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1. INTRODUCTION

Applicable coincidence principles for set valued maps defined on subsets of Fréchet
spaces are presented in this paper. The idea is to use recent coincidence principles
in the literature [1, 3, 6, 7, 8] for maps defined on Banach spaces and view our
Fréchet space E as a projective limit of a sequence of Banach spaces {E, },en (here
N = {1,2,...}); see [1, 2, 5] and the references therein. We use maps F, and &,
defined on subsets of £, whose coincidence points satisfy some closure property which
guarantee that our original operators F' and ® have a coincidence point. We now recall

some coincidence results [3, 6, 7] established in the literature.

Let E be a normal topological space and U an open subset of . We will consider

classes A and B of maps.

Definition 1.1. We say F' € A(U, E) (respectively F € B(U,E)) if F : U — 2% and
F € A(U,E) (respectively F' € B(U, E)); here 2F denotes the family of nonempty
subsets of F and U denotes the closure of U in E.

Fix a ® € B(U, E).
Definition 1.2. We say F € Ayy(U,E) if F € A(U, E) with F(z) N ®(x) = 0 for
x € OU; here OU denotes the boundary of U in E.

Definition 1.3. Let F,G € Ayy(U,E). We say F = G in Agy (U, E) if there exists
amap H : U x [0,1] — 2% with H(-,n(:)) € A(U, E) for any continuous function
n: U — [0,1] with n(oU) = 0, Hy(x) N ®(z) = @ for any x € U and t € [0,1],
Hy=F,Hy=G and {z € U : ®(z) N H(x,t) # 0 for some ¢ € [0,1]} is closed; here
Hy(x) = H(z,t).
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Definition 1.4. Let F' € Ay (U, E). Wesay F : U — 2 is ®-essential in Agy (U, E)
if for every map J € Ay (U, E) with J|py = Flay there exists x € U with J(x) N
O (x) # 0.

In [6] we established the following result.

Theorem 1.5. Let E be a normal topological space, U an open subset of E, G, F €
Apu(U, E) and F is ®-essential in Agy(U, E). Suppose F = G in Agy(U, E). Then
there ezists a x € U with ®(x) N F(x) # 0.

Remark 1.6. Suppose we change Definition 1.4 as follows: Let F' € Ay (U, E). We
say F': U — 2F is ®-essential in Agy (U, E) if for every map J € Apy (U, E) with
Jlov = Flovy and J = F in Ayy (U, E) there exists z € U with J(z) N ®(x) # 0 (in
this case we need to add an extra condition in Definition 1.3, namely: if u: U — [0, 1]

is any continuous map with p(0U) = then
{zeU:®x)nH(z,tu(x)) # 0 for some t € [0,1]}

is closed). Then once again Theorem 1.5 is true (see [3]).

In [6] we also discussed ®-epi maps.
Definition 1.7. We say F' € Bs(U,E) if F € B(U, E) and F(x) C ®(z) for xz € 9U.

Definition 1.8. A map F € Ay (U, E) is ®-epi in Apy (U, E) if for every map
G € Bg(U, E) there exists x € U with F(x) N G(z) # 0.

Theorem 1.9. Let E be a normal topological vector space and U an open subset of
E. Suppose F' € Agy(U, E) is ®-epi in Agy(U, E), G € B(U,E) and assume the
following conditions hold:

{ u()G() + (1= pu(-))@(-) € B(U, E) for any

1.1 gl
(1.1) continuous map p: U — [0, 1] with p(0U) =0

and

1.2
(12) 15 closed and does not intersect OU.

{ {zx eTU: F(z)N[tG(z) + (1 — )®(x)] # O for some t € [0,1]}

Then there exists x € U with F(z) N G(x) # 0.

Other results can be found in [6]. In fact we could consider more general classes

of maps. Consider the classes A, B and D of maps.
Definition 1.10. We say F € D(U,E) if F: U — 2¥ and F € D(U, E).

Definition 1.11. We say F € CB(U,E) if F : U — 2F and F € B(U, E) and there
exists a selection ¥ € D(U, E) of F.
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Fix a ® € CB(U, E).

