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ABSTRACT. We address risk minimizing option pricing in a regime switching double Heston

model with three jumps when the underlying asset price follows a general state-dependent regime-

switching jump-diffusion process. Using minimal martingale measure, an optimal hedging strategy

is obtained by the local risk minimization.
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1. Introduction

The Markov regime switching markets contain dramatic change in macroeconomic

by incorporating a continuous-time Markov chain. In fact the rare events information

reflect on stock price in those frame work. As known the regime switching markets are

incomplete. So the pricing of regime switching risk gets an important issue. Option

pricing is one of the most important concept in modern finance. Black and Scholes

developed the methodology of option valuation. A major challenge in the Black-

Scholes model is that interest rate and the volatility rate are assumed to be constants

which are not consistent with reality [3].

To get more realistic models, many extensions to the Black-Scholes model have

been presented. Among those the regime-switching models provide more realistic

description for asset price dynamics. In these models the parameters are functions of

a finite-state Markov chain [5, 6, 9, 13].

Because of several previous studies and the display of the dates, we added two

stochastic volatility with three jumps. An excellent contribution of the proposed

model is developing the model of stochastic volatility. In fact, in this study, we model

the stock price process by the Markov-modulated jump diffusion model with double

stochastic volatility with three jumps. So our model better corresponds with reality

than the another one.

A unique equivalent martingale measure by minimizing the quadratic utility of

the losses is identified by Föllmer and Sondermann. Then the minimal martingale
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measure and risk-minimizing hedging were further developed by several researchers

[1, 4, 8, 10, 11, 12, 15, 16, 17].

As it’s well known, equivalent martingale measure is not unique in the incomplete

market [14]. In this paper, Firstly, we investigate the minimal martingale measure.

Then we address risk minimizing option pricing under our proposed model.

The rest of the paper is organized as follows. In Section 2, we present the notation,

assumptions, and model for the underlying market. In Section 3, we investigate an

explicit representation of the density process of the minimal martingale measure. In

Section 4, a PDE of the option pricing is driven. The locally risk-minimizing strategy

is studied in Section 5.

2. Preliminaries

Let (Ω,F , {Ft},P) be the complete probability space. Suppose the states of an

economy are modeled by a finite state continuous-time Markov chain {Xt : t ≥ 0}.
Without loss of generality, we can identify the state space of {Xt : t ≥ 0} with a

finite set of unit vectors χ := {e1, e2, . . . , eN}, where ei = (0, . . . , 1, . . . , 0) ∈ R
N ,

whose transition probabilities satisfy

P (Xt+δt = j | Xt = i) = qijδt + o(δt), i 6= j;

P (Xt+δt = i | Xt = i) = 1 + qiiδt + o(δt),

when δ → 0, where qij ≥ 0, i 6= j; qii = −
∑N

j=1 qij . Let Q = [qij ] denote the

generating Q-matrix of the Markov chain. The financial market itself is consisting

of a riskless asset (Bt)t∈[0,T ] and a risky asset (St)t∈[0,T ] which St is square integrable

and S0 > 0 is a constant, dynamics of (Bt)t∈[0,T ] and (St)t∈[0,T ] are as follows:

dBt = rtBtdt, B0 = 1.

dSt = µtSt
−

dt +

√
V

(1)
t St

−

dW 1
t +

√
V

(2)
t St

−

dW 3
t

+

∫ ∞

−1

St
−

y(N(dy, dt) − v(dy)dt),

dV
(1)
t = k1(θ1 − V

(1)
t )dt + σv1

√
V

(1)
t dW 2

t + Z1dNt,

dV
(2)
t = k2(θ2 − V

(2)
t )dt + σv2

√
V

(2)
t dW 4

t + Z2dNt,

where W 1
t , W 2

t , W 3
t , and W 4

t are standard Brownian motions, that

dW 1
t · dW 2

t = ρ1dt,

dW 3
t · dW 4

t = ρ2dt.

