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1. INTRODUCTION

Applicable coincidence principles for set valued maps defined on subsets of Fréchet

spaces are presented in this paper. The idea is to use recent coincidence principles

in the literature [1, 3, 6, 7, 8] for maps defined on Banach spaces and view our

Fréchet space E as a projective limit of a sequence of Banach spaces {En}n∈N (here

N = {1, 2, . . .}); see [1, 2, 5] and the references therein. We use maps Fn and Φn

defined on subsets of En whose coincidence points satisfy some closure property which

guarantee that our original operators F and Φ have a coincidence point. We now recall

some coincidence results [3, 6, 7] established in the literature.

Let E be a normal topological space and U an open subset of E. We will consider

classes A and B of maps.

Definition 1.1. We say F ∈ A(U, E) (respectively F ∈ B(U, E)) if F : U → 2E and

F ∈ A(U, E) (respectively F ∈ B(U, E)); here 2E denotes the family of nonempty

subsets of E and U denotes the closure of U in E.

Fix a Φ ∈ B(U, E).

Definition 1.2. We say F ∈ A∂U(U, E) if F ∈ A(U, E) with F (x) ∩ Φ(x) = ∅ for

x ∈ ∂U ; here ∂U denotes the boundary of U in E.

Definition 1.3. Let F, G ∈ A∂U(U, E). We say F ∼= G in A∂U(U, E) if there exists

a map H : U × [0, 1] → 2E with H(·, η(·)) ∈ A(U, E) for any continuous function

η : U → [0, 1] with η(∂U) = 0, Ht(x) ∩ Φ(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1],

H1 = F , H0 = G and
{

x ∈ U : Φ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

is closed; here

Ht(x) = H(x, t).
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Definition 1.4. Let F ∈ A∂U(U, E). We say F : U → 2E is Φ-essential in A∂U(U, E)

if for every map J ∈ A∂U(U, E) with J |∂U = F |∂U there exists x ∈ U with J(x) ∩

Φ(x) 6= ∅.

In [6] we established the following result.

Theorem 1.5. Let E be a normal topological space, U an open subset of E, G, F ∈

A∂U(U, E) and F is Φ-essential in A∂U(U, E). Suppose F ∼= G in A∂U(U, E). Then

there exists a x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Remark 1.6. Suppose we change Definition 1.4 as follows: Let F ∈ A∂U(U, E). We

say F : U → 2E is Φ-essential in A∂U(U, E) if for every map J ∈ A∂U(U, E) with

J |∂U = F |∂U and J ∼= F in A∂U(U, E) there exists x ∈ U with J(x) ∩ Φ(x) 6= ∅ (in

this case we need to add an extra condition in Definition 1.3, namely: if µ : U → [0, 1]

is any continuous map with µ(∂U) = then
{

x ∈ U : Φ(x) ∩ H(x, tµ(x)) 6= ∅ for some t ∈ [0, 1]
}

is closed). Then once again Theorem 1.5 is true (see [3]).

In [6] we also discussed Φ-epi maps.

Definition 1.7. We say F ∈ BΦ(U, E) if F ∈ B(U, E) and F (x) ⊆ Φ(x) for x ∈ ∂U .

Definition 1.8. A map F ∈ A∂U(U, E) is Φ-epi in A∂U (U, E) if for every map

G ∈ BΦ(U, E) there exists x ∈ U with F (x) ∩ G(x) 6= ∅.

Theorem 1.9. Let E be a normal topological vector space and U an open subset of

E. Suppose F ∈ A∂U(U, E) is Φ-epi in A∂U(U, E), G ∈ B(U, E) and assume the

following conditions hold:

(1.1)

{

µ(·)G(·) + (1 − µ(·))Φ(·) ∈ B(U, E) for any

continuous map µ : U → [0, 1] with µ(∂U) = 0

and

(1.2)

{

{x ∈ U : F (x) ∩ [tG(x) + (1 − t)Φ(x)] 6= ∅ for some t ∈ [0, 1]}

is closed and does not intersect ∂U.

