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ABSTRACT. In this paper, using the class of 2-generalized nonspreading mappings which was

defined by [29] in a Banach space and covers 2-generalized hybrid mappings in a Hilbert space, we

prove an attractive point theorem in a Banach space. Then we prove a mean convergence theorem

of Baillon’s type [2] without convexity for commutative 2-generalized nonspreading mappings in a

Banach space.
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1. INTRODUCTION

Let H be a real Hilbert space and let C be a nonempty subset of H . Let T be a

mapping of C into H . Then we denote by F (T ) the set of fixed points of T and by

A(T ) the set of attractive points [27] of T , i.e.,

(i) F (T ) = {z ∈ C : Tz = z};

(ii) A(T ) = {z ∈ H : ‖Tx − z‖ ≤ ‖x − z‖, ∀x ∈ C}.

We know from [27] that A(T ) is closed and convex. This property is important for

proving mean convergence theorems. Such a concept of attractive points was defined

in a Banach space; see [20]. A mapping T : C → H is said to be nonexpansive [4] if

‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. Baillon [2] proved the first mean convergence

theorem in a Hilbert space.
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Theorem 1.1 ([2]). Let C be a bounded, closed and convex subset of H and let

T : C → C be nonexpansive. Then for any x ∈ C,

Snx =
1

n

n−1
∑

k=0

T kx

converges weakly to an element z ∈ F (T ).

This theorem for nonexpansive mappings has been extended to Banach spaces

by many authors; see, for example, [3, 5]. On the other hand, in 2010, Kocourek,

Takahashi and Yao [13] defined a broad class of nonlinear mappings in a Hilbert

space: Let H be a Hilbert space and let C be a nonempty subset of H . A mapping

T : C → H is called generalized hybrid [13] if there exist α, β ∈ R such that

(1.1) α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C. Such a mapping T is called (α, β)-generalized hybrid. Notice that

the class of generalized hybrid mappings covers several well-known mappings. For

example, a (1,0)-generalized hybrid mapping is nonexpansive, i.e.,

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

It is nonspreading [17, 18] for α = 2 and β = 1, i.e.,

2‖Tx − Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2, ∀x, y ∈ C.

It is also hybrid [25] for α = 3
2

and β = 1
2
, i.e.,

3‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖Tx − y‖2 + ‖Ty − x‖2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [10]. The mean

convergence theorem by Baillon [2] for nonexpansive mappings has been extended to

generalized hybrid mappings in a Hilbert space by Kocourek, Takahashi and Yao [13].

Furthermore, Takahashi and Takeuchi [27] proved the following mean convergence

theorem without convexity in a Hilbert space.

Theorem 1.2 ([27]). Let H be a Hilbert space and let C be a nonempty subset of

H. Let T be a generalized hybrid mapping from C into itself. Assume that {T nz} for

some z ∈ C is bounded and define

Snx =
1

n

n−1
∑

k=0

T kx

for all x ∈ C and n ∈ N. Then {Snx} converges weakly to u0 ∈ A(T ), where

u0 = limn→∞ PA(T )T
nx and PA(T ) is the metric projection of H onto A(T ).
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Maruyama, Takahashi and Yao [21] also defined a more broad class of nonlinear

mappings called 2-generalized hybrid which covers generalized hybrid mappings in a

Hilbert space. Let C be a nonempty subset of H and let T be a mapping of C into

H . A mapping T : C → H is 2-generalized hybrid [21] if there exist α1, α2, β1, β2 ∈ R

such that

α1‖T
2x−Ty‖2 + α2‖Tx − Ty‖2 + (1 − α1 − α2)‖x − Ty‖2(1.2)

≤ β1‖T
2x − y‖2 + β2‖Tx − y‖2 + (1 − β1 − β2)‖x − y‖2

for all x, y ∈ C.

Recently, Hojo, Takahashi and Takahashi [6] proved attractive and mean conver-

gence theorems without convexity for commutative 2-generalized hybrid mappings in

a Hilbert space. These results generalize Takahashi and Takeuchi’s theorem (The-

orem 1.2) and Kohsaka’s theorem [15] which is a mean convergence theorem for

commutative λ-hybrid mappings in a Hilbert space.

In this paper, using the class of 2-generalized nonspreading mappings which was

defined by [29] in a Banach space and covers 2-generalized hybrid mappings in a

Hilbert space, we prove an attractive point theorem in a Banach space. This theorem

generalizes Hojo, Takahashi and Takahashi’s attractive point theorem [6] in a Hilbert

space. Then we prove a mean convergence theorem of Baillon’s type [2] without

convexity for commutative 2-generalized nonspreading mappings in a Banach space.

This result is a general mean convergence theorem which extends Baillon’s theorem

(Theorem 1.1) to a Banach space.

