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ABSTRACT. A possible combination of continuously distributed and concentrated delays is in-

corporated in a monopoly model with either bounded or unbounded time window for the past data,

while its length and the adjustment speed may vary. In this general setting, we obtain sufficient

stability conditions. Sharper tests are established for autonomous equations with finite or infinite

distributed delays. A similar stability analysis is implemented for the output of the leader firm in

the Stackelberg duopoly model.
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1. INTRODUCTION

Our purpose is to investigate the output stability of a profit maximizing behavior

for a firm in the presence of delays and bounded rationality. This type of analysis

was implemented in some recent papers [2, 10, 11, 18, 19, 20, 21, 22, 23, 24, 26, 27].

As discussed in these studies, one of the main assumptions that leads to the usage

of delays is the idea of bounded rationality. In most cases, it is hard for the firm to

use real-time quality demanded by the consumers to maximize its profits, because the

data collection and analysis process could take some time: by the time there is data

for period t, we are in the period t+ s. Moreover, the firm may not have perfect and

complete information on the structure or the functional form of the market demand,

which is why it may use some approximation using the past information to estimate

the actual market demand.

Another assumption that justifies the application of delay is the adjustment cost.

If there is a positive demand shock, i.e. a steep growth in the consumers’ demand, it

may not be optimal for a firm (say, a monopolist) to respond instantaneously to this

abrupt change. Commonly, a firm should invest in labor or additional capital (e.g.,

machinery) to accommodate the growth in demand. However, rapid purchases and

recruitments can be very costly, may lead further to excess idle capacity and pose
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inefficiencies if there is a subsequent and persistent negative demand shock. Thus,

even though a firm may know what the actual demand is at real time, it may choose

to use the information on the demand in the past and to gradually adjust its output

to control the costs.

The developed theory of delay differential equations (DDE) allows to extend the

analysis done in [2, 10, 11, 18, 19, 20, 21, 22, 23, 24, 26] to more general models.

In this paper, we use a linear demand function, and the revenue r as a function of

the supply quantity q is r(q) = (A−Bq)q, with a demand function p(q) = A−Bq (the

unit price), where A,B > 0. Similarly to [18], we assume the production (labor and

capital) and inventory costs being clumped together into one, represented by c(q) and

use the quadratic cost function c(q) = Cq2, where C > 0, see also [2, 3, 4, 9, 10, 12, 24].

In principle, we could have added a constant term to denote the presence of fixed

cost, but this does not contribute anything to the output stability analysis, as we

differentiate the expected profit. Based on the above, the profit Π(q) can be computed

as

(1.1) Π(q) = p(q)q − c(q) = (A− Bq)q − Cq2,

the marginal profit

(1.2) Π′(q) = A− 2(B + C)q = 0

is achieved at the positive equilibrium

(1.3) q∗ =
A

2(B + C)
.

Following [18], we introduce the gradient dynamics to (1.2) as

q̇(t) = αΠ′(qt),

where the adjustment speed α can be time-dependent, and qt includes information

on the present and past quantity demanded q(s) for s ≤ t. The interpretation of this

gradient dynamics is that we assume that the firm adjusts its output in proportion

to and in the same direction as the average past marginal profit.

In a more general setting, such gradient dynamics can be described by the equa-

tion with a distributed delay

(1.4) q̇(t) = α(t)

[

A− 2(B + C)

∫ t

h(t)

K(t, s)q(s)ds

]

,

where K(t, s) is a non-negative kernel of either a convolution K(t, s) = K(t− s) or a

non-convolution type, continuous in t and integrable in s. In the present paper, we

always assume that K(t, s) is normalized in the sense that
∫ t

−∞
K(t, s)ds = 1 for all

t if the delay is unbounded, and
∫ t

h(t)
K(t, s)ds = 1 for all t if the delay is bounded.

This is not a limitation, as the positive value of the integral just becomes a part
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of α(t). In fact, we consider a more general type of the delay model which will be

described later.

After a change of the variable z(t) = q(t) − q∗ = q(t) − A
2(B+C)

, (1.4) takes the

form

(1.5) ż(t) + 2α(t)(B + C)

∫ t

h(t)

K(t, s)z(s)ds = 0.

The purpose of this paper is two-fold. First, we are going to consider a model gen-

eralizing (1.5) and deduce sufficient conditions guaranteeing exponential convergence

of solutions to a positive equilibrium q∗. For several particular cases of autonomous

equations with either bounded or unbounded delays, we obtain sharper exponential

stability tests. Second, we analyze output stability of the leader firm in a Stackelberg

game.

Compared to most of the previous publications, for example, [18, 22], the present

paper presents a different approach from the following points of view.

1. We investigate non-autonomous models where more general types of present and

past data are involved in the analysis, and the adjustment speed can vary. The

considered model involves [18, 22] and many other equations as special cases.

Moreover, a firm can adapt its data analysis to the current situation, for example,

disregard older data when some quick demand changes occur. However, such

flexibility of the general framework comes at a cost: unlike [18, 22] where sharp

stability tests are obtained, we have only sufficient stability conditions.