θ1 and θ2 are the long-run average of V
(1)
t and V

(2)
t , respertively, k1 and k2 are the

rates of mean reversion, σv1 and σv2 are the variance of V
(1)
t and V

(2)
t , respectively, Z1
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and Z2 two exponential stochastic processes with parameters µv1 and µv2 , ρi ∈ (−1, 1)

for i = 1, 2 are given constants, and process N(dy, dt) is a Poisson random measure

with P-compensator v(dy)dt = λf(y)dydt. Let Ñ(dy, dt) = N(dy, dt) − v(dy)dt be

the compensated Poisson random measure. Moreover, we assume that
∫∞

−1
y2v(dy) <

∞. In this setting, the locally risk-free floating interest rate rt and the appreciation

rate µt of the stock price evolve over time depending on the state of the market Xt,

therefore rt = r(Xt) and µt = µ(Xt) be two functions of Xt; that is, rt = r(i) = ri

and µt = µ(i) = µi when the state of Xt is i, i ∈ χ.

Following the description of [2], for i, j ∈ χ, i 6= j, let ∆ij be consecutive left

closed right open intervals of the real line, each having length qij . By embedding χ

in R
N by identifying i with ei ∈ R

N define a function h : χ × R → R
N by

h(i, z) =





j − i z ∈ ∆ij

0 o.w.

Then

Xt = X0 +

∫ t

0

∫

R

h(Xu
−

, z)P (dz, du)

where the integration is over the interval (0, T ] and P (dz, dt) is a Poisson random mea-

sure with intensity m(dz)dt; where m(dz) is the Lebesgue measure on R. P (dz, dt),

N(dy, dt), and Xt are mutually independent, and independent of W 1
t , W 2

t , W 3
t , and

W 4
t .

The semimartingale S̃t = e−
R

t

0 rsdsSt has the following decomposition

S̃t = S̃0 + Mt + At

with Mt a square-integrable martingale for which M0 = 0, and with At is a predictable

process of finite variation, where

Mt =

∫ t

0

S̃u
−

√
V

(1)
u dW 1

u +

∫ t

0

S̃u
−

√
V

(2)
u dW 3

u +

∫ t

0

∫ ∞

−1

S̃u
−

yÑ(dy, du),(2.1)

and

At =

∫ t

0

S̃u
−

(µu − ru)du.(2.2)

3. The Minimal Martingale Measure

Noting that our proposed market is incomplete. More than, one martingale

measure exists. In this section, we investigate the minimal martingale measure for

presented market.

Definition 3.1. A martingale measure P̂ ≈ P will be called minimal if

P̂ = P on F0.
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and if any square-integrable P -martingale which is orthogonal to M under P remains

a martingale under P̂ .

From [7], for some predictable process α = (αt)0≤t≤T we have

At =

∫ t

0

αud〈M〉u.

Theorem 3.2. P̂ exists if and only if

Gt = exp

(
−
∫ t

0

αsdMs −
1

2

∫ t

0

αs
2d〈M〉u

)
0 ≤ t ≤ T

is a square-integrable martingale under P ; in that case, P̂ is given by dP̂
dP

= GT .

Let {FS}t∈[0,T ], {FV (1)}t∈[0,T ], {FV (2)}t∈[0,T ] and {FX}t∈[0,T ] denote the P -augmen-

tation of the natural filtrations generated by S, V (1) , V (2) and X, respectively. For

each t ∈ [0, T ], set Gt = Ft
X ∨ (Ft

V (1) ∨ Ft
V (2)

) and At = Ft
S ∨ GT . Given GT , to

avoid the possibility that the minimal martingale measure becomes a signed measure,

we need the following condition.

(3.1)
(µt − rt)y

V
(1)
t + V

(2)
t +

∫∞

−1
y2v(dy)

< 1, a.s. for t ∈ [0, T ] and y > −1.

From theorem (3.2) we have

Zt = exp

{∫ t

0

−(µs − rs)

√
V

(1)
s

V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy)

dW 1
s

−
∫ t

0

(µs − rs)

√
V

(2)
s

V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy)

dW 3
s

− 1

2

∫ t

0

(µs − rs)
2V

(1)
s

(V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy))2

ds

− 1

2

∫ t

0

(µs − rs)
2V

(2)
s

(V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy))2

ds

−
∫ t

0

∫ ∞

−1

(µs − rs)y

V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy)

N(dy, ds)

+

∫ t

0

∫ ∞

−1

(µs − rs)y

V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy)

v(dy)ds

− 1

2

∫ t

0

∫ ∞

−1

(µs − rs)
2y2

(V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy))2

v(dy)ds

}
.