Then there exists x ∈ U with F (x) ∩ G(x) 6= ∅.

Other results can be found in [6]. In fact we could consider more general classes

of maps. Consider the classes A, B and D of maps.

Definition 1.10. We say F ∈ D(U, E) if F : U → 2E and F ∈ D(U, E).

Definition 1.11. We say F ∈ CB(U, E) if F : U → 2E and F ∈ B(U, E) and there

exists a selection Ψ ∈ D(U, E) of F .
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Fix a Φ ∈ CB(U, E).

Definition 1.12. We say F ∈ CBΦ(U, E) if F ∈ CB(U, E) and F (x) ⊆ Φ(x) for

x ∈ ∂U .

Definition 1.13. Let F ∈ A∂U(U, E). We say F is CΦ-epi in A∂U(U, E) if for any

map G ∈ CBΦ(U, E) and any selection Ψ ∈ D(U, E) of G there exists x ∈ U with

F (x) ∩ Ψ(x) 6= ∅.

In [7] we established the following result (for other results see also [7]).

Theorem 1.14. Let E be a normal topological vector space, U an open subset of E,

G ∈ CB(U, E), F ∈ A∂U(U, E) is CΦ-epi in A∂U (U, E) and suppose

(1.3)

{

µ(·)G(·) + (1 − µ(·))Φ(·) ∈ CB(U, E) for any

continuous map µ : U → [0, 1] with µ(∂U) = 0.

For any selection Λ ∈ D(U, E) of G and any selection φ ∈ D(U, E) of Φ assume

(1.4)

{

K = {x ∈ U : F (x) ∩ [tΛ(x) + (1 − t)φ(x)] 6= ∅ for some t ∈ [0, 1]}

is closed and K does not intersect ∂U

and

(1.5)

{

µ(·)Λ(·) + (1 − µ(·))φ(·) ∈ D(U, E) for any continuous

map µ : U → [0, 1] with µ(∂U) = 0 and µ(K) = 1.

Then there exists x ∈ U with F (x) ∩ Λ(x) 6= ∅ (so ∅ 6= F (x) ∩ Λ(x) ⊆ F (x) ∩ G(x)).

Remark 1.15. It is also possible to consider Φ-essential maps using the classes A,

B and D; we refer the reader to [8].

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally

convex spaces. For each α ∈ I, β ∈ I for which α ≤ β let πα,β : Eβ → Eα be a

continuous map. Then the set
{

x = (xα) ∈
∏

α∈I

Eα : xα = πα,β(xβ) ∀α, β ∈ I, α ≤ β

}

is a closed subset of
∏

α∈I Eα and is called the projective limit of {Eα}α∈I and is

denoted by lim←Eα (or lim←{Eα, πα,β} or the generalized intersection [4] ∩α∈IEα).

2. COINCIDENCE THEORY IN FRÉCHET SPACES

We now present an approach to establishing coincidence points based on projec-

tive limits (see [4]). Let E = (E, {| · |n}n∈N) be a Fréchet space with the topology

generated by a family of seminorms {| · |n : n ∈ N}; here N = {1, 2, . . .}. We assume

that the family of seminorms satisfies

(2.1) |x|1 ≤ |x|2 ≤ |x|3 ≤ · · · for every x ∈ E.
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A subset X of E is bounded if for every n ∈ N there exists rn > 0 such that |x|n ≤ rn

for all x ∈ X. For r > 0 and x ∈ E we denote B(x, r) = {y ∈ E : |x−y|n ≤ r∀n ∈ N}.

To E we associate a sequence of Banach spaces {(En, | · |n)} described as follows. For

every n ∈ N we consider the equivalence relation ∼n defined by

(2.2) x ∼n y iff |x − y|n = 0.