Definition 1.12. We say F € CB(U,E) if F € CB(U, E) and F(z) C ®(z) for
x € oU.

Definition 1.13. Let F' € Ay (U, E). We say F is C®-epi in Agy(U, E) if for any
map G € CBg(U, E) and any selection ¥ € D(U, E) of G there exists x € U with
F(x)Nn¥(z) # 0.

In [7] we established the following result (for other results see also [7]).

Theorem 1.14. Let E be a normal topological vector space, U an open subset of E,
G € CB(U,E), F € Agy(U,E) is C®-epi in Aoy (U, E) and suppose

(1.3) p()G() + (1= pu()2(-) € CB(U, E) for any
' continuous map ju: U — [0, 1] with u(0U) = 0.
For any selection A € D(U, E) of G and any selection ¢ € D(U, E) of ® assume
(1.4) K={zeU:F(z)Nn[tA(z) + (1 —t)p(x)] # O for some t € [0,1]}
' is closed and K does not intersect OU
and

(1,5) { M(>A() + (1 - N())¢() € D(U, E) for any continuous

map p: U — [0,1] with p(0U) = 0 and p(K) = 1.
Then there exists x € U with F(x) N A(x) £ 0 (so ) # F(z) N A(z) C F(z) NG(x)).

Remark 1.15. It is also possible to consider ®-essential maps using the classes A,
B and D; we refer the reader to [8].

Now let I be a directed set with order < and let {E,}.er be a family of locally
convex spaces. For each a € I, € [ for which a < 3 let m,3 : £ — E, be a

continuous map. Then the set

{x: (za) € HEa:xa:ﬂa,ﬁ(xﬁ) Va,ﬂe],agﬁ}

a€cl
is a closed subset of ],

denoted by lim._ E,, (or lim. {E,, 7,3} or the generalized intersection [4] NaerEs ).

E, and is called the projective limit of {E,}.e; and is

2. COINCIDENCE THEORY IN FRECHET SPACES

We now present an approach to establishing coincidence points based on projec-
tive limits (see [4]). Let E = (E,{| - |n}nen) be a Fréchet space with the topology
generated by a family of seminorms {|- |, : n € N}; here N ={1,2,...}. We assume

that the family of seminorms satisfies

(2.1) lz|y < |z|e < z|3 < --- for every x € F.



386 D. O’REGAN

A subset X of E is bounded if for every n € N there exists r, > 0 such that |z|, < r,
forallz € X. Forr > 0 and x € F we denote B(z,r) ={y € E: |[x—y|, <rVn € N}.
To E we associate a sequence of Banach spaces {(E,, |- |,)} described as follows. For

every n € N we consider the equivalence relation ~,, defined by
(2.2) x ~p yiff |z —yl, = 0.

We denote by E" = (E/~,,|-|,) the quotient space, and by (E,, |- |,) the completion
of E™ with respect to |-|, (the norm on E™ induced by |-|,, and its extension to E,, are
still denoted by |-|,). This construction defines a continuous map u, : £ — E,. Now
since (2.1) is satisfied the seminorm | - |,, induces a seminorm on E,, for every m > n
(again this seminorm is denoted by | - |,). Also (2.2) defines an equivalence relation
on E,, from which we obtain a continuous map pi, m : E,, — E,, since E,,/~,, can be
regarded as a subset of E,. Now i, mitmi = fnk if 1 <m < k and p, = fin mpim if

n < m. We now assume the following condition holds:

(2.3) { for each n € N, there exists a Banach space (E,, |- |,)

and an isomorphism (between normed spaces) j, : E, — E,.

Remark 2.1. (i). For convenience the norm on E, is denoted by | - |,.

(ii). In many applications E,, = E" for each n € N.

(iii). Note if z € E,, (or E") then z € E. However if x € E,, then z is not necessaily
in F and in fact E, is easier to use in applications (even though F, is isomorphic

to E,). For example if E' = C[0,00), then E™ consists of the class of functions in £

which coincide on the interval [0,n| and E,, = C[0,n].
Finally we assume

(2.4) { Ey D Ey D --- and for each n € N,

‘jnﬂn,n—i-ljr;l-lx‘n < |£L’|n+1V$ € by

(here we use the notation from [4] i.e. decreasing in the generalized sense). Let
lim_ E, (or N{°E,, where N{° is the generalized intersection [4]) denote the projective

limit of {E, }nen (note mpm = Jnttnmim: : Em — En for m > n) and note lim._ E,, &

E, so for convenience we write £ = lim._ F,,.