Hence

(3.2) E exp

{∫ t

0

(µs − rs)
2

V
(1)
s + V

(2)
s

ds +

∫ t

0

∫ ∞

−1

(µs − rs)
2y2

(V
(1)
s + V

(2)
s )2

ds

}
< ∞,
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for all t ∈ [0, T ]. Now we will show that Zt is a square-integrable martingale under P

and the measure P̂ defined by dP̂
dp
|At

= Zt satisfies the definition of minimal martingale

measure(see Definition 3.1).

Assume that there exists a minimal martingale measure, and let us denote it by

P ∗. Define Zt by

Zt = E

[
dP ∗

dP

∣∣∣∣At

]
.

Under P ∗, the Doob-Meyer decomposition of M is given by

Mt = S̃t − S̃0 + (−At).

But the theory of the Girsanov transformation shows that the predictable process of

bounded variation can also be computed in terms of P ∗

−At =

∫ t

0

1

Zs
−

d 〈M, Z〉s .

By Kunita-Watanabe decomposition, we have

Zt = 1 +

∫ t

0

βsdMs + Lt,

where L is a square-integrable martingale under P orthogonal to M , and β =

(βt)0≤t≤T is a predictable process with

E

[∫ T

0

β2
sd 〈M〉

]
< ∞.

Since P ∗ is a minimal martingale measure, we can easily obtain that L is P ∗ martin-

gale and that LZ is a P martingale. Then we have

〈L, L〉 = 〈L, Z〉 = 0,

hence L ≡ 0, Zt = 1 +
∫ t

0
βsdMs, and dAt = − βt

Zt
−

d 〈M, M〉, so

Zt = 1 −
∫ t

0

Zs
−

dAs

d 〈M〉s
dMs.

Let dYs = − dAs

d〈M〉
s

dMs. From (2.1) and (2.2), we get

Yt =

−(µt − rt)

(√
V

(1)
t dW 1

t +

√
V

(2)
t dW 3

t +
∫∞

−1
yÑ(dy, dt)

)

V
(1)
t + V

(2)
t +

∫∞

−1
y2v(dy)

,

(3.3) Zt = 1 +

∫ t

0

Zs
−

dYs.

Noting that there is a unique solution of (3.3), the minimal martingale measure is

unique if it exists. We can get

Zt = eY c

t
− 1

2
〈Y c,Y c〉

∏

u≤t

(1 + ∆Yu),
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from the formula of the Doleans-Dade exponential. Under conditions (3.1) and (3.2),

Z is a square-integrable P martingale.

First, we can see that P̂ is an equivalent martingale measure to P . Next, let L′

be a P martingale and let it be orthogonal to M ; that is, 〈L′, M〉 = 0.

〈L′, Z〉t =

∫ t

0

ZS
−

d 〈L′, Y 〉s = −
∫ t

0

Zs
−

dAs

d 〈M〉s
d 〈L′, M〉s = 0.

By the Girsanov-Meyer theorem, L′ is a P̂ -martingale. Hence, P̂ is the unique minimal

martingale measure of S.

From the Girsanov theorem we have

Ŵ 1
t = W 1

t +

∫ t

0

(µs − rs)

√
V

(1)
s

V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy)

ds,

Ŵ 2
t = W 2

t + ρ1

∫ t

0

(µs − rs)

√
V

(1)
s

V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy)

ds,

Ŵ 3
t = W 3

t +

∫ t

0

(µs − rs)

√
V

(2)
s

V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy)

ds,

Ŵ 4
t = W 4

t + ρ2

∫ t

0

(µs − rs)

√
V

(2)
s

V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy)

ds,

are standard P̂ -Brownian motions.