2. Also, unlike [18, 22] where a complete bifurcation analysis is implemented, we

reduce ourselves to the study of the stability domain for the parameters.

3. To the best of our knowledge, for both a monopolist and a Stackelberg game,

the models where historical and immediate data are incorporated, have not been

earlier considered.

The paper is organized as follows. Section 2 involves auxiliary results for delay

equations. Section 3 contains our main results. We derive some sufficient stability

conditions for a Stackelberg game in Section 4. In Section 5 we discuss the obtained

results and outline some directions for future research.

2. PRELIMINARIES

We start with relevant definitions and auxiliary results on linear equations with

concentrated and distributed delays which will be further used in the proofs of the

main results. For autonomous equations with a distributed delay, stability conditions

are obtained by the analysis of appropriate characteristic equations.
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Generally, we fix t0 ∈ [0,∞) and consider a non-autonomous equation with a

distributed delay

(2.1) ẋ(t) + a(t)

∫ t

h(t)

x(s)dsR(t, s) = 0, t ≥ t0.

In the case when R(t, ·) is absolutely continuous, and d
ds
R(t, s) = K(t, s), we can

rewrite (2.1) as an integro-differential equation

(2.2) ẋ(t) + a(t)

∫ t

h(t)

K(t, s)x(s) ds = 0, t ≥ t0.

We also investigate particular cases of (2.1) and (2.2) when there is a non-delay term

(2.3) ẋ(t) + b(t)x(t) + a(t)

∫ t

h(t)

x(s)dsR(t, s) = 0, t ≥ t0

and

(2.4) ẋ(t) + b(t)x(t) + a(t)

∫ t

h(t)

K(t, s)x(s) ds = 0, t ≥ t0,

as well as equations with both distributed and concentrated delays, for example,

(2.5) ẋ(t) + b(t)x(t) + c(t)x(g(t)) + a(t)

∫ t

h(t)

K(t, s)x(s) ds = 0, t ≥ t0.

Further, we assume that some of the following conditions are satisfied:

(a1) a(t), b(t), c(t) : [0,∞) → [0,∞) are Lebesgue measurable bounded on [0,∞)

functions;

(a2) h, g : [0,∞) → R are Lebesgue measurable functions, and there exist τ > 0 and

σ > 0 such that t− τ ≤ h(t) ≤ t, t− σ ≤ g(t) ≤ t;

(a3) R(t, ·) is a left continuous non-decreasing function for any t, R(·, s) is locally

integrable for any s, and R(t, h(t)) = 0, R(t, t+) = 1 for any t ≥ 0;

(a4) K(t, s) ≥ 0 is Lebesgue integrable,
∫ t

h(t)
K(t, s)ds = 1 for any t ≥ 0.

We consider (2.1) with an initial condition

(2.6) x(t) = ϕ(t), t ≤ t0,

and everywhere further we assume ϕ to be a continuous function.

Definition 2.1. An absolutely continuous function x : R → R is called a solution

of problem (2.1), (2.6) if it satisfies equation (2.1) for almost all t ∈ [t0,∞) and

(2.6) for t ≤ t0.

Definition 2.2 ([17]). The zero solution of (2.1), (2.6) is uniformly stable if for

any ε > 0 there is δ > 0 such that for any t0, |ϕ(t)| < δ for t ≤ t0 implies |x(t)| < ε for

any t > t0. The zero solution of (2.1), (2.6) is uniformly asymptotically stable if

it is uniformly stable and also such b0 > 0 exists that for any ε > 0 there is M > 0

such that |ϕ(t)| < b0 for t ≤ t0 implies |x(t)| < ε for any t > t0 +M .
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Definition 2.3. For each t ≥ 0 the solution X(t, s) of the problem

ẋ(t) + a(t)

∫ t

h(t)

x(s) dsR(t, s) = 0, t ≥ s, x(t) = 0, t < s, x(s) = 1,

is called the fundamental function of equation (2.1). Note that X(t, s) = 0, t < s.

Definition 2.4. Equation (2.1) is uniformly exponentially stable, if there exist

M > 0 and λ > 0 such that its fundamental function X(t, s) has the estimate

(2.7) |X(t, s)| ≤ M e−λ(t−s), t ≥ s ≥ 0.

We will further apply the following lemma, which is based on classical results

(see, for example, [14, 15] and [7, Lemma 3.1]).

Lemma 2.5. Consider the scalar equation

(2.8) ẋ(t) + b(t)x(t) + a(t)x(h(t)) = 0,

where a and b are Lebesgue measurable essentially bounded on [0,∞) functions, and

there exists τ > 0 such that the measurable function h satisfies 0 ≤ t− h(t) ≤ τ .

1) If b(t) ≡ 0, a(t) ≥ a0 > 0 and lim sup
t→∞

∫ t

h(t)
a(s)ds < 3

2
then (2.8) is uniformly

exponentially stable.

2) If b(t) ≥ b0 > 0 and lim sup
t→∞

|a(t)|
b(t)

< 1 then (2.8) is uniformly exponentially

stable.