We denote by E
n = (E/∼n, | · |n) the quotient space, and by (En, | · |n) the completion

of E
n with respect to | · |n (the norm on E

n induced by | · |n and its extension to En are

still denoted by | · |n). This construction defines a continuous map µn : E → En. Now

since (2.1) is satisfied the seminorm | · |n induces a seminorm on Em for every m ≥ n

(again this seminorm is denoted by | · |n). Also (2.2) defines an equivalence relation

on Em from which we obtain a continuous map µn,m : Em → En since Em/∼n can be

regarded as a subset of En. Now µn,mµm,k = µn,k if n ≤ m ≤ k and µn = µn,mµm if

n ≤ m. We now assume the following condition holds:

(2.3)

{

for each n ∈ N, there exists a Banach space (En, | · |n)

and an isomorphism (between normed spaces) jn : En → En.

Remark 2.1. (i). For convenience the norm on En is denoted by | · |n.

(ii). In many applications En = E
n for each n ∈ N .

(iii). Note if x ∈ En (or E
n) then x ∈ E. However if x ∈ En then x is not necessaily

in E and in fact En is easier to use in applications (even though En is isomorphic

to En). For example if E = C[0,∞), then E
n consists of the class of functions in E

which coincide on the interval [0, n] and En = C[0, n].

Finally we assume

(2.4)

{

E1 ⊇ E2 ⊇ · · · and for each n ∈ N,

|jnµn,n+1j
−1
n+1x|n ≤ |x|n+1∀x ∈ En+1

(here we use the notation from [4] i.e. decreasing in the generalized sense). Let

lim←En (or ∩∞1 En where ∩∞1 is the generalized intersection [4]) denote the projective

limit of {En}n∈N (note πn,m = jnµn,mj−1
m : Em → En for m ≥ n) and note lim←En

∼=

E, so for convenience we write E = lim←En.

For each X ⊆ E and each n ∈ N we set Xn = jnµn(X), and we let Xn, int Xn

and ∂Xn denote respectively the closure, the interior and the boundary of Xn with

respect to | · |n in En. Also the pseudo-interior of X is defined by

pseudo-int(X) = {x ∈ X : jnµn(x) ∈ Xn\∂Xn for every n ∈ N}.

The set X is pseudo-open if X = pseudo-int(X). For r > 0 and x ∈ En we denote

Bn(x, r) = {y ∈ En : |x − y|n ≤ r}.
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Remark 2.2. If X is pseudo-open then for every n ∈ N we claim that Xn is an open

subset of En. Fix n ∈ N . We show Xn = int Xn. To see this note Xn ⊆ Xn\∂Xn

since if y ∈ Xn then there exists x ∈ X with y = jnµn(x) and this together with

X = pseudo-int X yields jnµn(x) ∈ Xn\∂Xn i.e. y ∈ Xn\∂Xn. In addition notice

Xn\∂Xn = (int Xn ∪ ∂Xn)\∂Xn = int Xn\∂Xn = int Xn

since int Xn ∩ ∂Xn = ∅. Consequently

Xn ⊆ Xn\∂Xn = int Xn, so Xn = int Xn.

Let M ⊆ E and consider the map F : M → 2E. Assume for each n ∈ N and

x ∈ M that jnµnF (x) is closed. Let n ∈ N and Mn = jnµn(M). Since we first

consider Volterra type operators we assume (note this assumption is only needed in

Theorem 2.3, Theorem 2.6 and Theorem 2.8)

(2.5) if x, y ∈ M with |x − y|n = 0 then Hn(Fx, Fy) = 0;

here Hn denotes the appropriate generalized Hausdorff distance (alternatively we

could assume for n ∈ N if x, y ∈ M with jnµnx = jnµny then jnµnFx = jnµnFy

and of course here we do not need to assume that jnµnF (x) is closed for each n ∈ N

and x ∈ M). Now (2.5) guarantees that we can define (a well defined) Fn on Mn as

follows:

For y ∈ Mn there exists a x ∈ M with y = jnµn(x) and we let

Fny = jnµnFx

(we could of course call it Fy since it is clear in the situation we use it); note Fn :

Mn → C(En) and note if there exists a z ∈ M with y = jnµn(z) then jnµnFx =

jnµnFz from (2.5) (here C(En) denotes the family of nonempty closed subsets of

En). In our next three results we assume Fn will be defined on Mn i.e. we assume

the Fn described above admits an extension (again we call it Fn) Fn : Mn → 2En (we

will assume certain properties on the extension).