2. PRELIMINARIES

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the topological dual

space of E. We denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a

sequence in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and

the weak convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ǫ) = inf

{

1 −
‖x + y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ǫ

}

for every ǫ with 0 ≤ ǫ ≤ 2. A Banach space E is said to be uniformly convex if

δ(ǫ) > 0 for every ǫ > 0. A uniformly convex Banach space is strictly convex and

reflexive. Let C be a nonempty subset of a Banach space E. A mapping T : C → E

is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. A mapping T : C → E is

quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx− y‖ ≤ ‖x− y‖ for all x ∈ C and y ∈ F (T ),

where F (T ) is the set of fixed points of T . If C is a nonempty, closed and convex

subset of a strictly convex Banach space E and T : C → E is quasi-nonexpansive,

then F (T ) is closed and convex; see Itoh and Takahashi [11].
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Let E be a Banach space. The duality mapping J from E into 2E∗

is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for every x ∈ E. Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be Gâteaux

differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

‖x + ty‖ − ‖x‖

t

exists. In this case, E is called smooth. We know that E is smooth if and only if J is

a single-valued mapping of E into E∗. We also know that E is reflexive if and only

if J is surjective, and E is strictly convex if and only if J is one-to-one. Therefore, if

E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued

bijection. The norm of E is said to be uniformly Gâteaux differentiable if for each

y ∈ U , the limit (2.1) is attained uniformly for x ∈ U . It is also said to be Fréchet

differentiable if for each x ∈ U , the limit (2.1) is attained uniformly for y ∈ U . A

Banach space E is called uniformly smooth if the limit (2.1) is attained uniformly

for x, y ∈ U . It is known that if the norm of E is uniformly Gâteaux differentiable,

then J is uniformly norm to weak∗ continuous on each bounded subset of E, and if

the norm of E is Fréchet differentiable, then J is norm to norm continuous. If E is

uniformly smooth, J is uniformly norm to norm continuous on each bounded subset

of E. For more details, see [23, 24].

Lemma 2.1 ([23, 24]). Let E be a smooth Banach space and let J be the duality

mapping on E. Then 〈x − y, Jx − Jy〉 ≥ 0 for all x, y ∈ E. Furthermore, if E is

strictly convex and 〈x − y, Jx− Jy〉 = 0, then x = y.

Let E be a smooth Banach space. The function φ : E ×E → (−∞,∞) is defined

by

(2.2) φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for x, y ∈ E, where J is the duality mapping of E; see [1] and [12]. We have from

the definition of φ that

(2.3) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉

for all x, y, z ∈ E. From (‖x‖ − ‖y‖)2 ≤ φ(x, y) for all x, y ∈ E, we can see that

φ(x, y) ≥ 0. Furthermore, we can obtain the following equality:

(2.4) 2〈x − y, Jz − Jw〉 = φ(x, w) + φ(y, z) − φ(x, z) − φ(y, w)

for x, y, z, w ∈ E. If E is additionally assumed to be strictly convex, then from

Lemma 2.1 we have

(2.5) φ(x, y) = 0 ⇐⇒ x = y.

The following lemma is in Xu [33].
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Lemma 2.2 ([33]). Let E be a uniformly convex Banach space and let r > 0. Then

there exists a strictly increasing, continuous and convex function g : [0,∞) → [0,∞)

such that g(0) = 0 and

‖λx + (1 − λ)y‖2 ≤ λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)g(‖x− y‖)

for all x, y ∈ Br and λ with 0 ≤ λ ≤ 1, where Br = {z ∈ E : ‖z‖ ≤ r}.

Using Lemma 2.2, we have the following lemma by Kamimura and Takahashi

[12].

Lemma 2.3 ([12]). Let E be a smooth and uniformly convex Banach space and let

r > 0. Then there exists a strictly increasing, continuous and convex function g :

[0, 2r] → R such that g(0) = 0 and

g(‖x− y‖) ≤ φ(x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ‖z‖ ≤ r}.

Let E be a smooth Banach space. Let C be a nonempty subset of E and let T

be a mapping of C into E. We denote by A(T ) the set of attractive points of T , i.e.,

A(T ) = {z ∈ E : φ(z, Tx) ≤ φ(z, x), ∀x ∈ C}; see [20].

Lemma 2.4 ([20]). Let E be a smooth Banach space and let C be a nonempty subset

of E. Let T be a mapping from C into E. Then A(T ) is a closed and convex subset

of E.

Let E be a smooth Banach space and let C be a nonempty subset of E. Then a

mapping T : C → E is called generalized nonexpansive [8] if F (T ) 6= ∅ and

φ(Tx, y) ≤ φ(x, y)

for all x ∈ C and y ∈ F (T ); see also [32]. Let D be a nonempty subset of a Banach

space E. A mapping R : E → D is said to be sunny if

R(Rx + t(x − Rx)) = Rx

for all x ∈ E and t ≥ 0. A mapping R : E → D is said to be a retraction or

a projection if Rx = x for all x ∈ D. A nonempty subset D of a smooth Banach

space E is said to be a generalized nonexpansive retract (resp. sunny generalized

nonexpansive retract) of E if there exists a generalized nonexpansive retraction (resp.

sunny generalized nonexpansive retraction) R from E onto D; see [8] for more details.

The following results are in Ibaraki and Takahashi [8].

Lemma 2.5 ([8]). Let C be a nonempty closed sunny generalized nonexpansive re-

tract of a smooth and strictly convex Banach space E. Then the sunny generalized

nonexpansive retraction from E onto C is uniquely determined.
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Lemma 2.6 ([8]). Let C be a nonempty closed subset of a smooth and strictly convex

Banach space E such that there exists a sunny generalized nonexpansive retraction R

from E onto C and let (x, z) ∈ E × C. Then the following hold:

(i) z = Rx if and only if 〈x − z, Jy − Jz〉 ≤ 0 for all y ∈ C;

(ii) φ(Rx, z) + φ(x, Rx) ≤ φ(x, z).

