Tl 2 — SFTL2) 4 By(SHHT 2 — SFT'2), TSy — Jy)
—{p(Sy, ST z) — ¢(Sy, S'T'2)} — 72 {6(Sy, S**'T'z) — ¢(Sy, S*T'z)}
+0u{o(y, S"T'2) — py, S*T'2)} + da{e(y, S*IT'2) — oy, S*T'2)}.
Summing up these inequalities with respect to k =0,1,...,n, we have
0 < (B — an){d(S" Tz, Sy) + ¢(S" T2, Sy)
— ¢(ST'z, Sy) — ¢(T"z, Sy)}
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+ (B2 — ) {d(S" T2, Sy) — ¢(T'2, Sy)} + (n + 1)6(Sy, y)

+ 2< i SET 2 4 By (S™ 2T 2 + S" T e — STz — T'z)
k=0
Bo(S™ T 2 — T'2) — (n +1)Sy, JSy — Jy>
- 71{¢(Sy75"+2Tl ) + 6(Sy, S"TT'z) — ¢(Sy, ST'z) — ¢(Sy, T'2)}
—72{6(Sy, " T'2) — ¢(Sy, T'2)}
+0u{o(y, S"T2) + ¢(y, S"HT'2) = ¢(y, ST'z) — ¢(y, T'2)}
+02{o(y, S"TIT'2) — d(y, T'2)}.

Furthermore, summing up these inequalities with respect to [ = 0,1,...,n, we have

0 < (B — 1)) {d(S™°T'z, Sy) + ¢(S"'T'z, Sy)

=0

- ¢(5Tl27 Sy) - ¢(lev Sy>}

+ (B — ) Y _{o(S™H'T'z, Sy) — &(T'z, Sy)} + (n + 1)*6(Sy, y)

=0

+2( Z Z S*T'z + By Z S™RTL: 4 ST - STY: — T')
=0 k=0

+ 53 (ST s = T'2) — (n + 1)2Sy, JSy - Jy>

=0

— Y _{6(Sy, ST2) + ¢(Sy, S"T'2) — 6(Sy, ST'2) — $(Sy, T'2)}

=0

— Z{¢(Sy, ST ) — ¢(Sy, T'2)}
1=0

+01 > by, S"T2) + ¢y, S"TT2) — Gy, ST'z2) — d(y, T'2)}

=0

+05 ) {ly, S"'T'z) — 6(y, T'2)}.

=0

Dividing by (n + 1)?, we have

0< (B — i) Z{cb (S™*T'z, Sy) + ¢(S™H'T'z, Sy)

(n +1
_¢(STIZ>S?/)_¢( Z,Sy)}

+ (P — 5> {S(S" T2, Sy) — ¢(T'2, Sy)} + &(Sy, y)

1
2)(7’L—l—1) —
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n

1
+ 2<Snz + ﬁlm D (ST 4+ ST — ST — T'z)
=0
1 n
+ ﬁQm Z(Sn+1TlZ — TlZ) — Sy, sz — Jy>

=0
1 n
= O 5T + (5. 57T)
— ¢(Sy, ST'z) — ¢(Sy, T'2)}
1 n
~ Wl iy 2 105y ST — 9(5y, T'2)

1

O )

Z{¢(y7 Sn+2TlZ> + ¢(y7 Sn+1TlZ> - ¢(y7 STIZ) - ¢(y7 le)}
=0

1 u .
+ 52m ;{aﬁ(y, ST ) — ¢(y, T'2)},

where S,z = WZZ:O Yoo S*T'z. Since {S*T'z} is bounded by assumption,
{S,z} is bounded. Taking a Banach limit p to both sides of this inequality, we have
that

0 < o(Sy,y) + 2un(Snz — Sy, JSy — Jy)

and hence

0 < ¢(Sy,y) + 1@ (Snz,y) + ¢(Sy, Sy) — 1 d(Snz, Sy) — &(Sy, y).
Thus, we have
(@ (Snz, SY) < pnd(Snz, ).
Similarly, replacing S and T by T" and S, respectively, we have

pn®(Snz, Ty) < pnd(Snz,y).

Using Lemma 3.1, we have that A(S)NA(T) is nonempty. Additionally, if C'is closed
and convex, then F'(S) N F(T') is nonempty. O

Since commutative 2-generalized hybrid mappings in a Hilbert space are commu-
tative 2-generalized nonspreading mappings in a Banach space, as a direct sequence
of Theorem 3.2, we have the following theorem proved by Hojo, Takahashi and Taka-
hashi [6] in a Hilbert space.