For each X C F and each n € N we set X,, = jnun(X), and we let X,,, int X,
and 0X,, denote respectively the closure, the interior and the boundary of X, with
respect to | - |, in E,. Also the pseudo-interior of X is defined by

pseudo-int (X) = {z € X : jou,(x) € X,\0X,, for every n € N}.

The set X is pseudo-open if X = pseudo-int(X). For r > 0 and = € E, we denote
Bu(x,r)={y € E, : |z —yl|, <r}.
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Remark 2.2. If X is pseudo-open then for every n € N we claim that X,, is an open
subset of E,. Fix n € N. We show X,, = int X,,. To see this note X,, C X,,\0X,,
since if y € X, then there exists x € X with y = j,u,(x) and this together with
X = pseudo-int X yields j,pun(z) € X,,\0X, ie. y € X,\0X,,. In addition notice

X, \0X, = (int X,, U0X,)\0X, = int X,\0X, = int X,
since int X,, N 9X,, = (. Consequently

X, C X,\0X,, =int X,,, so X, = int X,,.

Let M C E and consider the map F : M — 2¥. Assume for each n € N and
x € M that j,u,F(x) is closed. Let n € N and M, = j,u,(M). Since we first
consider Volterra type operators we assume (note this assumption is only needed in
Theorem 2.3, Theorem 2.6 and Theorem 2.8)

(2.5) if .y € M with |z — y|, = 0 then H,(Fz, Fy) = 0;

here H, denotes the appropriate generalized Hausdorff distance (alternatively we
could assume for n € N if z,y € M with j,pu,x = jupny then j,u,Fr = j,pu.Fy
and of course here we do not need to assume that j,u,, F'(x) is closed for each n € N
and z € M). Now (2.5) guarantees that we can define (a well defined) F,, on M, as

follows:

For y € M, there exists a x € M with y = j,u,(x) and we let
Foy = jnpinFx

(we could of course call it F'y since it is clear in the situation we use it); note F, :
M, — C(E,) and note if there exists a z € M with y = j,u,(2) then ju,Fx =
JntnF'z from (2.5) (here C(E,) denotes the family of nonempty closed subsets of
E,). In our next three results we assume F,, will be defined on M, i.e. we assume
the F,, described above admits an extension (again we call it F},) F}, : M,, — 2 (we

will assume certain properties on the extension).

Our first result is motivated by Volterra type operators.

Theorem 2.3. Let E and E, be as described above, U a pseudo-open subset of E
and F: U — 28, G:U —2F and ® : U — 2F. Also assume for each n € N and
x € U that jupnF(x), japnG(x) and j,u,®(x) are closed and in addition for each
n €N that F, : U, — 2, G,, : U,, — 28 and ®,, : U, — 27" are as described above.

Suppose the following conditions are satisfied:

(2.6) for eachn € N, F,,G, € Ay, (U,, E,),®, € B(U,, E,)
' and G,, is ®,-essential in Agy, (U,, E,)

(2.7) for eachn € N,G, = F, in Agy, (U,, E,)



388 D. O’REGAN

for eachn € {2,3,...} if y € U, is such
(2.8) that F,(y) N ®,(y) # 0 in E, then
jk,ukmjgl(y) e U, fork e {1, e, — 1}

and
( for every k € N and any sequence {yn }nen,_, with y, € U,
and Fk(jk,uk’nj;lyn) N (I)k(jk/ik,n,]rjlyn> # @ on Fy, there
(2.9) exists a subsequence Ny, C{k+ 1,k+2,...}, Ny € Np_1

forke{1,2,...},Ng = N, and a z, € Uy, with
Jetkndn  (Yn) — 21 in E), as n — oo in Ny and
L Fk(zk) N (IDk(zk) 7’é 0 on Ej.