In 2007, Kohsaka and Takahashi [16] proved the following results:

Lemma 2.7 ([16]). Let E be a smooth, strictly convex and reflexive Banach space

and let C be a nonempty closed subset of E. Then the following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;

(b) C is a generalized nonexpansive retract of E;

(c) JC is closed and convex.

Lemma 2.8 ([16]). Let E be a smooth, strictly convex and reflexive Banach space

and let C be a nonempty closed sunny generalized nonexpansive retract of E. Let R be

the sunny generalized nonexpansive retraction from E onto C and let (x, z) ∈ E ×C.

Then the following are equivalent:

(i) z = Rx;

(ii) φ(x, z) = miny∈C φ(x, y).

Ibaraki and Takahashi [9] also obtained the following result concerning the set of

fixed points of a generalized nonexpansive mapping.

Lemma 2.9 ([9]). Let E be a reflexive, strictly convex and smooth Banach space and

let T be a generalized nonexpansive mapping from E into itself. Then F (T ) is closed

and JF (T ) is closed and convex.

The following theorem is proved by using Lemmas 2.7 and 2.9.

Lemma 2.10 ([9]). Let E be a reflexive, strictly convex and smooth Banach space

and let T be a generalized nonexpansive mapping from E into itself. Then F (T ) is a

sunny generalized nonexpansive retract of E.

Using Lemma 2.7, we also have the following result.

Lemma 2.11 ([26]). Let E be a smooth, strictly convex and reflexive Banach space

and let {Ci : i ∈ I} be a family of sunny generalized nonexpansive retracts of E such

that ∩i∈ICi is nonempty. Then ∩i∈ICi is a sunny generalized nonexpansive retract of

E.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let µ be

an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the value of µ at
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f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the value µ(f). A linear

functional µ on l∞ is called a mean if µ(e) = ‖µ‖ = 1, where e = (1, 1, 1, . . . ). A mean

µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn). We know that there exists a

Banach limit on l∞. If µ is a Banach limit on l∞, then for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) =

µn(xn) = a. For the proof of existence of a Banach limit and its other elementary

properties, see [23].

3. FIXED POINT THEOREMS

Let E be a smooth Banach space and let C be a nonempty subset of E. Then

a mapping T : C → E is called 2-generalized nonspreading [29] if there exist α1, α2,

β1, β2, γ1, γ2, δ1, δ2 ∈ R such that

α1φ(T 2x, Ty) + α2φ(Tx, Ty) + (1 − α1 − α2)φ(x, Ty)

+ γ1{φ(Ty, T 2x) − φ(Ty, x)}+ γ2{φ(Ty, Tx) − φ(Ty, x)}(3.1)

≤ β1φ(T 2x, y) + β2φ(Tx, y) + (1 − β1 − β2)φ(x, y)

+ δ1{φ(y, T 2x) − φ(y, x)} + δ2{φ(y, Tx) − φ(y, x)}

for all x, y ∈ C; see also [30]. Such a mapping is called (α1, α2, β1, β2, γ1, γ2, δ1, δ2)-

generalized nonspreading. We know that a (0, α2, 0, β2, 0, γ2, 0, δ2)-generalized non-

spreading mapping is generalized nonspreading in the sense of [14]. We also know

that a (0, 1, 0, 1, 0, 1, 0, 0)-generalized nonspreading mapping is nonspreading in the

sense of [18].

Now we prove an attractive point theorem for commutative 2-generalized non-

spreading mappings in a Banach space. Before proving it, we prove the following

result.

Lemma 3.1. Let E be a smooth, strictly convex and reflexive Banach space with the

duality mapping J and let C be a nonempty subset of E. Let S and T be mappings

of C into itself. Let {xn} be a bounded sequence of E and let µ be a mean on l∞.

Suppose that

µnφ(xn, Sy) ≤ µnφ(xn, y) and µnφ(xn, T y) ≤ µnφ(xn, y)

for all y ∈ C. Then A(S) ∩ A(T ) is nonemppty. Additionally, if C is closed and

convex and {xn} ⊂ C, then F (S) ∩ F (T ) is nonempty.

Proof. Using a mean µ and a bounded sequence {xn}, we define a function g : E∗ → R

as follows:

g(x∗) = µn〈xn, x
∗〉
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for all x∗ ∈ E∗. Since µ is linear, g is also linear. Furthermore, we have

|g(x∗)| = |µn〈xn, x
∗〉|

≤ ‖µ‖ sup
n∈N

|〈xn, x
∗〉|

≤ ‖µ‖ sup
n∈N

‖xn‖‖x
∗‖

= sup
n∈N

‖xn‖‖x
∗‖

for all x∗ ∈ E∗. Then g is a linear and bounded real-valued function on E∗. Since E

is reflexive, there exists a unique element z of E such that

g(x∗) = µn〈xn, x
∗〉 = 〈z, x∗〉

for all x∗ ∈ E∗. From (2.3) we have that for y ∈ C and n ∈ N,

φ(xn, y) = φ(xn, Sy) + φ(Sy, y) + 2〈xn − Sy, JSy − Jy〉.

So, we have that for y ∈ C,

µnφ(xn, y) = µnφ(xn, Sy) + µnφ(Sy, y) + 2µn〈xn − Sy, JSy − Jy〉

= µnφ(xn, Sy) + φ(Sy, y) + 2〈z − Sy, JSy − Jy〉.