Consider a more general version of equation (2.8)

(2.9) ẋ(t) + b(t)x(t) + a(t)x(h(t)) + c(t)x(g(t)) = 0,

where a, b, c are Lebesgue measurable essentially bounded on [0,∞) functions, and

the delays satisfy (a2).

Lemma 2.6 ([5, Corollary 1.6]). Suppose at least one of the following conditions

holds:

1. b(t) ≥ b0 > 0 and lim sup
t→∞

|a(t)|+|c(t)|
b(t)

< 1;

2. a(t) + b(t) + c(t) ≥ b0 > 0 and

lim sup
t→∞

[

a(t)

a(t) + b(t) + c(t)

∫ t

h(t)

(|a(s)| + |b(s)| + |c(s)|) ds

+
c(t)

a(t) + b(t) + c(t)

∫ t

g(t)

(|a(s)| + |b(s)| + |c(s)|) ds

]

< 1;

3. a(t) + b(t) ≥ b0 > 0 and

lim sup
t→∞

[ |a(t)|
a(t) + b(t)

∫ t

h(t)

(|a(s)| + |b(s)| + |c(s)|) ds+
|c(t)|

a(t) + b(t)

]

< 1;
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4. c(t) + b(t) ≥ b0 > 0 and

lim sup
t→∞

[ |c(t)|
b(t) + c(t)

∫ t

g(t)

(|a(s)| + |b(s)| + |c(s)|) ds+
|a(t)|

b(t) + c(t)

]

< 1.

Then equation (2.9) is uniformly exponentially stable.

However, the above results are for equations with concentrated delays. Since our

main object is an equation with either a distributed delay or incorporating both types

of delay, we need the following auxiliary transformations from [6].

Lemma 2.7 ([6, Corollary 9, p. 302]). Assume that R(t, s) is a Lebesgue measurable

non-decreasing function in s, h : [0,∞) → R is a measurable function satisfying

h(t) ≤ t, limt→∞ h(t) = ∞, and y is continuous on [t0,∞). Then there exists a

measurable function h0 : [0,∞) → R satisfying h(t) ≤ h0(t) ≤ t such that
∫ t

h(t)

y(s)dsR(t, s) =

(
∫ t

h(t)

dsR(t, s)

)

y(h0(t)).

For d
ds
R(t, s) = K(t, s) we obtain the following result.

Lemma 2.8. Assume that K(t, s) ≥ 0 is locally integrable, h : [0,∞) → R is a

measurable function satisfying h(t) ≤ t, limt→∞ h(t) = ∞, and y is continuous on

[t0,∞). Then there exists a function h0 : [0,∞) → R, h(t) ≤ h0(t) ≤ t such that
∫ t

h(t)

K(t, s)y(s)ds =

(
∫ t

h(t)

K(t, s)ds

)

y(h0(t)).

For autonomous equations with a distributed delay, we present stability condi-

tions which will be further applied.

Lemma 2.9 ([16, Theorem 1 and Remark 3]). Consider the following equation

(2.10) ẋ(t) + ψ1x(t) + ψ2

∫ t

t−r

K(t− s)x(s)ds = 0.

Suppose ψ1 ≥ 0, ψ2 > 0, t ≥ r > 0, and
∫ r

0
K(s)ds = 1 with

∫ u

0
K(s)ds being a

non-decreasing, non-negative, and continuous function for all u ∈ (0, r). If

ψ1 + ψ2 > 0, 0 < ψ2

∫ r

0

sK(s)ds <
π

2
,

then the zero solution of (2.10) is uniformly asymptotically stable.

Lemma 2.10 ([25, Theorem 1]). Consider the problem

(2.11) ẋ(t) + ψ2

∫ t−τ

t−τ−r

x(s)ds = 0, t ≥ 0, r > 0, x(ζ) = 0, ζ < 0.

where τ ≥ 0, and its characteristic equation

(2.12) g(p) = p+
ψ2

p
e−pτ (1 − e−pr) = 0.
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All zeros p of (2.12) satisfy Re(p) < 0, and the zero steady state solution of (2.11)

is uniformly exponentially stable if and only if the following inequality is true:

0 <
ψ2r

2

2
<

(

π/2

2τ/r + 1

)2(

sin

(

π/2

2τ/r + 1

))−1

.

Lemma 2.11 ([8, Theorems 2.4 and 5.3]). Consider the following equation

(2.13) ẋ(t) + ψ1x(t) + ψ2

∫ t

−∞

K(t− s)x(s)ds = 0.

Suppose ψ1, ψ2 ∈ R, and
∫∞

0
K(s)ds = 1 with

∫ u

0
K(s)ds being a monotone non-

decreasing, non-negative, and continuous function for all u ∈ (0,∞). The zero so-

lution of (2.13) is uniformly asymptotically stable if ψ1 > −ψ2 and ψ1 ≥ |ψ2|, or if

ψ2 > |ψ1| and the mean of the kernel E[s] satisfies

(2.14) E[s] :=

∫ ∞

0

sK(s)ds <
arccos(−ψ1/ψ2)
√

ψ2
2 − ψ2

1

.