Then there exists x € E with F(x) N ®(x) # 0 in E; here x = (zx) where z, € Uy for
each k € N.

Proof. For each n € N, from Theorem 1.5 there exists y,, € U, with F,(y,) P, (yn) #
0 in E,. Lets look at {y, }nen. Notice y; € Uy and jip 4jr (yx) € Uy for k € N\{1}
from (2.8). Fix n € N. There exists a © € E with y,, = jupun(z) so

(2.10) JnpnF(2) N Jppin®(z) # 0 on E,.
We now claim

(2.11) Fy(ipandn Yn) O @1 (1pi1nly  Yn) # 0 on By

To see this note on F; that

Fy(Gpndy ' yn) N ®1Grpnndy 'yn) = Fi(Gipiandy ' jakin(2))

D)

01 (jl,ul,njgljnlun(a?))

Fi(J1pnpin ()

D

D1 (J1p11,nbn ()

= Fi(jipa(2)) N @1 (jrpa(2))

= Ji F'(z) N j1pn @(z)

= Jittindn e ()

NVitiandy ntin® (@)

#0
from (2.10). We can do this for each n € N so (2.11) holds for each n € N. Now
(2.9) guarantees that there is a subsequence N; C {2,3,...} and a z; € U; with

Jib1ndy (Yn) — 21 in By as n — oo in Ny and Fi(z1) N ®1(21) # 0 on E;. Also note
z1 € Uy since F) € A8U1(717 El)
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Now japianin (yn) € Us for n € Ny from (2.8). Note also (argument similar to
the above) for n € N; that

F2(j2/i2,n];1yn) N (I)2(j2,u2,njrzlyn) # 0 on Es.

Now (2.9) guarantees that there is a subsequence Ny C {3,4,...} of Ny and a 2, € U,
with jopionjn(yn) — 22 in Fy as n — oo in Ny and Fy(z9) N Po(22) # 0 on Fs.
Also note z, € U, since Fy € Apy, (U, Ey). Notice from (2.4) and the unique-
ness of limits that j1,U172j2_12’2 = 2z in Ej since No C Ny (note jipnd,  (yn) =
Jit.2ds Lgatiznis  (ys) for n € Ny). Proceed inductively to obtain subsequences of
integers

NiDNoD oo, NyClh+1,k+2,...}

and zj, € Uy with jrpienin ' (Yn) — 21 in By as n — oo in Ny, and Fy(z;,) N @y (z1) £ 0
on Ej. Also note z, € Uy since Fy, € Agy, (Uy, Ex), and jkuk,kﬂjkjlzkﬂ = z;, in Ej,
for k€ {1,2,...}.

Fix k € N. Now Fy(zx) N Pr(z) # 0 in Ej. Note as well that

. -1 . -1 - |
Rk = JkMk k+1)g417k+1 = JeMk k410 1T k+1E+1,k4+2] 2 RkA4-2
. 1 . -1
= JkMk k2] proRk+2 = 0 = JkMkmIm #m = Tkm<m

for every m > k. We can do this for each k € N. As aresult y = (z;) € lim_ E, = F
and also note z; € Uy for each k € N. Now for each k € N, jrur(y) = 2z in Ej, and
Fre(ze) NP (2x) # O in By (i.e. jrueF (y) Njrpr®(y) # 0 in Ey). Thus F(y)N®(y) # 0
in E. O

Remark 2.4. We can remove the map G and assumptions (2.6) and (2.7) in Theo-

rem 2.3 if instead we assume:

(2.12) for each n € N, F,, € Agy, (Un, E,), ®, € B(U,, E,) and
' there exists y,, € U, with F,,(y,) N ®,(y,) # 0 in E,,.

Remark 2.5. If we assume for each n € N that F, : U, — 2 and ®,, : U, —
2En are upper semicontinuous with nonempty compact values then automatically
Fi(zr) N ®x(zr) # 0 on Ej is true in (2.9). To see this let k, Ni, {y,} and z; be as
in (2.9). Let wy, € Fy(jrpikndy yn) and w, € P (jrpikn,  yn) for n € Ni. Now since
F}, is upper semicontinuous with nonempty compact values then [9] guarantees that
there exists wj € Fy(z) and a subsequence (w,,) of (w,) with w,, — w}. The upper
semicontinuity of the map @, together with w,, — w} and w,, € Pr(jrrniy Ym)
implies w} € ®x(z1). Thus Fi(zx) N Pr(2k) # 0 on Ey.