Since, by assumption, µnφ(xn, Sy) ≤ µnφ(xn, y) for all y ∈ C, we have

µnφ(xn, y) ≤ µnφ(xn, y) + φ(Sy, y) + 2〈z − Sy, JSy − Jy〉.

This implies that

0 ≤ φ(Sy, y) + 2〈z − Sy, JSy − Jy〉.

Using (2.4), we have that

0 ≤ φ(Sy, y) + φ(z, y) + φ(Sy, Sy)− φ(z, Sy) − φ(Sy, y)

and hence φ(z, Sy) ≤ φ(z, y). This implies that z is an element of A(S). Similarly, we

have that φ(z, Ty) ≤ φ(z, y) and hence z ∈ A(T ). Therefore we have z ∈ A(S)∩A(T ).

Additionally, if C is closed and convex and {xn} ⊂ C, we have that z ∈ co{xn : n ∈

N} ⊂ C. In fact, if z /∈ C, then there exists y∗ ∈ E∗ by the separation theorem [23]

such that 〈z, y∗〉 < infy∈C〈y, y∗〉. So, from {xn} ⊂ C we have

〈z, y∗〉 < inf
y∈C

〈y, y∗〉 ≤ inf
n∈N

〈xn, y∗〉 ≤ µn〈xn, y∗〉 = 〈z, y∗〉.

This is a contradiction. Then we have z ∈ C. Since z ∈ A(S) ∩ A(T ) and z ∈ C, we

have that

φ(z, Sz) ≤ φ(z, z) = 0 and φ(z, T z) ≤ φ(z, z) = 0

and hence φ(z, Sz) = 0 and φ(z, T z) = 0. Since E is strictly convex, we have

z ∈ F (S) ∩ F (T ). This completes the proof.
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Using Lemma 3.1, we prove an attractive point theorem for commutative 2-

generalized nonspreading mappings in a Banach space.

Theorem 3.2. Let C be a nonempty subset of a smooth, strictly convex and reflexive

Banach space E and let S and T be commutative 2-generalized nonspreading mappings

of C into itself. Suppose that there exists an element z ∈ C such that {SkT lz : k, l ∈

N ∪ {0}} is bounded. Then A(S) ∩ A(T ) is nonempty. Additionally, if C is closed

and convex, then F (S) ∩ F (T ) is nonempty.

Proof. Since S is a 2-generalized nonspreading mapping of C into itself, there exist

α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R such that for all x, y ∈ C,

α1φ(S2x, Sy) + α2φ(Sx, Sy) + (1 − α1 − α2)φ(x, Sy)

+ γ1{φ(Sy, S2x) − φ(Sy, x)}+ γ2{φ(Sy, Sx) − φ(Sy, x)}(3.2)

≤ β1φ(S2x, y) + β2φ(Sx, y) + (1 − β1 − β2)φ(x, y)

+ δ1{φ(y, S2x) − φ(y, x)}+ δ2{φ(y, Sx) − φ(y, x)}.

By assumption, we can take z ∈ C such that {SkT lz : k, l ∈ N ∪ {0}} is bounded.

Replacing x by SkT lz in (3.2), we have that for any y ∈ C and k, l ∈ N ∪ {0},

α1φ(Sk+2T lz, Sy) + α2φ(Sk+1T lz, Sy) + (1 − α1 − α2)φ(SkT lz, Sy)

+ γ1{φ(Sy, Sk+2T lz) − φ(Sy, SkT lz)} + γ2{φ(Sy, Sk+1T lz) − φ(Sy, SkT lz)}

≤ β1φ(Sk+2T lz, y) + β2φ(Sk+1T lz, y) + (1 − β1 − β2)φ(SkT lz, y)

+ δ1{φ(y, Sk+2T lz) − φ(y, SkT lz)} + δ2{φ(y, Sk+1T lz) − φ(y, SkT lz)}

= β1{φ(Sk+2T lz, Sy) + φ(Sy, y) + 2〈Sk+2T lz − Sy, JSy − Jy〉}

+ β2{φ(Sk+1T lz, Sy) + φ(Sy, y) + 2〈Sk+1T lz − Sy, JSy − Jy〉}

+ (1 − β1 − β2){φ(SkT lz, Sy) + φ(Sy, y) + 2〈SkT lz − Sy, JSy − Jy〉}

+ δ1{φ(y, Sk+2T lz) − φ(y, SkT lz)} + δ2{φ(y, Sk+1T lz) − φ(y, SkT lz)}.

This implies that

0 ≤ (β1 − α1){φ(Sk+2T lz, Sy) − φ(SkT lz, Sy)}

+ (β2 − α2){φ(Sk+1T lz, Sy) − φ(SkT lz, Sy)} + φ(Sy, y)

+ 2〈SkT lz − Sy + β1(S
k+2T lz − SkT lz) + β2(S

k+1T lz − SkT lz), JSy − Jy〉

− γ1{φ(Sy, Sk+2T lz) − φ(Sy, SkT lz)} − γ2{φ(Sy, Sk+1T lz) − φ(Sy, SkT lz)}

+ δ1{φ(y, Sk+2T lz) − φ(y, SkT lz)} + δ2{φ(y, Sk+1T lz) − φ(y, SkT lz)}.