Suppose that there exists ν > 0 such that the following inequality is satisfied

(2.15)

∫ ∞

0

eνsK(s)ds <∞.

The zero solution of (2.13) is uniformly exponentially stable if and only if all roots of

its characteristic equation have negative real parts.

For some other results on stability of equations with a distributed delay, refer to

[17].

3. MAIN RESULTS

First, we consider some generalizations, as well as particular cases, of main model

equation (1.5). For all these equations, we assume that (a1)–(a4) hold. We study the

most general equation with a distributed delay

(3.1) ż(t) + 2α(t)(B + C)

∫ t

h(t)

z(s)dsR(t, s) = 0,

as well as its integral counterpart (1.5) and equations with non-delay terms

(3.2)

ż(t) + 2α(t)(B + C)

[

(1 − a(t))z(t) + a(t)

∫ t

h(t)

z(s)dsR(t, s)

]

= 0, 0 ≤ a(t) ≤ 1,

(3.3)

ż(t) + 2α(t)(B + C)

[

(1 − a(t))z(t) + a(t)

∫ t

h(t)

K(t, s)z(s)ds

]

= 0, 0 ≤ a(t) ≤ 1,

(3.4)

ż(t) + 2α(t)(B+C)

[

(1 − a(t) − b(t))z(t) + b(t)z(g(t)) + a(t)

∫ t

h(t)

z(s)dsR(t, s)

]

= 0,
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with 0 ≤ a(t) ≤ 1, 0 ≤ b(t) ≤ 1, 0 ≤ a(t) + b(t) ≤ 1,

(3.5)

ż(t)+2α(t)(B+C)

[

(1 − a(t) − b(t))z(t) + b(t)z(g(t)) + a(t)

∫ t

h(t)

K(t, s)z(s)ds

]

= 0,

with 0 ≤ a(t) ≤ 1, 0 ≤ b(t) ≤ 1, 0 ≤ a(t) + b(t) ≤ 1.

Theorem 3.1. If

(3.6) lim sup
t→∞

∫ t

h(t)

α(s) ds <
3

4(B + C)
,

then (3.1) and (1.5) are uniformly exponentially stable.

Proof. Let continuous function z(t) be a solution of (3.1). Then, by Lemma 2.7 and

assumption (a3), for some h0(t) ∈ [h(t), t],
∫ t

h(t)

z(s)dsR(t, s) =

(
∫ t

h(t)

dsR(t, s)

)

z(h0(t)) = z(h0(t)).

Thus, z(t) is also a solution of the equation

(3.7) ż(t) + 2α(t)(B + C)z(h0(t)) = 0,

which by Part 1) of Lemma 2.5 is uniformly exponentially stable if

lim sup
t→∞

2(B + C)

∫ t

h0(t)

α(s) ds <
3

2
.

Since h0(t) ∈ [h(t), t], we have that

lim sup
t→∞

2(B + C)

∫ t

h0(t)

α(s) ds ≤ lim sup
t→∞

2(B + C)

∫ t

h(t)

α(s) ds <
3

2
,

which implies uniform exponential stability of (3.1).

Next, by Lemma 2.8, if z(t) is a solution of (1.5), it also satisfies (3.7) for some

h0(t) such that h(t) ≤ h0(t) ≤ t. The rest of the proof coincides with the case for

equation (3.1).

Similarly, Part 2) of Lemma 2.5 and either Lemma 2.7 or Lemma 2.8, imply the

following result for equations (3.2) and (3.3).

Theorem 3.2. If

(3.8) lim sup
t→∞

a(t) <
1

2
,

then (3.2) and (3.3) are uniformly exponentially stable.

Lemma 2.6, together with either Lemma 2.7 or Lemma 2.8 imply stability con-

ditions for equations (3.4) and (3.5).
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Theorem 3.3. Suppose α(t) ≥ α0 > 0 is a Lebesgue measurable function, and at

least one of the following conditions is satisfied:

1. lim sup
t→∞

[a(t) + b(t)] < 1
2
;

2. lim sup
t→∞

[

a(t)
∫ t

h(t)
α(s)ds+ b(t)

∫ t

g(t)
α(s)ds < 1

2(B+C)

]

;

3. b(t) ≤ b0 <
1
2

and

lim sup
t→∞

[

2(B + C)
a(t)

1 − b(t)

∫ t

h(t)

α(s)ds+
b(t)

1 − b(t)

]

< 1;

4. a(t) ≤ a0 <
1
2

and

lim sup
t→∞

[

2(B + C)
b(t)

1 − a(t)

∫ t

g(t)

α(s)ds+
a(t)

1 − a(t)

]

< 1.

Then (3.4) and (3.5) are uniformly exponentially stable.

Further, we obtain sharper stability conditions for equation (1.5) with various

convolution kernels and α(t) = α, where α is a fixed positive constant.