Theorem 3.3 ([6]). Let H be a Hilbert space, let C' be a nonempty subset of H and
let S and T be commutative 2-generalized hybrid mappings of C into itself. Suppose
that there exists an element z € C such that {S*T'z : k,1 € NU{0}} is bounded. Then
A(S)NA(T) is nonempty. Additionally, if C is closed and convez, then F(S)NF(T)
18 monempty.
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4. NONLINEAR ERGODIC THEOREMS
Let E be a smooth Banach space, let C' be a nonempty subset of E' and let J be

the duality mapping from FE into E*. Observe that if T : C' — FE is a 2-generalized
nonspreading mapping and F(T') # (), then

o(u, Ty) < ¢(u,y)

for all u € F(T) and y € C. Indeed, putting x = u € F(T) in (3.1), we obtain that

a19(u, Ty) + asgp(u, Ty) + (1 — a1 — aa)p(u, T'y)
+1{(Ty, u) — o(Ty, u)} + 7{d(Ty, u) — ¢(Ty,u)}
< Big(u, y) + Bad(u,y) + (1 — B — B2)9(u, y)
+ o{e(y, u) — oy, u)} + do{o(y, u) — d(y,u)}

So, we have that

(4.1) ¢(u, Ty) < o(u,y)
for all u € F(T') and y € C. Similarly, putting y = u € F(T) in (3.1), we obtain that
for x € C,
a1 d(T?x,u) + agp(Tz,u) + (1 — ay — ag)g(w, u)
+m{o(u, T?2) — ¢(u, 2)} +2{é(u, Tr) — ¢(u, )}
< B1o(T?w,u) + Bod(T,u) + (1 — i — o) p(a, u)
+01{p(u, T%2) — ¢(u, 2)} + 02{6(u, Tx) — p(u, )}

and hence

(a1 = B{o(T?x, 1) — o, w)} + (az — B){¢(Tw,u) — ¢, u)}
+ (71— 0){o(u, T%x) — ¢(u, 2)} + (72 — 62){(u, Tx) — ¢(u, 2)} < 0.
If oy — 51 =0, 11 <01, 72 <y and ay > (s, then we have from (4.1) that

(2 =B ){d(Tx, u) — d(z,u)} < (01 — ){b(u, T°2) — d(u, )}
+ (02 = 12){¢(u, Tx) = ¢(u, )} < 0.

So, we have that

(4'2> ¢(T$v u) < (b(xu u)

for all z € C' and w € F(T). This implies that T is generalized nonexpansive in the
sense of [8].
Now using the technique developed by [22] and [28], we can prove a mean conver-

gence theorem without convexity for commutative 2-generalized nonspreading map-

pings in a Banach space. For proving this result, we need the following lemmas.
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Lemma 4.1. Let E be a smooth, strictly convex and reflexive Banach space and let C
be a nonempty subset of E. Let S and T be commutative 2-generalized nonspreading
mappings of C into itself. If {S*T'z : k,1 € NU{0}} for some z € C is bounded and

Sn = 1+nQZZSle

k=0 1=0

for all x € C and n € NU {0}, then every weak cluster point of {S,z} is a point of
A(S) N A(T). Additionally, if C is closed and convex, then every weak cluster point
of {Snx} is a point of F(S)N F(T).

Proof. Since S : C' — C' is 2-generalized nonspreading, we have that for all z,y € C,
(3.2) holds. Since there exists z € C such that {S*T"z : k,1 € NU{0}} is bounded,
{S*T'z : k,1 € NU{0}} for all € C is bounded. Then as in the proof of Theorem 3.2,
we have that for any y € C

0< (i —an)——5 Zw (S™FT'e, Sy) + ¢(S" ' T'x, Sy)

(n +1
- ¢(5Tl$7 Sy) - ¢( Z, Sy)}

+ (= 02) gy D™ T, Sy) = (T, Su)} + 0(5.)
=0

> (8Tl + ST e — ST'w — T'a)
=0

1
(n+1)2

n

1
+ ﬁgm Z(S"+1Tlx —T'z) — Sy, JSy — Jy>
=0

+ 2<SnSL’ + 6y

SN IR Zw (Sy, S"*T'z) + ¢(Sy, S"'T'x)
— ¢(Sy, ST@ — ¢(Sy, T'x)}

1 - n l l
~NTTIR ;{as(Sy, S™HTlE) — ¢(Sy, T'x)}

Riress > {000 5™T'0) + 6y, 5"T') - 6. ST's) = 61, T')

1 n
S ST — g (y, Tha) ).
+ CESIE ;{cb(y ) — oy, T'x)}

Since {S*T'z} is bounded, {S,z} is bounded. Thus we have a subsequence {S,,z}

of {S,x} such that {S,,z} converges weakly to a point u € E. Letting n, — oo, we
obtain

