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1. INTRODUCTION

This paper presents Krasnoselskii compression type theorems for general classes of

maps. The approach is elementary and relies on the fact that in an infinite dimensional

normed linear space there exists a retraction from the unit ball to the unit sphere

(note also in a normed linear space there exists a retraction from the unit ball (in a

cone) to the unit sphere (in a cone)). Under appropriate conditions a Krasnoselskii

type theorem guarantees the existence of a fixed point in a particular annulus for

continuous, compact single valued maps. In this paper we extend this further by

establishing the existence of coincidence points in an annulus for maps (which may

be multivalued) in a general class.

2. MAIN RESULTS

Let E be a topological space and U an open subset of E.

We consider classes A, B and D of maps.

Definition 2.1. We say F ∈ D(U, E) (respectively F ∈ B(U, E)) if F : U → 2E and

F ∈ D(U, E) (respectively F ∈ B(U, E)); here 2E denotes the family of nonempty

subsets of E and U denotes the closure of U in E.

Definition 2.2. We say F ∈ A(U, E) if F : U → 2E, F ∈ A(U, E) and there exists

a selection Ψ ∈ D(U, E) of F .

Remark 2.3. Note Ψ is a selection of F (in Definition 2.2) if Ψ(x) ⊆ F (x) for x ∈ U .
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Definition 2.4. We say F ∈ M(U, E) if F : U → 2E and F ∈ A(U, E).

Definition 2.5. We say F ∈ D(E, E) (respectively F ∈ M(E, E)) if F : E → 2E

and F ∈ D(E, E) (respectively F ∈ A(E, E)).

In this section we fix a Φ ∈ B(U, E).

Our first main result is a Krasnoselskii type theorem for A maps. Let E = (E, ‖·‖)

be an infinite dimensional normed linear space. For ρ > 0, r > 0, R > r let

Bρ = {x ∈ E : ‖x‖ < ρ}, Bρ = {x ∈ E : ‖x‖ ≤ ρ}, Sρ = {x ∈ E : ‖x‖ = ρ},

EBρ = {x ∈ E : ‖x‖ ≥ ρ} and Br,R = {x ∈ E : r ≤ ‖x‖ ≤ R}.

Theorem 2.6. Let E = (E, ‖·‖) be an infinite dimensional normed linear space, and

r, R constants with 0 < r < R. Let F ∈ A(BR, E), Φ ∈ B(BR, E) fixed, and assume

the following conditions hold:

(2.1)

{

for any selection Λ ∈ D(BR, E) of F and any

continuous map η : E → BR the map Λη ∈ D(E, E)

(2.2) for any map T ∈ D(E, E) there exists x ∈ E with Φ(x) ∩ T (x) 6= ∅

(2.3)

{

for any selection Ψ ∈ D(BR, E) of F we have

Φ(x) ∩ Ψ(y) = ∅ for x ∈ Br and y ∈ Sr

and

(2.4)

{

for any selection Ψ ∈ D(BR, E) of F we have

Φ(λy) ∩ Ψ(y) = ∅ for y ∈ SR and λ > 1.

Then there exists x ∈ Br,R with Φ(x) ∩ F (x) 6= ∅.

Proof. Let r0 : Br → Sr be a continuous retraction (see [2]) and let

g(x) =



















r0(x), x ∈ Br

x, x ∈ Br,R

R x
‖x‖

, x ∈ EBR.

Note g : E → BR is a continuous map. Now since F ∈ A(BR, E) there exists

a selection Ψ ∈ D(BR, E) of F and from (2.1), (2.2) there exists an x ∈ E with

Φ(x) ∩ Ψ(g(x)) 6= ∅. If x ∈ Br then Φ(x) ∩ Ψ(r0(x)) 6= ∅ and this contradicts (2.3)

(note r0(x) ∈ Sr since x ∈ Br). If ‖x‖ > R then Φ(x) ∩Ψ
(

R x
‖x‖

)

6= ∅ so if y = R x
‖x‖

(note ‖y‖ = R) then Φ
(

‖x‖
R

y
)

∩ Ψ(y) 6= ∅, and this contradicts (2.4). Thus x ∈ Br,R

and Φ(x) ∩ Ψ(x) 6= ∅. Now since Ψ(x) ⊆ F (x) we have Φ(x) ∩ F (x) 6= ∅.
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Remark 2.7. In the proof of Theorem 2.6 notice (2.3) can be replaced by

(2.5) Φ(x) ∩ F (y) = ∅ for x ∈ Br and y ∈ Sr,

and (2.4) can be replaced by

(2.6) Φ(λy) ∩ F (y) = ∅ for y ∈ SR and λ > 1.