Remark 3.3. Given GT , under P̂ , the compensator of N(dy, dt) is

ṽ(dy)du =

(
1 − (µu − ru)y

V
(1)
u + V

(2)
u +

∫∞

−1
y2v(dy)

)
v(dy)du.

4. Option pricing

In this section, we derive the options pricing by Local risk minimization method.

The price at time t of the European call option with strike price K and time to

expiration T is given by

V (t, T ) = EP̂ [e−
R

T

t
rsds(ST − K)+ | At],

We set V
(1)
t = αt and V

(2)
t = α′

t, and let

C(t, St, αt, α
′
t, Xt) = e−

R

t

0
rsdsV (t, St, αt, α

′
t, Xt).

In the sequel, we apply Itô’s formula for C(t, St, αt, α
′
t, Xt) and find its dynamics.

dC(t, St, αt, α
′
t, Xt) = −rte

−
R

t

0
rsdsV (t, St

−

, αt
−

, α′
t
−

, Xt
−

)dt + e−
R

t

0
rsds ∂V

∂t
dt
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+ e−
R

t

0 rsds ∂V

∂S
dSc + e−

R

t

0 rsds ∂V

∂α
dαc + e−

R

t

0 rsds ∂V

∂α′
dα′c

+
1

2
e−

R

t

0
rsds ∂

2V

∂S2
d 〈Sc, Sc〉 +

1

2
e−

R

t

0
rsds ∂2V

∂α2
d 〈αc, αc〉

+
1

2
e−

R

t

0 rsds ∂2V

∂α′2
d 〈α′c, α′c〉 + e−

R

t

0 rsds ∂2V

∂S∂α
d 〈Sc, αc〉

+ e−
R

t

0 rsds ∂2V

∂S∂α′
d 〈Sc, α′c〉 + e−

R

t

0 rsds ∂2V

∂α∂α′
d 〈αc, α′c〉

+ e−
R

t

0
rsds
∑

u≤t

(V (u, Su, αu, α
′
u, Xu) − V (u, Su

−

, αu
−

, α′
u
−

, Xu
−

))

= −rte
−

R

t

0 rsdsV (t, St
−

, αt
−

, α′
t
−

, Xt
−

)dt + e−
R

t

0 rsds ∂V

∂t
dt

+ e−
R

t

0
rsds ∂V

∂S

[
µtSt

−

dt +
√

αtSt
−

dŴ 1
t +

√
α′

tSt
−

dŴ 3
t −

∫ ∞

−1

St
−

yv(dy)dt

]

+ e−
R

t

0
rsds ∂V

∂α

[
k1(θ1 − αt)dt + σv1

√
αtdŴ 2

t

]

+ e−
R

t

0 rsds ∂V

∂α′

[
k2(θ2 − α′

t)dt + σv2

√
α′

tdŴ 4
t

]

+
1

2
e−

R

t

0 rsds ∂
2V

∂S2
S2

t (αt + α′
t) dt +

1

2
e−

R

t

0 rsds ∂
2V

∂α2
t

σ2
v1

αtdt

+
1

2
e−

R

t

0 rsds ∂2V

∂α′
t
2σ2

v2
α′

tdt + e−
R

t

0 rsds ∂2V

∂S∂αt

ρ1σv1αtStdt

+ e−
R

t

0 rsds ∂2V

∂S∂α′
t

ρ2σv2α
′
tStdt − e−

R

t

0 rsds ∂V

∂S
St

−

(µt − rt)αt

αt + α′
t +
∫∞

−1
y2v(dy)

dt

− e−
R

t

0 rsds ∂V

∂S
St

−

(µt − rt)α
′
t

αt + α′
t +
∫∞

−1
y2v(dy)

dt

− e−
R

t

0 rsds ∂V

∂αt

ρ1σv1

(µt − rt)αt

αt + α′
t +
∫∞

−1
y2v(dy)

dt

− e−
R

t

0 rsds ∂V

∂α′
t

ρ2σv2

(µt − rt)α
′
t

αt + α′
t +
∫∞

−1
y2v(dy)

dt

+

∫ ∞

−1

e−
R

t

0
rsds(V (t, St

−

(1 + y), αt, α
′
t, Xt

−

)