Summing up these inequalities with respect to k = 0, 1, . . . , n, we have

0 ≤ (β1 − α1){φ(Sn+2T lz, Sy) + φ(Sn+1T lz, Sy)

− φ(ST lz, Sy) − φ(T lz, Sy)}
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+ (β2 − α2){φ(Sn+1T lz, Sy) − φ(T lz, Sy)} + (n + 1)φ(Sy, y)

+ 2
〈

n
∑

k=0

SkT lz + β1(S
n+2T lz + Sn+1T lz − ST lz − T lz)

+ β2(S
n+1T lz − T lz) − (n + 1)Sy, JSy − Jy

〉

− γ1{φ(Sy, Sn+2T lz) + φ(Sy, Sn+1T lz) − φ(Sy, ST lz) − φ(Sy, T lz)}

− γ2{φ(Sy, Sn+1T lz) − φ(Sy, T lz)}

+ δ1{φ(y, Sn+2T lz) + φ(y, Sn+1T lz) − φ(y, ST lz) − φ(y, T lz)}

+ δ2{φ(y, Sn+1T lz) − φ(y, T lz)}.

Furthermore, summing up these inequalities with respect to l = 0, 1, . . . , n, we have

0 ≤ (β1 − α1)

n
∑

l=0

{φ(Sn+2T lz, Sy) + φ(Sn+1T lz, Sy)

− φ(ST lz, Sy) − φ(T lz, Sy)}

+ (β2 − α2)

n
∑

l=0

{φ(Sn+1T lz, Sy) − φ(T lz, Sy)} + (n + 1)2φ(Sy, y)

+ 2
〈

n
∑

l=0

n
∑

k=0

SkT lz + β1

n
∑

l=0

(Sn+2T lz + Sn+1T lz − ST lz − T lz)

+ β2

n
∑

l=0

(Sn+1T lz − T lz) − (n + 1)2Sy, JSy − Jy
〉

− γ1

n
∑

l=0

{φ(Sy, Sn+2T lz) + φ(Sy, Sn+1T lz) − φ(Sy, ST lz) − φ(Sy, T lz)}

− γ2

n
∑

l=0

{φ(Sy, Sn+1T lz) − φ(Sy, T lz)}

+ δ1

n
∑

l=0

{φ(y, Sn+2T lz) + φ(y, Sn+1T lz) − φ(y, ST lz) − φ(y, T lz)}

+ δ2

n
∑

l=0

{φ(y, Sn+1T lz) − φ(y, T lz)}.

Dividing by (n + 1)2, we have

0 ≤ (β1 − α1)
1

(n + 1)2

n
∑

l=0

{φ(Sn+2T lz, Sy) + φ(Sn+1T lz, Sy)

− φ(ST lz, Sy) − φ(T lz, Sy)}

+ (β2 − α2)
1

(n + 1)2

n
∑

l=0

{φ(Sn+1T lz, Sy) − φ(T lz, Sy)} + φ(Sy, y)
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+ 2
〈

Snz + β1
1

(n + 1)2

n
∑

l=0

(Sn+2T lz + Sn+1T lz − ST lz − T lz)

+ β2
1

(n + 1)2

n
∑

l=0

(Sn+1T lz − T lz) − Sy, JSy − Jy
〉

− γ1
1

(n + 1)2

n
∑

l=0

{φ(Sy, Sn+2T lz) + φ(Sy, Sn+1T lz)

− φ(Sy, ST lz) − φ(Sy, T lz)}

− γ2
1

(n + 1)2

n
∑

l=0

{φ(Sy, Sn+1T lz) − φ(Sy, T lz)}

+ δ1
1

(n + 1)2

n
∑

l=0

{φ(y, Sn+2T lz) + φ(y, Sn+1T lz) − φ(y, ST lz) − φ(y, T lz)}

+ δ2
1

(n + 1)2

n
∑

l=0

{φ(y, Sn+1T lz) − φ(y, T lz)},

where Snz = 1
(n+1)2

∑n

k=0

∑n

l=0 SkT lz. Since {SkT lz} is bounded by assumption,

{Snz} is bounded. Taking a Banach limit µ to both sides of this inequality, we have

that

0 ≤ φ(Sy, y) + 2µn〈Snz − Sy, JSy − Jy〉

and hence

0 ≤ φ(Sy, y) + µnφ(Snz, y) + φ(Sy, Sy)− µnφ(Snz, Sy) − φ(Sy, y).

Thus, we have

µnφ(Snz, Sy) ≤ µnφ(Snz, y).

Similarly, replacing S and T by T and S, respectively, we have

µnφ(Snz, Ty) ≤ µnφ(Snz, y).

Using Lemma 3.1, we have that A(S)∩A(T ) is nonempty. Additionally, if C is closed

and convex, then F (S) ∩ F (T ) is nonempty.

Since commutative 2-generalized hybrid mappings in a Hilbert space are commu-

tative 2-generalized nonspreading mappings in a Banach space, as a direct sequence

of Theorem 3.2, we have the following theorem proved by Hojo, Takahashi and Taka-

hashi [6] in a Hilbert space.