Our first result is motivated by Volterra type operators.

Theorem 2.3. Let E and En be as described above, U a pseudo-open subset of E

and F : U → 2E, G : U → 2E and Φ : U → 2E. Also assume for each n ∈ N and

x ∈ U that jnµnF (x), jnµnG(x) and jnµnΦ(x) are closed and in addition for each

n ∈ N that Fn : Un → 2En, Gn : Un → 2En and Φn : Un → 2En are as described above.

Suppose the following conditions are satisfied:

(2.6)

{

for each n ∈ N, Fn, Gn ∈ A∂Un
(Un, En), Φn ∈ B(Un, En)

and Gn is Φn-essential in A∂Un
(Un, En)

(2.7) for each n ∈ N, Gn
∼= Fn in A∂Un

(Un, En)
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(2.8)











for each n ∈ {2, 3, . . .} if y ∈ Un is such

that Fn(y) ∩ Φn(y) 6= ∅ in En then

jkµk,nj
−1
n (y) ∈ Uk for k ∈ {1, . . . , n − 1}

and

(2.9)







































for every k ∈ N and any sequence {yn}n∈Nk−1
with yn ∈ Un

and Fk(jkµk,nj
−1
n yn) ∩ Φk(jkµk,nj

−1
n yn) 6= ∅ on Ek there

exists a subsequence Nk ⊆ {k + 1, k + 2, . . . }, Nk ⊆ Nk−1

for k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ Uk with

jkµk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk and

Fk(zk) ∩ Φk(zk) 6= ∅ on Ek.

Then there exists x ∈ E with F (x) ∩Φ(x) 6= ∅ in E; here x = (zk) where zk ∈ Uk for

each k ∈ N .

Proof. For each n ∈ N , from Theorem 1.5 there exists yn ∈ Un with Fn(yn)∩Φn(yn) 6=

∅ in En. Lets look at {yn}n∈N . Notice y1 ∈ U1 and j1µ1,kj
−1

k (yk) ∈ U1 for k ∈ N\{1}

from (2.8). Fix n ∈ N . There exists a x ∈ E with yn = jnµn(x) so

(2.10) jnµnF (x) ∩ jnµnΦ(x) 6= ∅ on En.

We now claim

(2.11) F1(j1µ1,nj
−1

n yn) ∩ Φ1(j1µ1,nj−1

n yn) 6= ∅ on E1.

To see this note on E1 that

F1(j1µ1,nj−1

n yn) ∩ Φ1(j1µ1,nj−1

n yn) = F1(j1µ1,nj
−1

n jnµn(x))

∩ Φ1(j1µ1,nj
−1
n jnµn(x))

= F1(j1µ1,nµn(x))

∩ Φ1(j1µ1,nµn(x))

= F1(j1µ1(x)) ∩ Φ1(j1µ1(x))

= j1µ1F (x) ∩ j1µ1Φ(x)

= j1µ1,nj−1
n jnµnF (x)

∩ j1µ1,nj
−1

n jnµnΦ(x)

6= ∅

from (2.10). We can do this for each n ∈ N so (2.11) holds for each n ∈ N . Now

(2.9) guarantees that there is a subsequence N1 ⊆ {2, 3, . . .} and a z1 ∈ U1 with

j1µ1,nj
−1
n (yn) → z1 in E1 as n → ∞ in N1 and F1(z1) ∩ Φ1(z1) 6= ∅ on E1. Also note

z1 ∈ U1 since F1 ∈ A∂U1
(U1, E1).
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Now j2µ2,nj
−1
n (yn) ∈ U2 for n ∈ N1 from (2.8). Note also (argument similar to

the above) for n ∈ N1 that

F2(j2µ2,nj
−1

n yn) ∩ Φ2(j2µ2,nj−1

n yn) 6= ∅ on E2.

Now (2.9) guarantees that there is a subsequence N2 ⊆ {3, 4, . . .} of N1 and a z2 ∈ U2

with j2µ2,nj
−1
n (yn) → z2 in E2 as n → ∞ in N2 and F2(z2) ∩ Φ2(z2) 6= ∅ on E2.