Proposition 3.4. Consider the kernel

(3.9) K(t− s) =







1
h
, t− τ − h ≤ s < t− τ ,

0, otherwise,

where τ ≥ 0 and h > 0. The zero steady state solution of (1.5) with α(t) = α > 0 is

uniformly exponentially stable if and only if

(3.10) 2α(B + C) <

(

2

h2

)(

π/2

2τ/h+ 1

)2(

sin

(

π/2

2τ/h+ 1

))−1

Proof. Inequality (3.10) follows directly from Lemma 2.10.

Proposition 3.5. Consider a kernel K(t, s) = K(t − s), where
∫ r

0
K(s)ds = 1 with

∫ u

0
K(s)ds being a non-decreasing, non-negative, and continuous function for all u ∈

(0, r). If

(3.11) 2α(B + C) <
π

2

(
∫ r

0

sK(s)ds

)−1

,

then the zero solution of (1.5) with α(t) = α > 0 is uniformly asymptotically stable.

Proof. Inequality (3.11) follows directly from Lemma 2.9.

Example 3.6. Consider the kernel

K(t− s) =







2m
n2 (−m(t− s) + n), t− n

m
≤ s < t (n,m > 0),

0, otherwise.
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By Proposition 3.5, if

2α(B + C) <
π

2

(

2m

n2

∫ n
m

0

s(−ms + n)ds

)−1

=
3mπ

2n
,

then the zero solution of (1.5) with α(t) = α > 0 is uniformly asymptotically stable.

Example 3.7. Consider a truncated exponential distribution. Let 0 < δ < 1 describe

how much area under the exponential is used, i.e.,

K(t− s) =







σ
δ

exp(−σ(t− s)), t+ ln(1−δ)
σ

≤ s < t (σ > 0),

0, otherwise.

By Proposition 3.5, if

2α(B + C) ≤ πσδ

2((1 − δ) ln(1 − δ) + δ)
,

then the zero solution of (1.5) with α(t) = α > 0 is uniformly asymptotically stable.

As another example of a truncated exponential distribution, consider

K(t− s) =







σ
1−e−σt exp(−σ(t− s)), 0 ≤ s ≤ t (σ > 0),

0, otherwise,

then, as proved in [1, Lemma 4.1], (1.5) with α(t) = α > 0 is uniformly exponentially

stable as long as σ > 0 and 2α(B + C) > 0. Thus, the adjustment speed and the

parameters that determine the demand and cost functions of the firm are irrelevant

in guaranteeing the stability of the equation.

Proposition 3.8. Consider a kernel K(t, s) = K(t− s), where
∫∞

0
K(s)ds = 1 with

∫ u

0
K(s)ds being a monotone non-decreasing, non-negative, and continuous function

for all u ∈ (0,∞). If for some ν > 0

(3.12)

∫ ∞

0

eνsK(s)ds <∞, 2α(B + C) <
π

2

(
∫ ∞

0

sK(s)ds

)−1

,

then the zero solution of equation (1.5) with α(t) = α > 0 is uniformly exponentially

stable.

Proof. Inequality (3.12) follows from Lemma 2.11 by setting ψ1 = 0 and ψ2 = 2α(B+

C).
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Example 3.9. Consider some popular distributions that decay slowly to zero as

t→ ∞, such as gamma, half normal (with µ = 0), or Weibull. Consider

KGamma(t− s) =
φj

Γ(j)
(t− s)j−1e−φ(t−s), where φ, j > 0,

KNormal(t− s) =

√
2√
πσ2

exp

(−(t− s)2

2σ2

)

, where σ > 0,(3.13)

KWeibull(t− s) = (φj)(φ(t− s))j−1e−(φ(t−s))j

, where φ > 0, j ≥ 1,

where Γ(·) is the gamma function. The expected values of the above three distribu-

tions are j
φ
, σ
√

2
π

and Γ(1+1/j)
φ

, respectively. Recall that each of the above kernels

integrates to 1.

Let us briefly verify that condition (2.15) holds for some positive ν. Consider

KGamma, for any ν such that φ > ν, we have

∫ ∞

0

eνsφ
jsj−1e−φs

Γ(j)
ds =

∫ ∞

0

φj

(φ− ν)j

(φ− ν)jsj−1e−(φ−ν)s

Γ(j)
ds =

(

φ

φ− ν

)j

<∞.

Consider KNormal. By completing the squares, for any ν > 0, we get

∫ ∞

0

eνs

√
2√
πσ2

exp

(−s2

2σ2

)

ds = exp

(

(νσ)2

2

)
∫ ∞

0

√
2√
πσ2

exp

(−(s− νσ2)2

2σ2

)

ds

= exp

(

(νσ)2

2

)

<∞.