− V (t, St
−

, αt
−

, α′
t
−

, Xt
−

))ṽ(dy)dt

+

∫ ∞

−1

e−
R

t

0
rsds(V (t, St

−

(1 + y), αt, α
′
t, Xt

−

)

− V (t, St
−

, αt
−

, α′
t
−

, Xt
−

))N̂(dy, dt)

+

∫

R

e−
R

t

0
rsds(V (t, St

−

, αt, α
′
t, Xt

−

+ h(Xt
−

, z))

− V (t, St
−

, αt
−

, α′
t
−

, Xt
−

))P̃ (dz, dt)
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+

∫

R

e−
R

t

0 rsds
∑

j

V (t, St
−

, αt
−

, α′
t
−

, j)qXu
−

,jdt,

where P̃ (dz, dt) = P (dy, dt)−m(dz)dt is the compensated Poisson random measure

and N̂(dy, dt) = N(dy, dt)− ṽ(dy)dt. Since C(t, St, αt, α
′
t, Xt) is a P̂ martingale, the

drift term must be identical to zero. Hence, we have

−rtV (t, St
−

, αt
−

, α′
t
−

, Xt
−

) +
∂V

∂t
+

∂V

∂S
St

−

(
rt −

(µt − rt)αt

αt + α′
t +
∫∞

−1
y2v(dy)

− (µt − rt)α
′
t

αt + α′
t +
∫∞

−1
y2v(dy)

−
∫ ∞

−1

yv(dy)

)

+
1

2

∂2V

∂S2
S2

t
−

(αt + α′
t) +

∂V

∂αt

(
k1(θ1 − αt) −

(µt − rt)αt

αt + α′
t +
∫∞

−1
y2v(dy)

ρ1σv1

)

+
1

2

∂2V

∂α2
t

σ2
v1

αt +
∂V

∂α′
t

(
k2(θ2 − α′

t) −
(µt − rt)α

′
t

αt + α′
t +
∫∞

−1
y2v(dy)

ρ2σv2

)

+
1

2

∂2V

∂α′
t
2σ2

v2
α′

t +
∂2V

∂S∂αt

ρ1σv1αtSt
−

+
∂2V

∂S∂α′
t

ρ2σv2α
′
tSt

−

+

∫ ∞

−1

(v(t, St
−

(1 + y), αt, α
′
t, Xt

−

) − v(t, St
−

, αt
−

, α′
t
−

, Xt
−

))ṽ(dy)

+
N∑

j=1

V (t, St
−

, αt, α
′
t, j)qXt

−

,j = 0,

with the terminal condition V (T, ST , σT , σ′
T , XT ) = (ST − K)+.

5. Locally risk-minimizing strategies

In this section we obtain an optimal hedging strategy in terms of local risk min-

imization.

Let H be the contingent claim with H ∈ L2(Ω,A, P ) at time T and ϕ = (θ, α)

be a portfolio, where θ = (θt)0≤t≤T is the amount of risky asset and α = (αt)0≤t≤T

the amount of risk less asset. The discounted portfolio valuation at time t is

Vt = θtS̃t + αt.

Suppose αt adapted process with E(α2) < ∞, θ is predictable process and

(5.1) E

[∫ t

0

θ2
ud 〈M〉u +

(∫ t

0

|θudAu|
)2
]

< ∞.

Our market is incomplete, so we find an admissible portfolio ϕ which minimizes,

at each time t, the residual risk, given by

Rt(ϕ) = E
[
(CT (ϕ) − Ct(ϕ))2|At

]
, t ≤ T
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over all admissible portfolio. Ct(ϕ) = Vt(θ)−
∫ t

0
θsdS̃s is the discounted cost accumu-

lated up to time t.

We have the following definitions from [16].

Definition 5.1 (Small Perturbation). A trading strategy ∆ = (δ, ε) is called a small

perturbation if it satisfies the following conditions:

1. δ is bounded,

2.
∫ T

0
|δudAu| is bounded,

3. δT = εT = 0.