0 < ¢(Sy,y) +2(u— Sy, JSy — Jy).
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Using (2.4), we have that

0 < o(Sy,y) + d(u, y) + ¢(Sy, Sy) — ¢(u, Sy) — #(Sy,y)
and hence
¢(u, Sy) < d(u, y).
This implies that u is an element of A(S). Similarly, we have that
o(u, Ty) < é(u,y).

and hence u € A(T'). Therefore we have u € A(S)NA(T). Additionally, if C' is closed
and convex, we have that {S,z} C C and then

u € co{S,x:n €N} C C.
Since u € A(S) N A(T') and u € C, we have that
o(u, Su) < Pp(u,u) =0 and @(u,Tu) < ¢p(u,u) =0
and hence
¢(u, Su) =0 and ¢(u,Tu) =0.

Since E is strictly convex, we have u € F'(S) N F(T'). This completes the proof. O

Let E be a smooth Banach space. Let C be a nonempty subset of £ and let T’
be a mapping of C into E. We denote by B(T') the set of skew-attractive points of T,
ie, B(T)={2€ E:¢(Tx,2) < ¢(z,z), Yx € C}. The following result was proved
by Lin and Takahashi [20].

Lemma 4.2 ([20]). Let E be a smooth Banach space and let C' be a nonempty subset
of E. Let T be a mapping from C into E. Then B(T) is closed.

Let E be a smooth, strictly convex and reflexive Banach space and let C' be a
nonempty subset of E. Let T be a mapping of C' into E. Define a mapping 7™ as

follows:
T*z* = JTJ 'z*, Va* € JC,

where J is the duality mapping on £ and J~! is the duality mapping on E*. A
mapping T* is called the duality mapping of T’; see also [31] and [7]. It is easy to
show that if T" is a mapping of C' into itselt, then 7™ is a mapping of JC' into itself.
In fact, for #* € JC, we have J~'z* € C and hence T'J'z* € C. So, we have

T " = JTJ 'a* € JC.

Then, T* is a mapping of JC' into itself. Using Lemma 2.4, we have the following

result.
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Lemma 4.3 ([20]). Let E be a smooth, strictly convex and reflexive Banach space
and let C' be a nonempty subset of E. Let T be a mapping of C' into E and let T™ be
the duality mapping of T'. Then, the following hold:

(1) JB(T) = A(T");
(2) JA(T) = B(T*).

In particular, JB(T) is closed and convez.

Let D = {(k,l) : k,l e NU{0}}. Then D is a directed set by the binary relation:
(k1) < (i,7) ifk<iandl<j.

Theorem 4.4. Let E be a uniformly convexr Banach space with a Fréchet differen-

tiable norm and let C' be a nonempty subset of E. Let S, T : C' — C' be commutative

2-generalized nonspreading mappings such that {S*T'z : k,l € N U {0}} for some

z € C is bounded, A(S) = B(S) and A(T) = B(T). Let R be the sunny generalized
nonezpansive retraction of E onto B(S) N B(T). Then, for any z € C,

converges weakly to an element q of A(S) N ( ), where ¢ = lim, yep RS*T'x.

Proof. We have from Theorem 3.2 that A(S) N A(T) = B(S) N B(T) is nonempty.
We know from Lemmas 2.11, 4.2 and 4.3 that B(S) N B(T) is closed, and

J(B(S) N B(T)) = JB(S) N JB(T)

is closed and convex. So, from Lemma 2.5 and Lemma 2.7 there exists the sunny
generalized nonexpansive retraction R of £ onto B(S)NB(T"). From Lemma 2.8, this

retraction R is characterized by

Rx = i :
o ae ueB{gl)lrIWlB(T) o, u)

We also know from Lemma 2.6 that
0<{v—Rv,JRv—Ju), Yue B(S)NB(T), veC.
Adding up ¢(Rv,u) to both sides of this inequality, we have
¢(Rv,u) < ¢(Rv,u)+2 (v — Rv, JRv — Ju)
(4.3) = ¢(Rv,u) + ¢(v,u) + ¢(Rv, Rv) — ¢(v, Rv) — ¢(Rv, u)
= ¢(v,u) — ¢(v, Rv).
)

Since ¢(Sz,u) < ¢(z,u) and ¢(Tz,u) < ¢(z,u) for any uw € B(S)N B(T) and z € C,
it follows that for any (k,1), (i,j) € D with (k,1) < (4, ),

H(STix, RS'TIx) < ¢(S*T?x, RS*T'x)
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< ¢(S*T'w, RS*T'x).