Consider KWeibull. For our case we simply assume j ≥ 1, even though the param-

eter j of Weibull distribution can also take a value between 0 and 1. Also, for any ν

such that φj > ν, we have

∫ ∞

0

eνs(φj)(φs)j−1e−(φs)j

ds

=

∫ 1

0

eνs(φj)(φs)j−1e−(φs)j

ds+

∫ ∞

1

eνs(φj)(φs)j−1e−(φs)j

ds

<

∫ 1

0

eνs(φj)(φs)j−1e−(φs)j

ds+

∫ ∞

1

(φj)(φs)j−1e−(φj−ν)sds

=

∫ 1

0

eνs(φj)(φs)j−1e−(φs)j

ds+
φjjΓ(j)

(φj − ν)j

∫ ∞

1

(φj − ν)j

Γ(j)
sj−1e−(φj−ν)sds

<

∫ 1

0

eνs(φj)(φs)j−1e−(φs)j

ds+
φjjΓ(j)

(φj − ν)j
<∞,

where we use the fact that exp(−sj) < exp(−s) for all s > 1 to move from the second

line to the third line, and the fact that the second integral in the fourth line involves

integrating a truncated gamma distribution.
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By Proposition 3.8, given that we are using either KGamma, KNormal, or KWeibull,

we respectively have the following inequalities

(3.14) 2α(B + C) <
π

2

φ

j
, 2α(B + C) <

1

σ

(π

2

)3/2

, 2α(B + C) <
π

2

φ

Γ(1 + 1
j
)

to guarantee the uniform exponential stability of the zero solution of equation (1.5)

with α(t) = α > 0.

4. OUTPUT STABILITY ANALYSIS OF A STACKELBERG GAME

There are many papers on Cournot duopoly with bounded rationality (e.g., see

[11, 13, 23] and references therein). However, there are significantly fewer papers on a

Stackelberg duopoly with bounded rationality. Shi, Le, and Sheng in [27] conducted

price stability and bifurcation analysis by considering a discrete setting of a Stackel-

berg game. We aim to follow the way the authors set up the model in [27], with some

modifications. Instead of choosing a price level, we assume that both firms involved

in this game choose output levels to maximize their profits. As a result, unlike [27],

we are allowed to assume both firms produce an identical good. As explained in [12],

if two firms selling the same good and having the same cost functions, compete over

price, they will eventually earn no profits. This is because a firm has an incentive

to pick a price lower than the competitor. Having a lower price than the rival al-

lows a firm to win the entire market, because we assume both firms make the same

product. Since each firm continuously tries to undercut the other, they will both

pick a price that allows them to just break-even. The aforementioned phenomenon is

called Bertrand Paradox. In [27] the product heterogeneity assumption is introduced

to avoid Bertrand Paradox. In this section, we apply the approach of Section 3 to

analyze the leader’s output stability in a continuous setting. The follower’s output

stability analysis is a more challenging task, which is not in the framework of the

present paper.

4.1. Stackelberg duopoly model. Let us describe some basic assumptions of a

Stackelberg game, as explained in [12]. Suppose there are only two firms in the

market with identical demand and cost functions. Unlike in Cournot duopoly where

both firms maximize their profits by choosing the outputs they want to produce

simultaneously, both firms have their own turns in the Stackelberg model. One of the

firms is the leader and has a first-mover advantage: the leader earns more profit than

the follower even though they produce the same product, and face identical demand

and cost functions, because the leader gets to choose its output first. The other firm

is the follower. So, it chooses its output by observing the amount of output the leader

has produced. In mathematical terms, the optimization procedure is set up below

and uses backward induction. We start by maximizing the follower’s profit by taking
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the output produced by the leader, qL, as a given and solving for qF , which is also

referred to as the best response function of the follower

ΠF (qF |qL) = p(qL, qF )qF − c(qF ) = (A−B(qL + qF ))qF − (CqF + F ),

(4.1)
∂ΠF

∂qF
= A− BqL − 2BqF − C = 0 =⇒ qF =

A−BqL − C

2B
,

where A,B,C, F > 0. Next, we plug qF into the leader’s profit function

ΠL(qF ) = p(qL, qF )qL − c(qL) =

(

A−B

(

qL +
A− BqL − C

2B

))

qL − (CqL + F ),

∂ΠL

∂qL
=

(A− C)

2
− BqL.

In order to avoid non-positive outputs, we assume that A > C. Setting ∂ΠL

∂qL
= 0, we

have the positive steady state solution for the leader firm

q∗L1
=
A− C

2B
.

As the last step, we introduce our choice of the gradient dynamics

(4.2) q̇L(t) = α

(

∂ΠL

∂qL
(qL,ℓ(t))

)

= α

(

(A− C)

2
− B

∫ t

h(t)

K(t, s)qL(s)ds

)

,

where qL,ℓ(t) represents some lagged terms of qL(t). Equation (4.2) incorporates a

number of assumptions. Firstly, we assume that both firms approximate the market

demand by an identical linear function. More importantly, the leader uses past aver-

age quantity produced for its profit maximization. Secondly, even though both firms

do not know the actual market demand at real time, the follower knows the output

produced by the leader instantaneously. It is common to assume that the leader pub-

licly announces its output [27]. In [23], the authors also introduced a non-delayed

term for the the rival’s output in the context of simultaneous Cournot duopoly.