Of course one could replace (2.1), (2.2), (2.3) and (2.4) in Theorem 2.6 with more

abstract formulations. For example we could replace (2.1) with

for any selection Λ ∈ D(BR, E) of F the map Λg ∈ D(E, E),

and we could replace (2.2) with
{

for any selection Λ ∈ D(BR, E) of F there

exists x ∈ E with Φ(x) ∩ Λ(g(x)) 6= ∅,

and we could replace (2.3) with
{

for any selection Ψ ∈ D(BR, E) of F we have

Φ(x) ∩ Ψ(r0(x)) = ∅ for x ∈ Br.

Remark 2.8. Let E = (E, ‖ · ‖) be a normed linear space and C ⊆ E a cone (i.e. C

is a closed, convex, invariant under multiplication by non-negative real numbers, and

C ∩ (−C) = {0}). For ρ > 0 let

Bρ = {x ∈ C : ‖x‖ < ρ}, Bρ = {x ∈ C : ‖x‖ ≤ ρ},

Sρ = {x ∈ C : ‖x‖ = ρ}, and EBρ = {x ∈ C : ‖x‖ ≥ ρ}.

Let r, R be constants with 0 < r < R. Let F ∈ A(BR, C), Φ ∈ B(BR, C) fixed, and

assume the following conditions hold:
{

for any selection Λ ∈ D(BR, C) of F and any

continuous map η : C → BR the map Λη ∈ D(C, C)

for any map T ∈ D(C, C) there exists x ∈ C with Φ(x) ∩ T (x) 6= ∅
{

for any selection Ψ ∈ D(BR, C) of F we have

Φ(x) ∩ Ψ(y) = ∅ for x ∈ Br and y ∈ Sr

and
{

for any selection Ψ ∈ D(BR, C) of F we have

Φ(λy) ∩ Ψ(y) = ∅ for y ∈ SR and λ > 1.

Then there exists x ∈ Br,R = {x ∈ C : r ≤ ‖x‖ ≤ R} with Φ(x) ∩ F (x) 6= ∅. The

proof is similar to that in Theorem 2.6 once one notes that there exists a continuous

retraction r1 : Br → Sr (see [7]).

One can easily generalize Theorem 2.6 to open convex sets.
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Theorem 2.9. Let E = (E, ‖·‖) be an infinite dimensional normed linear space, and

U1 and U2 are open convex subsets of E with 0 ∈ U1 and U1 ⊂ U2. Let F ∈ A(U2, E),

Φ ∈ B(U2, E) fixed, and assume (2.2) and the following conditions hold:

(2.7)

{

for any selection Λ ∈ D(U2, E) of F and any

continuous map η : E → U2 the map Λη ∈ D(E, E)

(2.8)

{

for any selection Ψ ∈ D(U2, E) of F we have

Φ(x) ∩ Ψ(y) = ∅ for x ∈ U1 and y ∈ ∂U1

and

(2.9)

{

for any selection Ψ ∈ D(U2, E) of F we have

Φ(λy) ∩ Ψ(y) = ∅ for y ∈ ∂U2 and λ > 1.

Then there exists x ∈ U2\U1 with Φ(x) ∩ F (x) 6= ∅.

Proof. It is easy to see [1] that there exists a continuous retraction r2 : U1 → ∂U1.

Let

g(x) =



















r2(x), x ∈ U1

x, x ∈ U2\U1

x
µ(x)

, x ∈ E\U2

where µ is the Minkowski functional on U2. Note g : E → U2 is a continuous

map. Now since F ∈ A(U2, E) there exists a selection Ψ ∈ D(U2, E) of F and

(2.2), (2.7) guarantees that there exists an x ∈ E with Φ(x) ∩ Ψ(g(x)) 6= ∅. If

x ∈ U1 then Φ(x) ∩ Ψ(r2(x)) 6= ∅ and this contradicts (2.8) (note r2(x) ∈ ∂U1). If

x ∈ E\U2 then Φ(x) ∩ Ψ
(

x
µ(x)

)

6= ∅ so if y = x
µ(x)

(note µ(y) = 1 so y ∈ ∂U2) then

Φ (µ(x)y) ∩ Ψ(y) 6= ∅, and this contradicts (2.9) (note x ∈ E\U2 so µ(x) > 1). Thus

x ∈ U2\U1 and Φ(x) ∩ Ψ(x) 6= ∅, so Φ(x) ∩ F (x) 6= ∅.

Remark 2.10. In the proof of Theorem 2.9 notice (2.8) can be replaced by

(2.10) Φ(x) ∩ F (y) = ∅ for x ∈ U1 and y ∈ ∂U1,

and (2.9) can be replaced by

(2.11) Φ(λy) ∩ F (y) = ∅ for y ∈ ∂U2 and λ > 1.