Also note z2 ∈ U2 since F2 ∈ A∂U2
(U2, E2). Notice from (2.4) and the unique-

ness of limits that j1µ1,2j
−1
2 z2 = z1 in E1 since N2 ⊆ N1 (note j1µ1,nj

−1
n (yn) =

j1µ1,2j
−1

2 j2µ2,nj
−1
n (yn) for n ∈ N2). Proceed inductively to obtain subsequences of

integers

N1 ⊇ N2 ⊇ · · · , Nk ⊆ {k + 1, k + 2, . . . }

and zk ∈ Uk with jkµk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk and Fk(zk) ∩Φk(zk) 6= ∅

on Ek. Also note zk ∈ Uk since Fk ∈ A∂Uk
(Uk, Ek), and jkµk,k+1j

−1

k+1
zk+1 = zk in Ek

for k ∈ {1, 2, . . .}.

Fix k ∈ N . Now Fk(zk) ∩ Φk(zk) 6= ∅ in Ek. Note as well that

zk = jkµk,k+1j
−1

k+1
zk+1 = jkµk,k+1j

−1

k+1
jk+1µk+1,k+2j

−1

k+2
zk+2

= jkµk,k+2j
−1

k+2
zk+2 = · · · = jkµk,mj−1

m zm = πk,mzm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈ lim←En = E

and also note zk ∈ Uk for each k ∈ N . Now for each k ∈ N , jkµk(y) = zk in Ek, and

Fk(zk)∩Φk(zk) 6= ∅ in Ek (i.e. jkµkF (y)∩jkµkΦ(y) 6= ∅ in Ek). Thus F (y)∩Φ(y) 6= ∅

in E.

Remark 2.4. We can remove the map G and assumptions (2.6) and (2.7) in Theo-

rem 2.3 if instead we assume:

(2.12)

{

for each n ∈ N, Fn ∈ A∂Un
(Un, En), Φn ∈ B(Un, En) and

there exists yn ∈ Un with Fn(yn) ∩ Φn(yn) 6= ∅ in En.

Remark 2.5. If we assume for each n ∈ N that Fn : Un → 2En and Φn : Un →

2En are upper semicontinuous with nonempty compact values then automatically

Fk(zk) ∩ Φk(zk) 6= ∅ on Ek is true in (2.9). To see this let k, Nk, {yn} and zk be as

in (2.9). Let wn ∈ Fk(jkµk,nj
−1
n yn) and wn ∈ Φk(jkµk,nj

−1
n yn) for n ∈ Nk. Now since

Fk is upper semicontinuous with nonempty compact values then [9] guarantees that

there exists w⋆
k ∈ Fk(zk) and a subsequence (wm) of (wn) with wm → w⋆

k. The upper

semicontinuity of the map Φk together with wm → w⋆
k and wm ∈ Φk(jkµk,nj

−1
n ym)

implies w⋆
k ∈ Φk(zk). Thus Fk(zk) ∩ Φk(zk) 6= ∅ on Ek.

Theorem 2.6. Let E and En be as described above, U a pseudo-open subset of E

and F : U → 2E, G : U → 2E and Φ : U → 2E. Also assume for each n ∈ N and

x ∈ U that jnµnF (x), jnµnG(x) and jnµnΦ(x) are closed and in addition for each
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n ∈ N that Fn : Un → 2En, Gn : Un → 2En and Φn : Un → 2En are as described above.