Theorem 2.6. Let E and E, be as described above, U a pseudo-open subset of E
and F: U — 28, G :U — 2% and ® : U — 2F. Also assume for each n € N and
x € U that jopnF (), japnG(z) and jopu,®(x) are closed and in addition for each
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n €N that F, : U, — 2, G,, : U,, — 2F and ®,, : U, — 27" are as described above.

Suppose the following conditions are satisfied:

(2.13) for eachn € N, F,, € Apy, (Un, E,),Gyn € B(U,, E,),
' ®, € B(U,, E,) and F, is ®,-epi in Asy, (Un, E,)
o for cach n € N, (Y0u() + (1~ ()0, () € BT, )
' for any continuous map i, : U, — [0, 1] with p,(dU,) = 0
(2.15) {x €U, : Fy(z) N [tGu(z) + (1 — )@, (x)] # O for some t € [0,1]}
' is closed (in E,) and does not intersect OU,, (for each n € N)

for eachn € {2,3,...} if y € U, is such
(2.16) that F,,(y) N Gn(y) # 0 in E, then
jk,ukmjgl(y) e U, fork e {1, o, n— 1}

and
( for every k € N and any sequence {yn }nen, , with y, € U,
and Fy,(Jitiendn "Yn) N Gr(ktiendn 'yn) # 0 on By there
(2.17) exists a subsequence N, C{k+1,k+2,...}, N, C Ny

for ke {1,2,...}, No= N, and a z, € U}, with
Jetkndn  (Yn) — 21 in E), as n — oo in Ny and

L Fk(zk) N Gk(zk) 7A @ on Ek

Then there exists x € E with F(x) N G(x) # 0 in E; here x = (zx) where 2z, € Uy, for
each k € N.

Proof. For each n € N, from Theorem 1.9 there exists y,, € U, with F,(y,) NG, (yn) #

() in E,. The same argument as in Theorem 2.3 guarantees the result. O

Remark 2.7. There is an analogue of Remark 2.5 for Theorem 2.6.

We can obtain a more general version of Theorem 2.6 if we use Theorem 1.14.

Theorem 2.8. Let E and FE, be as described above, U a pseudo-open subset of E
and F: U —2F, G :U — 28 and ® : U — 2. Also assume for each n € N and
x € U that jupnF(x), japnG(x) and j,u,®(x) are closed and in addition for each
n €N that F, : U, — 2, G,, : U, — 2F and ®,, : U, — 27" are as described above.

Suppose the following conditions are satisfied:

(2.18) for eachn € N, F, € Agy, (Un, E,),Gn € CB(U,, E,),
' ®,, € CB(U,, E,) and F, is C®,-epi in Asy, (U,, E,)
(2.19) for each n € N, 1, ()G (-) + (1 = pn(-))®@u(-) € CB(U,, E )
' for any continuous map p, : U, — [0,1] with p,(0U,) =
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and
( for each n € N and any selection A,, € D(U,, E,) of G,
and any selection ¢, € D(U,, E,,) of ®,, assume
(2.20) ¢ K,={z €U, : F,(x)N[tA,(z) + (1 = t)pn(z)] # O for some t € [0,1]}

is closed (in E, ) and does not intersect OU,, and

(N () + (1 = pn(:))On(-) € D(U,, E,) for any continuous

[ map p, : U, — [0,1] with p,(0U,) =0 and p,(K,) = 1.

Also suppose (2.16) and (2.17) hold. Then there exists x € E with F(x) N G(x) # )
in E; here x = (z) where z, € Uy for each k € N.

Proof. For each n € N, from Theorem 1.14 there exists y, € U, with F,(y,) N

Gn(y,) # 0 in E,. The same argument as in Theorem 2.3 guarantees the result. [

Remark 2.9. It is also possible to obtain a more general version of Theorem 2.3

using A, B and D maps via Remark 1.15.