Hence the net ¢(S*T'x, RS*T'x) is nonincreasing. Putting u = RS*T'z and v =
STz with (k,1) < (7,7) in (4.3), we have from Lemma 2.3 that
g(|RS'Tx — RS*T'z||) < ¢(RS' T2, RS*T'x)
< ¢(S'TVx, RS* T'x) — ¢(S' Tz, RS'T'x)
< ¢(S* T2, RS*T'z) — ¢(S'T?z, RS'T' ),
where ¢ is a strictly increasing, continuous and convex real-valued function with
g(0) = 0. From the properties of g, { RS*T'z} is a Cauchy net; see [19]. Therefore
{RS*T'x} converges strongly to a point ¢ € B(S) N B(T). Next, consider a fixed
x € C and an arbitrary subsequence {S,,x} of {S,z} which converges weakly to a
point v. From the proof of Lemma 4.1, we know that v € A(S)NA(T) = B(S)NB(T).
Rewriting the characterization of the retraction R, we have that for any u € B(S) N
B(T),
0 < (S"T'x — RS*T'x, JRS*T'x — Ju)
and hence
(S*T'x — RS"T'x, Ju — Jq) < (S*T'x — RS*T"x, JRS*T'x — Jq)
< ||S*T'x — RS*T'x|| - || JRS*T'x — Jq|
< K||JRS*T'x — Jq||,
where K is an upper bound for ||S¥T'x — RS*T'x||. Summing up these inequalities
for k=0,1,...,nand [ = 0,1,...,n and dividing by (n + 1)?, we arrive to

1 n o n - 1 n o n -

k=0 1=0 k=0 1=0
where S,z = m S oSy S*Tx. Letting n; — oo and remembering that J is
continuous, we get
(v—gq,Ju—Jq) <0.
This holds for any u € B(S)NB(T'). Therefore Rv = ¢q. But because v € B(S)NB(T),

we have v = ¢. Thus the sequence {S,z} converges weakly to the point ¢ € A(S) N
A(T). O

Using Theorem 4.4, we obtain the following theorems.

Theorem 4.5. Let E be a uniformly conver Banach space with a Fréchet differ-
entiable norm. Let S, T : E — E be commutative (ay,as, 1, B2, V1,2, 01,02) and
(o, oy, B, By, V1, Vhs 01, 04 )-generalized nonspreading mappings such that a; — By = 0,

Y < 1, Y2 < o, aw > Py and oy — B =0, v <0, 75 < 0y, oy > 35, respectively.
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Assume that {S*T'z : k,1 € NU{0}} for some z € C is bounded. Let R be the sunny
generalized nonexpansive retraction of E onto F(S) N F(T). Then, for any x € E,

1 n n

k=0 1=0

converges weakly to an element g of F(S) N F(T), where ¢ = limg, jep RS*T"x.

Proof. Since {S*T'z : k,1 € NU {0}} for some z € C is bounded, we have that
A(S)NA(T) = F(S)N F(T) is nonempty. We also know that ay > (5 together with
a; — 1 =0, v <0; and 5 < §5 implies that

¢(Sz,u) < ¢(x, u)

for all z € E and v € F(S). Similarly, of, > () together with of — ] = 0, 7} < ]
and 4 < 65 implies that

¢(T,v) < ¢(x,v)
for all z € £ and v € F(T). Thus, we have that FI(S) = B(S) and F(T) = B(T).

Therefore, we have the desired result from Theorem 4.4. O

Theorem 4.6 ([6]). Let H be a Hilbert space and let C' be a nonempty subset of H.
Let S and T be commutative 2-generalized hybrid mappings of C into itself such that
{SkT'z : k,1 € NU{0}} for some z € C is bounded. Let P be the metric projection
of H onto A(S)NA(T). Then, for any x € C,

1 n n
Spr = ——— STy
CEPPPD
converges weakly to an element q of A(S) N A(T), where ¢ = limypep PS*T'z. In
particular, if C' is closed and conver, {S,z} converges weakly to an element q of

F(S)Nn F(T).

Proof. We have from Theorem 3.2 that A(S) N A(T) is nonempty. We also have that
A(S) = B(S) and A(T) = B(T). Since A(S) N A(T) is a nonempty, closed and
convex subset of H, there exists the metric projection of H onto A(S) N A(T). In
a Hilbert space, the metric projection of H onto A(S) N A(T) is equivalent to the
sunny generalized nonexpansive retraction of H onto A(S) N A(T). On the other
hand, commutative 2-generalized hybrid mappings S,T : C — C are commutative
2-generalized nonspreading mappings. So, we have the desired result from Theorem
4.6. Furthermore, if C'is closed and convex, we have that ¢ € F/(S)N F(T) and then
{Snx} converges weakly to ¢ € F(S) N F(T). O

Remark We do not know whether a mean convergence theorem of Baillon’s type

for nonspreading mappings in a Banach space holds or not.
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