Suppose the following conditions are satisfied:

(2.13)

{

for each n ∈ N, Fn ∈ A∂Un
(Un, En), Gn ∈ B(Un, En),

Φn ∈ B(Un, En) and Fn is Φn-epi in A∂Un
(Un, En)

(2.14)

{

for each n ∈ N, µn(·)Gn(·) + (1 − µn(·))Φn(·) ∈ B(Un, En)

for any continuous map µn : Un → [0, 1] with µn(∂Un) = 0

(2.15)

{

{x ∈ Un : Fn(x) ∩ [tGn(x) + (1 − t)Φn(x)] 6= ∅ for some t ∈ [0, 1]}

is closed (in En) and does not intersect ∂Un (for each n ∈ N)

(2.16)











for each n ∈ {2, 3, . . .} if y ∈ Un is such

that Fn(y) ∩ Gn(y) 6= ∅ in En then

jkµk,nj
−1
n (y) ∈ Uk for k ∈ {1, . . . , n − 1}

and

(2.17)







































for every k ∈ N and any sequence {yn}n∈Nk−1
with yn ∈ Un

and Fk(jkµk,nj
−1
n yn) ∩ Gk(jkµk,nj

−1
n yn) 6= ∅ on Ek there

exists a subsequence Nk ⊆ {k + 1, k + 2, . . .}, Nk ⊆ Nk−1

for k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ Uk with

jkµk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk and

Fk(zk) ∩ Gk(zk) 6= ∅ on Ek.

Then there exists x ∈ E with F (x) ∩G(x) 6= ∅ in E; here x = (zk) where zk ∈ Uk for

each k ∈ N .

Proof. For each n ∈ N , from Theorem 1.9 there exists yn ∈ Un with Fn(yn)∩Gn(yn) 6=

∅ in En. The same argument as in Theorem 2.3 guarantees the result.

Remark 2.7. There is an analogue of Remark 2.5 for Theorem 2.6.

We can obtain a more general version of Theorem 2.6 if we use Theorem 1.14.

Theorem 2.8. Let E and En be as described above, U a pseudo-open subset of E

and F : U → 2E, G : U → 2E and Φ : U → 2E. Also assume for each n ∈ N and

x ∈ U that jnµnF (x), jnµnG(x) and jnµnΦ(x) are closed and in addition for each

n ∈ N that Fn : Un → 2En, Gn : Un → 2En and Φn : Un → 2En are as described above.

Suppose the following conditions are satisfied:

(2.18)

{

for each n ∈ N, Fn ∈ A∂Un
(Un, En), Gn ∈ CB(Un, En),

Φn ∈ CB(Un, En) and Fn is CΦn-epi in A∂Un
(Un, En)

(2.19)

{

for each n ∈ N, µn(·)Gn(·) + (1 − µn(·))Φn(·) ∈ CB(Un, En)

for any continuous map µn : Un → [0, 1] with µn(∂Un) = 0
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and

(2.20)







































for each n ∈ N and any selection Λn ∈ D(Un, En) of Gn

and any selection φn ∈ D(Un, En) of Φn assume

Kn = {x ∈ Un : Fn(x) ∩ [tΛn(x) + (1 − t)φn(x)] 6= ∅ for some t ∈ [0, 1]}

is closed (in En) and does not intersect ∂Un and

µn(·)Λn(·) + (1 − µn(·))φn(·) ∈ D(Un, En) for any continuous

map µn : Un → [0, 1] with µn(∂Un) = 0 and µn(Kn) = 1.

Also suppose (2.16) and (2.17) hold. Then there exists x ∈ E with F (x) ∩ G(x) 6= ∅

in E; here x = (zk) where zk ∈ Uk for each k ∈ N .

Proof. For each n ∈ N , from Theorem 1.14 there exists yn ∈ Un with Fn(yn) ∩

Gn(yn) 6= ∅ in En. The same argument as in Theorem 2.3 guarantees the result.

Remark 2.9. It is also possible to obtain a more general version of Theorem 2.3

using A, B and D maps via Remark 1.15.

Our next result is motivated by Urysohn type operators.