Theorem 3.3 ([6]). Let H be a Hilbert space, let C be a nonempty subset of H and

let S and T be commutative 2-generalized hybrid mappings of C into itself. Suppose

that there exists an element z ∈ C such that {SkT lz : k, l ∈ N∪{0}} is bounded. Then

A(S)∩A(T ) is nonempty. Additionally, if C is closed and convex, then F (S)∩F (T )

is nonempty.
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4. NONLINEAR ERGODIC THEOREMS

Let E be a smooth Banach space, let C be a nonempty subset of E and let J be

the duality mapping from E into E∗. Observe that if T : C → E is a 2-generalized

nonspreading mapping and F (T ) 6= ∅, then

φ(u, Ty) ≤ φ(u, y)

for all u ∈ F (T ) and y ∈ C. Indeed, putting x = u ∈ F (T ) in (3.1), we obtain that

α1φ(u, Ty) + α2φ(u, Ty) + (1 − α1 − α2)φ(u, Ty)

+ γ1{φ(Ty, u)− φ(Ty, u)}+ γ2{φ(Ty, u)− φ(Ty, u)}

≤ β1φ(u, y) + β2φ(u, y) + (1 − β1 − β2)φ(u, y)

+ δ1{φ(y, u)− φ(y, u)}+ δ2{φ(y, u)− φ(y, u)}.

So, we have that

(4.1) φ(u, Ty) ≤ φ(u, y)

for all u ∈ F (T ) and y ∈ C. Similarly, putting y = u ∈ F (T ) in (3.1), we obtain that

for x ∈ C,

α1φ(T 2x, u) + α2φ(Tx, u) + (1 − α1 − α2)φ(x, u)

+ γ1{φ(u, T 2x) − φ(u, x)} + γ2{φ(u, Tx) − φ(u, x)}

≤ β1φ(T 2x, u) + β2φ(Tx, u) + (1 − β1 − β2)φ(x, u)

+ δ1{φ(u, T 2x) − φ(u, x)} + δ2{φ(u, Tx) − φ(u, x)}

and hence

(α1 − β1){φ(T 2x, u) − φ(x, u)} + (α2 − β2){φ(Tx, u) − φ(x, u)}

+ (γ1 − δ1){φ(u, T 2x) − φ(u, x)} + (γ2 − δ2){φ(u, Tx)− φ(u, x)} ≤ 0.

If α1 − β1 = 0, γ1 ≤ δ1, γ2 ≤ δ2 and α2 > β2, then we have from (4.1) that

(α2−β2){φ(Tx, u) − φ(x, u)} ≤ (δ1 − γ1){φ(u, T 2x) − φ(u, x)}

+ (δ2 − γ2){φ(u, Tx) − φ(u, x)} ≤ 0.

So, we have that

(4.2) φ(Tx, u) ≤ φ(x, u)

for all x ∈ C and u ∈ F (T ). This implies that T is generalized nonexpansive in the

sense of [8].

Now using the technique developed by [22] and [28], we can prove a mean conver-

gence theorem without convexity for commutative 2-generalized nonspreading map-

pings in a Banach space. For proving this result, we need the following lemmas.
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Lemma 4.1. Let E be a smooth, strictly convex and reflexive Banach space and let C

be a nonempty subset of E. Let S and T be commutative 2-generalized nonspreading

mappings of C into itself. If {SkT lz : k, l ∈ N ∪ {0}} for some z ∈ C is bounded and

Snx =
1

(1 + n)2

n
∑

k=0

n
∑

l=0

SkT lx

for all x ∈ C and n ∈ N ∪ {0}, then every weak cluster point of {Snx} is a point of

A(S) ∩ A(T ). Additionally, if C is closed and convex, then every weak cluster point

of {Snx} is a point of F (S) ∩ F (T ).

Proof. Since S : C → C is 2-generalized nonspreading, we have that for all x, y ∈ C,

(3.2) holds. Since there exists z ∈ C such that {SkT lz : k, l ∈ N ∪ {0}} is bounded,

{SkT lx : k, l ∈ N∪{0}} for all x ∈ C is bounded. Then as in the proof of Theorem 3.2,

we have that for any y ∈ C

0 ≤ (β1 − α1)
1

(n + 1)2

n
∑

l=0

{φ(Sn+2T lx, Sy) + φ(Sn+1T lx, Sy)

− φ(ST lx, Sy) − φ(T lx, Sy)}

+ (β2 − α2)
1

(n + 1)2

n
∑

l=0

{φ(Sn+1T lx, Sy) − φ(T lx, Sy)} + φ(Sy, y)

+ 2
〈

Snx + β1
1

(n + 1)2

n
∑

l=0

(Sn+2T lx + Sn+1T lx − ST lx − T lx)

+ β2
1

(n + 1)2

n
∑

l=0

(Sn+1T lx − T lx) − Sy, JSy − Jy
〉

− γ1
1

(n + 1)2

n
∑

l=0

{φ(Sy, Sn+2T lx) + φ(Sy, Sn+1T lx)

− φ(Sy, ST lx) − φ(Sy, T lx)}

− γ2
1

(n + 1)2

n
∑

l=0

{φ(Sy, Sn+1T lx) − φ(Sy, T lx)}

+ δ1
1

(n + 1)2

n
∑

l=0

{φ(y, Sn+2T lx) + φ(y, Sn+1T lx) − φ(y, ST lx) − φ(y, T lx)}

+ δ2
1

(n + 1)2

n
∑

l=0

{φ(y, Sn+1T lx) − φ(y, T lx)}.

Since {SkT lx} is bounded, {Snx} is bounded. Thus we have a subsequence {Sni
x}

of {Snx} such that {Sni
x} converges weakly to a point u ∈ E. Letting ni → ∞, we

obtain

0 ≤ φ(Sy, y) + 2〈u − Sy, JSy − Jy〉.
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Using (2.4), we have that

0 ≤ φ(Sy, y) + φ(u, y) + φ(Sy, Sy)− φ(u, Sy)− φ(Sy, y)

and hence

φ(u, Sy) ≤ φ(u, y).