Our next result is motivated by Urysohn type operators.

Theorem 2.10. Let E and E, be as described above, U a pseudo-open subset of E
and F:Y =28 G:Y =28 and ® : Y — 28 with U CY and U, C Y, for each
n € N. Also for each n € N assume there exist F,, : U, — 28 G, : U, — 2F»
and ®,, : U, — 2P and suppose (2.6), (2.7) and (2.8) hold. In addition assume the

following conditions hold:

( for any sequence {y, Ynen with y, € U,
and F,(y,) N @, (y,) # 0 in E, forn € N and

for every k € N there exists a subsequence

(2.21)
ng{k—Fl,k—i‘Q,},ngNk_l fOT
ke{l,2,...},Ng= N, and a z, € Uy with
L jkuk,njgl(yn) — 2z, in By, as n — oo in N,
and

if there exists a w € Y and a sequence {y, nen

with y, € U, and F,(y,) 0 D, (yn) # 0 in E, such that
(2.22) for every k € N there exists a subsequence S C
{k+1,k+2,...} of N with jeptgndn (Yn) — Jeir(w)
in Ex asn — oo in S, then F(w) N ®(w) # 0 in E.

\

Then there exists x € E with F(z) N ®(z) # 0 in E; here x = () where 2, € Uy, for
each k € N.

Proof. For each n € N, from Theorem 1.5 there exists y, € U, with F,(y,) N
®,(y,) # 0 in E,. Lets look at {y,}nen. Notice y; € Uy and jypy gy () € Uy
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for k € {2,3,...} from (2.8). Now (2.21) with & = 1 guarantees that there exists
a subsequence Ny C {2,3,...} and a 2, € Uy with jiu1,J, (yn) — 21 in E; as
n — oo in Nyi. Look at {y,}tnen,- Now Jopio i (yn) € Uy for k € Ny from (2.8).
Now (2.21) with k£ = 2 guarantees that there exists a subsequence Ny C {3,4,...}
of Ny and a 2y € Uy with jopanjn ' (yn) — 22 in Ey as n — oo in Ny. Note from
(2.4) and the uniqueness of limits that jj;j;5 22 = 21 in Ej since No C N; (note
i ndi  (Yn) = Gip1205 “daptangs H(yn) for n € Ny). Proceed inductively to obtain

subsequences of integers
Ny DNy Do N CHk+1,k+2,...}

and z, € U, with Jetkndn -(Yn) — 2z in By as n — oo in Nj. Note jkuk7k+1jk__&12k+1 =
zr in Ey, for k € {1,2,}

Fix k € N. Note

. -1 . —1 - 1
2k = Jklk k1) g417k+1 = JeMk k1) g1 Je+ 1 E+1,k4+2] 12 RkA4-2
. -1 . -1
= JkMk k+2)g427k+2 = * = JkMkmIm #m = TkmZm

for every m > k. We can do this for each k € N. As aresult y = (z;) € lim_ E,, = F
and also note z, € Uy for each k € N. Also since Fy,(y,) N ®,(y,) # 0 in E, for
n € Ny and Jrpendn  (yn) — 2k = Jrpr(y) in Ey as n — oo in Ny we have from (2.22)
that F(y) N ®(y) # 0 in E. O

Remark 2.11. If we replace (2.21) with

( for any sequence {y, }nen with g, € U,

and Fy,(y,) NP, (y,) # 0 in E, for n € N and
for every k € N there exists a subsequence
Ne C{k+1,k+2,...}, Ny C Nj_; for
ke{l,2,...},Ng =N, and a z;, € Uy with

L Jkttkendn (yn) — 2 in B}, as n — oo in Ny,

then Y is the statement of Theorem 2.10 can be replaced by U.

Remark 2.12. There is an analogue of Theorem 2.10 if we replace (2.6), (2.7) and
(2.8) with (2.13), (2.14), (2.15) and (2.16). Also ®,, in (2.21) and (2.22) is replaced
by G, and we conclude that there exists © € E with F(x) N G(x) # 0 in E; here
r = (2) where z, € Uy for each k € N.
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