Definition 5.2 (Locally Risk Minimizing). For a trading strategy ϕ, a small pertur-

bation ∆, and a partition τ of [0, T ], the risk quotient rτ [ϕ, ∆] is defined as

rτ [ϕ, ∆] :=
∑

ti,ti+1∈τ

Rti(ϕ + ∆ |(ti,ti+1)) − Rti(ϕ)

E

[
〈M〉ti+1

− 〈M〉ti | Fti

] I(ti,ti+1].

A trading strategy ϕ is called locally risk minimizing if

lim inf
n→∞

rτ [ϕ, ∆] ≥ 0 P-a.e. on Ω × [0, T ],

for every small perturbation ∆ and every increasing sequence (τn) of the partition of

[0, T ] tending to the identity.

Definition 5.3 (Pseudo Locally Risk-Minimizing Hedging Strategy). A strategy is

called pseudo locally risk minimizing, or equivalently pseudo optimal risk minimizing,

if the associated cost process C(ϕ) is a martingale under P and orthogonal to Mt.

Definition 5.4 (Föllmer-Schweizer Decomposition).

H̃ = H̃0 +

∫ T

0

θH
s dS̃s + LH

T ,

is the Föllmer-Schweizer Decomposition of the discounted contingent claim H̃ =

e
R

t

0
rsdsH , if θH satisfies formula (5.1) and if LH

t is a square-integrable P -martingale

orthogonal to Mt, with LH
0 = 0. The associated optimal strategy given by ϕt =

(θH , H̃0 +
∫ t

0
θH

s dS̃s + LH
t − θH

t S̃t) is locally risk minimizing.

We also need the following assumptions in [16]:

(1) For P -almost all ω, the measure on [0, T ] induced by 〈M〉 (ω) has the whole

interval [0, T ] as its support. This means that 〈M〉 should be P -almost surely

strictly increasing on the whole interval [0, T ].

(2) A is continuous.

(3) A is absolutely continuous with respect to 〈M〉 with density α satisfying

E
[
|α ln+ |α||

]
< ∞. A sufficient condition is that E

[〈∫
αdM

〉]
< ∞.
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By [16], the pseudo locally risk-minimizing hedging strategy is the locally risk-minimizing

strategy if assumptions (1)–(3) are satisfied. So, for S̃t,we check conditions (1)–(3).

〈M〉t =

〈∫ t

0

S̃u
−

√
V

(1)
u dW 1

u +

∫ t

0

S̃u
−

√
V

(2)
u dW 3

u +

∫ t

0

∫ ∞

−1

S̃u
−

yÑ(dy, du)

〉

=

∫ t

0

S̃2
u
−

V (1)
u du +

∫ t

0

S̃2
u
−

V (2)
u du +

∫ t

0

∫ ∞

−1

S̃2
u
−

y2v(dy)du

=

∫ t

0

S̃2
u
−

(
V (1)

u + V (2)
u +

∫ ∞

−1

y2v(dy)

)
du.

S̃2
u
−

(
V

(1)
u + V

(2)
u +

∫∞

−1
y2v(dy)

)
du > 0, 〈M〉t is strictly increasing for every t ∈ [0, T ].

Assumption (1) is verified. Note that

At =

∫ t

0

S̃u
−

(µu − ru)du,

is continuous, assumption (2) is satisfied. Also we have

dAs

d 〈M〉s
=

µs − rs

S̃s(V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy))

,

and

E

[〈∫
dAs

d 〈M〉s
dMu

〉]
= E

[∫
(µs − rs)

2

S̃2
s (V

(1)
s + V

(2)
s +

∫∞

−1
y2v(dy))2

d 〈M〉u

]

= E

[∫
(µs − rs)

2

V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy)

du

]
.

(5.2)

Since

E

[∫
(µs − rs)

2

V
(1)
s + V

(2)
s +

∫∞

−1
y2v(dy)

du

]
< E

[
exp

∫
(µs − rs)

2

V
(1)
s + V

(2)
s

]
< ∞,

then (5.2) is finite. So, assumption (3) is satisfied.