Theorem 2.11. Let E = (E, ‖ · ‖) be an infinite dimensional normed linear space,

and r, R constants with 0 < r < R. Let F ∈ M(BR, E), Φ ∈ B(BR, E) fixed, and

assume the following conditions hold:

(2.12) for any continuous map η : E → BR the map Fη ∈ M(E, E)

and

(2.13) for any map T ∈ M(E, E) there exists x ∈ E with Φ(x) ∩ T (x) 6= ∅.
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Finally assume (2.5) and (2.6) hold. Then there exists x ∈ Br,R with Φ(x)∩F (x) 6= ∅.

Proof. Let r0 and g be as in Theorem 2.6. Now F ∈ M(BR, E) so (2.12), (2.13)

guarantee that there exists x ∈ E with Φ(x) ∩ F (g(x)) 6= ∅. As in Theorem 2.6 we

obtain x ∈ Br,R.

Remark 2.12. There is an obvious analogue of Remark 2.8 and Theorem 2.9 with A

replaced by M . Also in Theorem 2.11 one could replace (2.12) with the assumption

that Fg ∈ M(E, E).

We now present Corollaries of Theorem 2.6 and Theorem 2.11 when Φ = I

(the identity map) (there are also analogues of Remark 2.8 and Theorem 2.9 with A

replaced by M).

Corollary 2.13. Let E = (E, ‖ · ‖) be an infinite dimensional normed linear space,

and r, R constants with 0 < r < R. Let F ∈ A(BR, E) and suppose (2.1) holds. In

addition assume the following conditions hold:

(2.14) for any map T ∈ D(E, E) there exists x ∈ E with x ∈ T (x)

(2.15)

{

for any selection Ψ ∈ D(BR, E) of F we have

x /∈ Ψ(y) for x ∈ Br and y ∈ Sr

and

(2.16)

{

for any selection Ψ ∈ D(BR, E) of F we have

y /∈ µΨ(y) for y ∈ SR and µ ∈ (0, 1).

Then there exists x ∈ Br,R with x ∈ F (x).

Remark 2.14. Note (2.15) can be replaced by

(2.17) x /∈ F (y) for x ∈ Br and y ∈ Sr,

and (2.16) can be replaced by

(2.18) y /∈ µF (y) for y ∈ SR and µ ∈ (0, 1).

Proof. The result follows from Theorem 2.6 with Φ = I. We note that if for any

selection Ψ ∈ D(BR, E) of F and y ∈ SR, λ > 1 we had λy ∈ Ψ(y) then y ∈ µΨ(y)

with µ = 1
λ
∈ (0, 1), and this contradicts (2.16).

Corollary 2.15. Let E = (E, ‖ · ‖) be an infinite dimensional normed linear space,

and r, R constants with 0 < r < R. Let F ∈ M(BR, E) and suppose (2.12), (2.17)

and (2.18) hold. In addition assume

(2.19) for any map T ∈ M(E, E) there exists x ∈ E with x ∈ T (x).

Then there exists x ∈ Br,R with x ∈ F (x).
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Now we consider a special case of Corollary 2.13. We first recall the PK maps

from the literature. Let Z and W be subsets of Hausdorff topological vector spaces

Y1 and Y2 and F a multifunction. We say F ∈ PK(Z, W ) if W is convex and there

exists a map S : Z → W with Z = ∪{int S−1(w) : w ∈ W}, co(S(x)) ⊆ F (x) for

x ∈ Z and S(x) 6= ∅ for each x ∈ Z; here S−1(w) = {z : w ∈ S(z)}.

Corollary 2.16. Let E = (E, ‖ · ‖) be an infinite dimensional normed linear space,

and r, R constants with 0 < r < R. Let F ∈ PK(BR, E) be a compact map and

assume (2.17) and (2.18) hold. Then there exists x ∈ Br,R with x ∈ F (x).

Proof. In this case we let D = D and A = A. We say Q ∈ D(BR, E) if Q : BR → E

is a continuous compact map. We say G ∈ A(BR, E) if G ∈ PK(BR, E) and G is

a compact map (the existence of a continuous selection Ψ of G is guaranteed from

[Theorem 1.3, 6] and note Ψ is compact since Ψ is a selection of G and G is compact).

Note (2.1) and (2.14) (Schauder’s fixed point theorem) hold. The result follows from

Corollary 2.13 (and Remark 2.14).