We repeat the same analysis for a quadratic cost function:

ΠF (qF |qL) = (A−B(qL + qF ))qF − Cq2
F ,

(4.3)
∂ΠF

∂qF
= A−BqL − 2BqF − 2CqF = 0 =⇒ qF =

A

2(B + C)
− BqL

2(B + C)
,

ΠL(qF ) =

(

A−B

(

qL +
A

2(B + C)
− BqL

2(B + C)

))

qL − Cq2
L,

∂ΠL

∂qL
=

(

A− AB

2(B + C)

)

−
(

2B − B2

(B + C)
+ 2C

)

qL.

In order to avoid non-positive outputs, we assume that A > AB
2(B+C)

and 2(B + C) >
B2

(B+C)
. Setting ∂ΠL

∂qL
= 0, we have

q∗L2
=

AB + 2AC

4(B + C)2 − 2B2
.
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The last step is to introduce memory-dependent gradient dynamics

q̇L(t) = α

(

∂ΠL

∂qL
(qL,ℓ(t))

)

(4.4)

= α

[

A− AB

2(B + C)
−
(

2B − B2

(B + C)
+ 2C

)
∫ t

h(t)

K(t, s)qL(s)ds

]

.

As above, we apply a change of variables to get the zero equilibrium. Plugging

qL(t) = zL(t) + q∗L1
into (4.2), we have

(4.5) żL(t) + αB

∫ t

h(t)

K(t, s)zL(s)ds = 0.

Similarly, let q(t) = z(t) + q∗L2
. Substituting into (4.4), we get

(4.6) żL(t) + α

(

2(B + C) − B2

B + C

)
∫ t

h(t)

K(t, s)zL(s)ds = 0.

Assuming time-variable adjustment α(t) and the possibility of both concentrated and

distributed delays, we can consider generalizations of (4.5)

(4.7) żL(t) + α(t)B

∫ t

h(t)

zL(s)dsR(t, s) = 0,

(4.8) żL(t) + α(t)B

∫ t

h(t)

K(t, s)zL(s)ds = 0,

(4.9) ż(t) + α(t)B

[

(1 − a(t))z(t) + a(t)

∫ t

h(t)

z(s)dsR(t, s)

]

= 0, 0 ≤ a(t) ≤ 1,

(4.10) ż(t) + α(t)B

[

(1 − a(t))z(t) + a(t)

∫ t

h(t)

K(t, s)z(s)ds

]

= 0, 0 ≤ a(t) ≤ 1,

(4.11)

ż(t) + α(t)B

[

(1 − a(t) − b(t))z(t) + b(t)z(g(t)) + a(t)

∫ t

h(t)

z(s)dsR(t, s)

]

= 0,

with 0 ≤ a(t) ≤ 1, 0 ≤ b(t) ≤ 1, 0 ≤ a(t) + b(t) ≤ 1,

(4.12)

ż(t) + α(t)B

[

(1 − a(t) − b(t))z(t) + b(t)z(g(t)) + a(t)

∫ t

h(t)

K(t, s)z(s)ds

]

= 0,

with 0 ≤ a(t) ≤ 1, 0 ≤ b(t) ≤ 1, 0 ≤ a(t) + b(t) ≤ 1.

We assume everywhere that (a1)–(a4) are satisfied.
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4.2. Output stability analysis of the leader firm. The following sufficient sta-

bility conditions are obtained by considering equations (4.7)–(4.12) and by a similar

fashion as in Section 3.

Theorem 4.1. If

(4.13) lim sup
t→∞

∫ t

h(t)

α(s) ds <
3

2B
,

then (4.7) and (4.8) are uniformly exponentially stable.

Theorem 4.2. If

(4.14) lim sup
t→∞

a(t) <
1

2
,

then (4.9) and (4.10) are uniformly exponentially stable.

Theorem 4.3. Suppose α(t) ≥ α0 > 0 is a Lebesgue measurable function, and at

least one of the following conditions is satisfied:

1. lim sup
t→∞

[a(t) + b(t)] < 1
2
;

2. lim sup
t→∞

a(t)
∫ t

h(t)
α(s) ds+ b(t)

∫ t

g(t)
α(s) ds < 1

B
;

3. b(t) ≤ b0 <
1
2

and

lim sup
t→∞

[

B
a(t)

1 − b(t)

∫ t

h(t)

α(s) ds+
b(t)

1 − b(t)

]

< 1;

4. a(t) ≤ a0 <
1
2

and

lim sup
t→∞

[

B
b(t)

1 − a(t)

∫ t

g(t)

α(s) ds+
a(t)

1 − a(t)

]

< 1.

Then (4.11) and (4.12) are uniformly exponentially stable.

Next, we obtain sharper stability conditions for equation (4.5) with various con-

volution kernels.

Proposition 4.4. Suppose K(t, s) is defined as in (3.9) and t ≥ τ+h. If the following

inequality is satisfied

αB <

(

2

h2

)(

π/2

2τ/h+ 1

)2(

sin

(

π/2

2τ/h + 1

))−1

,

then the zero steady state solution of equation (4.5) is uniformly exponentially stable.