Theorem 2.10. Let E and En be as described above, U a pseudo-open subset of E

and F : Y → 2E, G : Y → 2E and Φ : Y → 2E with U ⊆ Y and Un ⊆ Yn for each

n ∈ N . Also for each n ∈ N assume there exist Fn : Un → 2En, Gn : Un → 2En

and Φn : Un → 2En and suppose (2.6), (2.7) and (2.8) hold. In addition assume the

following conditions hold:

(2.21)







































for any sequence {yn}n∈N with yn ∈ Un

and Fn(yn) ∩ Φn(yn) 6= ∅ in En for n ∈ N and

for every k ∈ N there exists a subsequence

Nk ⊆ {k + 1, k + 2, . . . }, Nk ⊆ Nk−1 for

k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ Uk with

jkµk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk

and

(2.22)































if there exists a w ∈ Y and a sequence {yn}n∈N

with yn ∈ Un and Fn(yn) ∩ Φn(yn) 6= ∅ in En such that

for every k ∈ N there exists a subsequence S ⊆

{k + 1, k + 2, . . . } of N with jkµk,nj
−1
n (yn) → jkµk(w)

in Ek as n → ∞ in S, then F (w) ∩ Φ(w) 6= ∅ in E.

Then there exists x ∈ E with F (x) ∩Φ(x) 6= ∅ in E; here x = (zk) where zk ∈ Uk for

each k ∈ N .

Proof. For each n ∈ N , from Theorem 1.5 there exists yn ∈ Un with Fn(yn) ∩

Φn(yn) 6= ∅ in En. Lets look at {yn}n∈N . Notice y1 ∈ U1 and j1µ1,kj
−1

k (yk) ∈ U1
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for k ∈ {2, 3, . . .} from (2.8). Now (2.21) with k = 1 guarantees that there exists

a subsequence N1 ⊆ {2, 3, . . .} and a z1 ∈ U1 with j1µ1,nj−1
n (yn) → z1 in E1 as

n → ∞ in N1. Look at {yn}n∈N1
. Now j2µ2,nj

−1
n (yn) ∈ U2 for k ∈ N1 from (2.8).

Now (2.21) with k = 2 guarantees that there exists a subsequence N2 ⊆ {3, 4, . . .}

of N1 and a z2 ∈ U2 with j2µ2,nj
−1
n (yn) → z2 in E2 as n → ∞ in N2. Note from

(2.4) and the uniqueness of limits that j1µ1,2j
−1
2 z2 = z1 in E1 since N2 ⊆ N1 (note

j1µ1,nj
−1
n (yn) = j1µ1,2j

−1

2 j2µ2,nj
−1
n (yn) for n ∈ N2). Proceed inductively to obtain

subsequences of integers

N1 ⊇ N2 ⊇ · · · , Nk ⊆ {k + 1, k + 2, . . . }

and zk ∈ Uk with jkµk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk. Note jkµk,k+1j

−1

k+1
zk+1 =

zk in Ek for k ∈ {1, 2, . . .}.

Fix k ∈ N . Note

zk = jkµk,k+1j
−1

k+1
zk+1 = jkµk,k+1j

−1

k+1
jk+1µk+1,k+2j

−1

k+2
zk+2

= jkµk,k+2j
−1

k+2
zk+2 = · · · = jkµk,mj−1

m zm = πk,mzm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈ lim←En = E

and also note zk ∈ Uk for each k ∈ N . Also since Fn(yn) ∩ Φn(yn) 6= ∅ in En for

n ∈ Nk and jkµk,nj
−1
n (yn) → zk = jkµk(y) in Ek as n → ∞ in Nk we have from (2.22)

that F (y) ∩ Φ(y) 6= ∅ in E.

Remark 2.11. If we replace (2.21) with






































for any sequence {yn}n∈N with yn ∈ Un

and Fn(yn) ∩ Φn(yn) 6= ∅ in En for n ∈ N and

for every k ∈ N there exists a subsequence

Nk ⊆ {k + 1, k + 2, . . . }, Nk ⊆ Nk−1 for

k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ Uk with

jkµk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk,

then Y is the statement of Theorem 2.10 can be replaced by U .

Remark 2.12. There is an analogue of Theorem 2.10 if we replace (2.6), (2.7) and

(2.8) with (2.13), (2.14), (2.15) and (2.16). Also Φn in (2.21) and (2.22) is replaced

by Gn and we conclude that there exists x ∈ E with F (x) ∩ G(x) 6= ∅ in E; here

x = (zk) where zk ∈ Uk for each k ∈ N .
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