Next we consider a special case of Corollary 2.15. We first recall the Uκ
c maps

from the literature. Suppose X and Y are Hausdorff topological spaces. Given a class

X of maps, X(X, Y ) denotes the set of maps F : X → 2Y belonging to X, and Xc

the set of finite compositions of maps in X. We let

F(X) = {Z : Fix F 6= ∅ for all F ∈ X(Z, Z)} ,

where Fix F denotes the set of fixed points of F .

The class U of maps is defined by the following properties:

(i). U contains the class C of single valued continuous functions;

(ii). each F ∈ Uc is upper semicontinuous and compact valued; and

(iii). Bn ∈ F(Uc) for all n ∈ {1, 2, . . .}; here Bn = {x ∈ Rn : ‖x‖ ≤ 1}.

We say F ∈ Uκ
c (X, Y ) if for any compact subset K of X there is a G ∈ Uc(K, Y ) with

G(x) ⊆ F (x) for each x ∈ K. Examples of Uκ
c (X, Y ) maps are the Kakutani maps,

the acyclic maps, the O’Neill maps, the maps admissible in the sense of Gorniewicz

and the permissible maps; see [4]. Recall Uk
c is closed under compositions [8].

Corollary 2.17. Let E = (E, ‖ · ‖) be an infinite dimensional normed linear space,

and r, R constants with 0 < r < R. Let F ∈ Uκ
c (BR, E) be a compact map and

assume (2.17) and (2.18) hold. Then there exists x ∈ Br,R with x ∈ F (x).

Proof. In this case we let M = A and say F ∈ M(BR, E) if F ∈ Uκ
c (BR, E) is a

compact map. Note (2.12) is immediate since Uk
c is closed under compositions and

Fη : E → 2E is compact (here η : E → BR is a continuous map). Finally we note

that (2.19) holds (see [8, 9]). The result follows from Corollary 2.15.
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We now show that the ideas in this section can be applied to other natural

situations. Let E be a topological vector space, Y a topological vector space, and U

an open subset of E. Also let L : dom L ⊆ E → Y be a linear single valued map; here

dom L is a vector subspace of E. Finally T : E → Y will be a linear single valued

map with L + T : dom L → Y a bijection; for convenience we say T ∈ HL(E, Y ).

Definition 2.18. We say F ∈ D(U, Y ; L, T ) (respectively F ∈ B(U, Y ; L, T )) if F :

U → 2Y and (L+T )−1(F +T ) ∈ D(U, E) (respectively (L+T )−1(F +T ) ∈ B(U, E)).

Definition 2.19. We say F ∈ A(U, Y ; L, T ) if F : U → 2Y and (L + T )−1(F + T ) ∈

A(U, E) and there exists a selection Ψ ∈ D(U, Y ; L, T ) of F .

Definition 2.20. We say F ∈ D(E, Y ; L, T ) if F : E → 2Y and (L + T )−1(F + T ) ∈

D(E, E).

Remark 2.21. One could also define the class M(U, Y ; L, T ) (i.e. F ∈ M(U, Y ; L, T )

if F : U → 2Y and (L + T )−1(F + T ) ∈ A(U, E)) and M(E, Y ; L, T ).

In our next result we fix a Φ ∈ B(U, Y ; L, T ).

We obtain an analogue of Theorem 2.6 in this setting (it is also easy to obtain

an analogue of Theorem 2.11 using the class M in this setting).

Theorem 2.22. Let E = (E, ‖ · ‖) be an infinite dimensional normed linear space,

Y a topological vector space, L : dom L ⊆ E → Y a linear single valued map,

T ∈ HL(E, Y ), and r, R constants with 0 < r < R. Let F ∈ A(BR, Y ; L, T ),

Φ ∈ B(BR, Y ; L, T ) fixed, and assume the following conditions hold:

(2.20)

{

for any selection Λ ∈ D(BR, Y ; L, T ) of F and any

continuous map η : E → BR the map Λη ∈ D(E, Y ; L, T )

(2.21)

{

for any map Ω ∈ D(E, Y ; L, T ) there exists x ∈ E with

(L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ω + T )(x) 6= ∅

(2.22)











for any selection Ψ ∈ D(BR, Y ; L, T ) of F we have

(L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ψ(y) + T (x)) = ∅

for x ∈ Br and y ∈ Sr

and

(2.23)











for any selection Ψ ∈ D(BR, Y ; L, T ) of F we have

(L + T )−1(Φ + T )(λy) ∩ (L + T )−1(Ψ(y) + T (λy)) = ∅

for y ∈ SR and λ > 1.