Proposition 4.5. Consider a kernel K(t, s) = K(t − s), where
∫ r

0
K(s)ds = 1 with

∫ u

0
K(s)ds being a non-decreasing, non-negative, and continuous function for all u ∈

(0, r). If

αB <
π

2

(
∫ r

0

sK(s)ds

)−1

,

then the zero solution of equation (4.5) is uniformly exponentially stable.
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Proposition 4.6. Consider a kernel K(t, s) = K(t− s), where
∫∞

0
K(s)ds = 1 with

∫ u

0
K(s)ds being a monotone non-decreasing, non-negative, and continuous function

for all u ∈ (0,∞). If for some ν > 0,
∫ ∞

0

eνsK(s)ds <∞, αB <
π

2

(
∫ ∞

0

sK(s)ds

)−1

,

then the zero solution of equation (4.5) is uniformly exponentially stable.

Example 4.7. Consider a gamma distribution, a normal distribution with mean 0,

and a Weibull distribution as in (3.13). Then, we respectively need

αB <
π

2

φ

j
, αB <

1

σ

(π

2

)3/2

, αB <
π

2

φ

Γ
(

1 + 1
j

) ,

to guarantee the uniform exponential stability of the zero solution of (4.5).

Remark 4.8. Similarly, we can consider (4.6) and its generalizations to the cases of

variable adjustment and different delay distribution. It suffices for us to replace B

with 2(B + C) − B2

B+C
in the results we present in Section 4.2.

5. DISCUSSION

As mentioned in the introduction, the present paper focuses on the stability anal-

ysis, not on the bifurcation analysis. The reason is that, generally, we consider non-

autonomous models which can better describe market models in a quickly changing

modern environment. Unlike some of the papers we cite, instead of manually analyz-

ing the roots of the characteristic equations, we have used existing stability theorems

for DDE to construct some explicit and easy to interpret bounds on the parameters

in the presence of bounded and unbounded delays.

Also, compared to [2, 10, 11, 18, 19, 20, 21, 22, 23, 24, 26, 27], we consider more

than one model, both from the point of view of economics (a monopoly and a Stack-

elberg duopoly) and the type of delays. This gives us an advantage to witness how

the preservation of asymptotic stability requires some restrictions on the adjustment

speed, and different parameters of the demand and cost function, but not necessarily

all at the same time. Moreover, unlike models with constant concentrated delays

considered in [2, 10, 19, 20, 21, 24, 26] and integro-differential equations [18], our

approach allows to combine both concentrated and distributed delays. The setup of

our models can account for all information in a given time period in the past, with

possible emphasis of information at certain points in the past or present. Some of the

results allow the relation between the history profile used in the model change with

time. One of the most general results claims that if the present data used dominates

over the past information, the unique positive equilibrium is necessarily uniformly

exponentially stable.
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For autonomous equations, the recent paper [8] provides an interesting insight.

It is known that once an equation with a certain concentrated delay is stable, so is

the equation with a distributed delay having this concentrated delay as the maximal

possible, and this fact is applied in Section 3. However, Bernard and Crauste [8] com-

pared autonomous equations with a distributed delay to those where the concentrated

delay is not at a maximal but at the mean level and, under certain conditions, con-

cluded that asymptotic stability of the latter implies the same property for the former.

Thus, distributed delays can be treated as at the very least not more detrimental for

stability of the model than concentrated ones.

There are several ways to extend the work done in this paper. Let us describe

some possible generalizations and directions of future research.

1. In the present paper, we used positive constants for the parameters of the de-

mand and cost functions, only the adjustment parameter α was allowed to be

time-dependent. It would be interesting to investigate the case when instead of

the constants A,B,C we have some functions of time A(t), B(t), C(t). In par-

ticular, if all these functions [0,∞) → (0,∞) are time periodic, it would also be

interesting to study the existence of a periodic solution and explore its stability.

In addition to mathematical limitations leading to existence of an asymptot-

ically stable periodic solution, it would be interesting to investigate economic

interpretation of these conditions and possible restrictions on the parameters of

the equation imposed by a time-dependent economic model.

2. Consider stochastic demand and cost functions, and see what additional insights

we can gain. Estimate the size of a stochastic perturbation which keeps stability

of a (possibly blurred) equilibrium.

3. All the results of the present paper analyze convergence of solutions to a certain

positive equilibrium, without distinguishing between monotone and oscillatory

convergence. It would be interesting to obtain sufficient non-oscillation condi-

tions and, in the autonomous case, divide all the domain of parameters where

the equation is uniformly exponentially stable into two subdomains, in the first

of which we may have eventually monotone convergence, while in the second one

all solutions oscillate about the equilibrium solution.

4. In the autonomous cases considered in the present paper, implement a compre-

hensive bifurcation analysis, complementing, for example, [18].

5. Use optimal control theory to optimize the firm’s cumulative profit in the pres-

ence of bounded rationality at a given finite/infinite time horizon. This allows

us to introduce discount rate and a more sophisticated cost function, which may

include adjustment cost, inventory cost, production cost, and distribution cost.

It would certainly be interesting to see what kind of additional insights can be

obtained if we perform output stability analysis on such a different setup. An
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example of the dynamic optimization setup (without taking into account the

bounded rationality part) can be found in [28].
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