Now we derive the locally risk-minimizing strategy for the associated discounted

portfolio. The Föllmer-Schweizer decomposition of the associated discounted portfolio

is

V (ϕ) = V0(ϕ) +

∫ t

0

φ(s, u)dS̃u + Lt,(5.3)

So, we have

Lt = Vt − V0 −
∫ t

0

φ(s, u)dS̃u

=

∫ t

0

e−
R

u

0
rsds∂V

∂S
Su

√
V

(1)
u dŴ 1

u +

∫ t

0

e−
R

u

0
rsds ∂V

∂S
Su

√
V

(2)
u dŴ 3

u

+

∫ t

0

e−
R

u

0 rsds ∂V

∂V (1)

[
σv1

√
V

(1)
u dŴ 2

u

]
+

∫ t

0

e−
R

u

0 rsds ∂V

∂V (2)

[
σv2

√
V

(2)
u dŴ 4

u

]
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+

∫ t

0

∫ ∞

−1

e−
R

t

0 rsds(V (u, Su
−

(1 + y), V (1)
u , V (2)

u , Xt
−

)

− V (u, su
−

, V (1)
u
−

, V (2)
u
−

, Xu
−

))N̂(dy, du)

+

∫ t

0

∫

R

e−
R

t

0 rsds(V (u, Su
−

, V (1)
u , V (2)

u , Xu
−

+ h(Xu
−

, z))

− V (u−, Su
−

, V (1)
u
−

, V (2)
u
−

, Xu
−

))P̃ (dz, du)

−
∫ t

0

φ(s, u)dS̃u.

Since Lt is a P martingale, the integrands with respect to du on the right-hand side

should vanish. This gives us the following equation:

∂V

∂S
S̃u

(µu − ru)V
(1)
u

V
(1)
u + V

(2)
u +

∫∞

−1
y2v(dy)

+
∂V

∂S
S̃u

(µu − ru)V
(2)
u

V
(1)
u + V

(2)
u +

∫∞

−1
y2v(dy)

+
∂V

∂V (1)
ρ1σv1

(µu − ru)V
(1)
u

V
(1)
u + V

(2)
u +

∫∞

−1
y2v(dy)

e−
R

t

0
rsds

+
∂V

∂V (2)
ρ2σv2

(µu − ru)V
(2)
u

V
(1)
u + V

(2)
u +

∫∞

−1
y2v(dy)

e−
R

t

0
rsds − φ(s, u)(µt − rt)S̃u

+

∫ ∞

−1

e−
R

t

0
rsds(V (u, Su

−

(1 + y), V (1)
u , V (2)

u , Xu
−

)

− V (u, Su
−

, V (1)
u
−

, V (2)
u
−

, Xu
−

))(v − ṽ)(dy)du = 0,

a.s. for u ∈ [0, T ]. We can derive

φ(s, u) =

∂V
∂S

S̃u

(
V

(1)
u + V

(2)
u

)
+ ρ1σv1

∂V

∂V (1) e
−

R

t

0 rsdsV
(1)
u + ρ2σv2

∂V

∂V (2) e
−

R

t

0 rsdsV
(2)
u

S̃u(V
(1)
u + V

(2)
u +

∫∞

−1
y2v(dy))

+

∫∞

−1
e−

R

t

0
rsds(V (u, Su

−

(1 + y), V
(1)
u , V

(2)
u , Xt

−

) − V (u, su
−

, V
(1)
u
−

, V
(2)
u
−

, Xu
−

))yv(dy)

S̃u(V
(1)
u + V

(2)
u +

∫∞

−1
y2v(dy))

,

and α(s, u) = V (ϕ) − φ(s, u)S̃u.

REFERENCES

[1] Takuji Arai. Minimal martingale measures for jump diffusion processes. Journal of Applied

Probability, 41(01):263–270, 2004.

[2] Gopal K Basak, Mrinal K Ghosh, and Anindya Goswami. Risk minimizing option pricing for

a class of exotic options in a markov-modulated market. Stochastic Analysis and Applications,

29(2):259–281, 2011.

[3] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of

political economy, 81(3):637–654, 1973.

[4] Terence Chan. Pricing contingent claims on stocks driven by lévy processes. Annals of Applied
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