Then there exists x ∈ Br,R with (L + T )−1(Φ + T )(x) ∩ (L + T )−1(F + T )(x) 6= ∅.
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Proof. Let r0 and g be as in Theorem 2.6. Now since F ∈ A(BR, Y ; L, T ) there exists

a selection Ψ ∈ D(BR, Y ; L, T ) of F and from (2.20), (2.21) there exists x ∈ E with

(L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ψ ◦ g + T )(x) 6= ∅.

If x ∈ Br then

(L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ψ ◦ r0 + T )(x) 6= ∅,

and this contradicts (2.22). If ‖x‖ > R then

(L + T )−1(Φ + T )(x) ∩ (L + T )−1

(

Ψ

(

R

‖x‖
x

)

+ T (x)

)

6= ∅,

so if y = R x
‖x‖

then

(L + T )−1(Φ + T )

(

‖x‖

R
y

)

∩ (L + T )−1

(

Ψ(y) + T

(

‖x‖

R
y)

))

6= ∅,

and this contradicts (2.23). Thus x ∈ Br,R with (L+T )−1(Φ+T )(x)∩ (L+T )−1(Ψ+

T )(x) 6= ∅.

Remark 2.23. There are analogues of Remark 2.7, Remark 2.8, Theorem 2.9 and

Theorem 2.11 in this setting (we leave the obvious statements to the reader).

Finally in this paper we discuss briefly a different strategy in Theorem 2.11 (a

similar strategy can be applied in Theorem 2.6 and Theorem 2.22). Let E = (E, ‖ · ‖)

be an infinite dimensional normed linear space, and r, R constants with 0 < r < R.

Let F ∈ M(BR, E) and Φ ∈ B(BR, E) fixed. Assume

(2.24) F (Sr) ⊆ Br and F (SR) ⊆ EBR.

Let r0 and g be as in Theorem 2.6. Note if x ∈ Br then F (g(x)) = F (r0(x)) ⊆

F (Sr) ⊆ Br and for x ∈ EBR then F (g(x)) = F
(

R
‖x‖

x
)

⊆ F (SR) ⊆ EBR. Thus

Fg : Br → 2Br and Fg : EBR → 2EBR. Let Ω = Br ∪ EBR and note Fg : Ω → 2Ω.

Next assume

(2.25)

{

Fg ∈ M(Br, Br), F g ∈ M(EBR, EBR), F g ∈ M(Ω, Ω)

and there exists x ∈ Br,R with Φ(x) ∩ Fg(x) 6= ∅.

If (2.25) is true then automatically Φ(x) ∩ F (x) 6= ∅ for the x in (2.25).

Note Ω is an ANR and Ω is the disjoint union of two contractible components

Br and EBR. Condition (2.25) arises naturally in applications. For example if Φ = I

(the identity map) and one has an index theory for the M maps (with appropriate

properties) then one can deduce immediately the existence of a fixed point of Fg

in Br,R (of course one needs the usual Bowszyc theorem [5] for the class M). If M

denotes the maps admissible in the sense of Gorniewicz [4] or the permissible maps

[3, 4] then one can deduce immediately (see [5] or [section 57, 4]) that there exists
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x ∈ Br,R with x ∈ Fg(x) i.e. (2.25) holds (thus the strategy to establish (2.25) here is

to obtain an analogue of a theorem of C. Bowszyc for the class of maps considered).

REFERENCES

[1] R. P. Agarwal and D. O’Regan, A note on the topological transversality theorem for acyclic

maps, Applied Math. Letters 18 (2005), 17–22.

[2] Y. Benyamini and Y. Sternfeld, Spheres in infinite dimensional normed spaces and Lipschitz

contractibility, Proc. Amer. Math. Soc. 88 (1983), 439–445.

[3] Z. Dzedzej, Fixed point index for a class of nonacyclic multivalued maps, Dissert. Math. 253

(1985), 1–55.

[4] L. Gorniewicz, Topological fixed point theory of multivalued mappings, Kluwer Acad. Pub-

lishers, Dordrecht, 1999.

[5] M. Izydorek and Z. Kucharski, The Krasnoselskii theorem for permissible multivalued maps,

Bull. Polish Acad. Sci. Math. 37 (1989), 145–149.

[6] D. O’Regan, Fixed point theorems for the Bκ–admissible maps of Park, Applicable Analysis

79 (2001), 173–185.

[7] D. O’Regan, A Krasnoselskii cone compressiom theorem for Uκ

c
maps, Math. Proc. Royal Irish

Acad. 103A (2003), 55–99.

[8] D. O’Regan, Fixed point theory on extension-type spaces and essential maps on topological

spaces, Fixed Point Theory Appl. 2004 (2004), 13–20.

[9] S. Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean

Math. Soc. 35 (1998), 803–829.