This implies that u is an element of A(S). Similarly, we have that

φ(u, Ty) ≤ φ(u, y).

and hence u ∈ A(T ). Therefore we have u ∈ A(S)∩A(T ). Additionally, if C is closed

and convex, we have that {Snx} ⊂ C and then

u ∈ co{Snx : n ∈ N} ⊂ C.

Since u ∈ A(S) ∩ A(T ) and u ∈ C, we have that

φ(u, Su) ≤ φ(u, u) = 0 and φ(u, Tu) ≤ φ(u, u) = 0

and hence

φ(u, Su) = 0 and φ(u, Tu) = 0.

Since E is strictly convex, we have u ∈ F (S) ∩ F (T ). This completes the proof.

Let E be a smooth Banach space. Let C be a nonempty subset of E and let T

be a mapping of C into E. We denote by B(T ) the set of skew-attractive points of T ,

i.e., B(T ) = {z ∈ E : φ(Tx, z) ≤ φ(x, z), ∀x ∈ C}. The following result was proved

by Lin and Takahashi [20].

Lemma 4.2 ([20]). Let E be a smooth Banach space and let C be a nonempty subset

of E. Let T be a mapping from C into E. Then B(T ) is closed.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a

nonempty subset of E. Let T be a mapping of C into E. Define a mapping T ∗ as

follows:

T ∗x∗ = JTJ−1x∗, ∀x∗ ∈ JC,

where J is the duality mapping on E and J−1 is the duality mapping on E∗. A

mapping T ∗ is called the duality mapping of T ; see also [31] and [7]. It is easy to

show that if T is a mapping of C into itselt, then T ∗ is a mapping of JC into itself.

In fact, for x∗ ∈ JC, we have J−1x∗ ∈ C and hence TJ−1x∗ ∈ C. So, we have

T ∗x∗ = JTJ−1x∗ ∈ JC.

Then, T ∗ is a mapping of JC into itself. Using Lemma 2.4, we have the following

result.
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Lemma 4.3 ([20]). Let E be a smooth, strictly convex and reflexive Banach space

and let C be a nonempty subset of E. Let T be a mapping of C into E and let T ∗ be

the duality mapping of T . Then, the following hold:

(1) JB(T ) = A(T ∗);

(2) JA(T ) = B(T ∗).

In particular, JB(T ) is closed and convex.

Let D = {(k, l) : k, l ∈ N∪{0}}. Then D is a directed set by the binary relation:

(k, l) ≤ (i, j) if k ≤ i and l ≤ j.

Theorem 4.4. Let E be a uniformly convex Banach space with a Fréchet differen-

tiable norm and let C be a nonempty subset of E. Let S, T : C → C be commutative

2-generalized nonspreading mappings such that {SkT lz : k, l ∈ N ∪ {0}} for some

z ∈ C is bounded, A(S) = B(S) and A(T ) = B(T ). Let R be the sunny generalized

nonexpansive retraction of E onto B(S) ∩ B(T ). Then, for any x ∈ C,

Snx =
1

(n + 1)2

n
∑

k=0

n
∑

l=0

SkT lx

converges weakly to an element q of A(S) ∩ A(T ), where q = lim(k,l)∈D RSkT lx.

Proof. We have from Theorem 3.2 that A(S) ∩ A(T ) = B(S) ∩ B(T ) is nonempty.

We know from Lemmas 2.11, 4.2 and 4.3 that B(S) ∩ B(T ) is closed, and

J(B(S) ∩ B(T )) = JB(S) ∩ JB(T )

is closed and convex. So, from Lemma 2.5 and Lemma 2.7 there exists the sunny

generalized nonexpansive retraction R of E onto B(S)∩B(T ). From Lemma 2.8, this

retraction R is characterized by

Rx = arg min
u∈B(S)∩B(T )

φ(x, u).

We also know from Lemma 2.6 that

0 ≤ 〈v − Rv, JRv − Ju〉 , ∀u ∈ B(S) ∩ B(T ), v ∈ C.

Adding up φ(Rv, u) to both sides of this inequality, we have

φ(Rv, u) ≤ φ(Rv, u) + 2 〈v − Rv, JRv − Ju〉

= φ(Rv, u) + φ(v, u) + φ(Rv, Rv) − φ(v, Rv) − φ(Rv, u)(4.3)

= φ(v, u) − φ(v, Rv).

Since φ(Sz, u) ≤ φ(z, u) and φ(Tz, u) ≤ φ(z, u) for any u ∈ B(S) ∩ B(T ) and z ∈ C,

it follows that for any (k, l), (i, j) ∈ D with (k, l) ≤ (i, j),

φ(SiT jx, RSiT jx) ≤ φ(SiT jx, RSkT lx)
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≤ φ(SkT lx, RSkT lx).

Hence the net φ(SkT lx, RSkT lx) is nonincreasing. Putting u = RSkT lx and v =

SiT jx with (k, l) ≤ (i, j) in (4.3), we have from Lemma 2.3 that

g(‖RSiT jx − RSkT lx‖) ≤ φ(RSiT jx, RSkT lx)

≤ φ(SiT jx, RSkT lx) − φ(SiT jx, RSiT jx)

≤ φ(SkT lx, RSkT lx) − φ(SiT jx, RSiT jx),

where g is a strictly increasing, continuous and convex real-valued function with

g(0) = 0. From the properties of g, {RSkT lx} is a Cauchy net; see [19]. Therefore

{RSkT lx} converges strongly to a point q ∈ B(S) ∩ B(T ). Next, consider a fixed

x ∈ C and an arbitrary subsequence {Sni
x} of {Snx} which converges weakly to a

point v. From the proof of Lemma 4.1, we know that v ∈ A(S)∩A(T ) = B(S)∩B(T ).

Rewriting the characterization of the retraction R, we have that for any u ∈ B(S) ∩

B(T ),

0 ≤
〈

SkT lx − RSkT lx, JRSkT lx − Ju
〉

and hence

〈

SkT lx − RSkT lx, Ju − Jq
〉

≤
〈

SkT lx − RSkT lx, JRSkT lx − Jq
〉

≤ ‖SkT lx − RSkT lx‖ · ‖JRSkT lx − Jq‖

≤ K‖JRSkT lx − Jq‖,

where K is an upper bound for ‖SkT lx − RSkT lx‖. Summing up these inequalities

for k = 0, 1, . . . , n and l = 0, 1, . . . , n and dividing by (n + 1)2, we arrive to
〈

Snx −
1

(n + 1)2

n
∑

k=0

n
∑

l=0

RSkT lx, Ju − Jq

〉

≤ K
1

(n + 1)2

n
∑

k=0

n
∑

l=0

‖JRSkT lx − Jq‖,

where Snx = 1
(n+1)2

∑n

k=0

∑n

l=0 SkT lx. Letting ni → ∞ and remembering that J is

continuous, we get

〈v − q, Ju − Jq〉 ≤ 0.

This holds for any u ∈ B(S)∩B(T ). Therefore Rv = q. But because v ∈ B(S)∩B(T ),

we have v = q. Thus the sequence {Snx} converges weakly to the point q ∈ A(S) ∩

A(T ).

Using Theorem 4.4, we obtain the following theorems.

Theorem 4.5. Let E be a uniformly convex Banach space with a Fréchet differ-

entiable norm. Let S, T : E → E be commutative (α1, α2, β1, β2, γ1, γ2, δ1, δ2) and

(α′

1, α
′

2, β
′

1, β
′

2, γ
′

1, γ
′

2, δ
′

1, δ
′

2)-generalized nonspreading mappings such that α1 − β1 = 0,

γ1 ≤ δ1, γ2 ≤ δ2, α2 > β2 and α′

1 − β ′

1 = 0, γ′

1 ≤ δ′1, γ′

2 ≤ δ′2, α′

2 > β ′

2, respectively.
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Assume that {SkT lz : k, l ∈ N∪ {0}} for some z ∈ C is bounded. Let R be the sunny

generalized nonexpansive retraction of E onto F (S) ∩ F (T ). Then, for any x ∈ E,

Snx =
1

(n + 1)2

n
∑

k=0

n
∑

l=0

SkT lx

converges weakly to an element q of F (S) ∩ F (T ), where q = lim(k,l)∈D RSkT lx.

Proof. Since {SkT lz : k, l ∈ N ∪ {0}} for some z ∈ C is bounded, we have that

A(S) ∩A(T ) = F (S) ∩ F (T ) is nonempty. We also know that α2 > β2 together with

α1 − β1 = 0, γ1 ≤ δ1 and γ2 ≤ δ2 implies that

φ(Sx, u) ≤ φ(x, u)

for all x ∈ E and u ∈ F (S). Similarly, α′

2 > β ′

2 together with α′

1 − β ′

1 = 0, γ′

1 ≤ δ′1
and γ′

2 ≤ δ′2 implies that

φ(Tx, v) ≤ φ(x, v)

for all x ∈ E and v ∈ F (T ). Thus, we have that F (S) = B(S) and F (T ) = B(T ).

Therefore, we have the desired result from Theorem 4.4.

Theorem 4.6 ([6]). Let H be a Hilbert space and let C be a nonempty subset of H.

Let S and T be commutative 2-generalized hybrid mappings of C into itself such that

{SkT lz : k, l ∈ N ∪ {0}} for some z ∈ C is bounded. Let P be the metric projection

of H onto A(S) ∩ A(T ). Then, for any x ∈ C,

Snx =
1

(n + 1)2

n
∑

k=0

n
∑

l=0

SkT lx

converges weakly to an element q of A(S) ∩ A(T ), where q = lim(k,l)∈D PSkT lx. In

particular, if C is closed and convex, {Snx} converges weakly to an element q of

F (S) ∩ F (T ).

Proof. We have from Theorem 3.2 that A(S)∩A(T ) is nonempty. We also have that

A(S) = B(S) and A(T ) = B(T ). Since A(S) ∩ A(T ) is a nonempty, closed and

convex subset of H , there exists the metric projection of H onto A(S) ∩ A(T ). In

a Hilbert space, the metric projection of H onto A(S) ∩ A(T ) is equivalent to the

sunny generalized nonexpansive retraction of H onto A(S) ∩ A(T ). On the other

hand, commutative 2-generalized hybrid mappings S, T : C → C are commutative

2-generalized nonspreading mappings. So, we have the desired result from Theorem

4.6. Furthermore, if C is closed and convex, we have that q ∈ F (S)∩F (T ) and then

{Snx} converges weakly to q ∈ F (S) ∩ F (T ).

Remark We do not know whether a mean convergence theorem of Baillon’s type

for nonspreading mappings in a Banach space holds or not.
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