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ABSTRACT. In this paper we develop a dynamic model for urban traffic along with physical

constraints characteristic of intersections equipped with traffic light. We introduce expressions for

throughput and congestion and define an appropriate objective functional. Then we formulate an

optimization problem whose solution if implemented is expected to reduce congestion and improve

throughput. We use the principle of optimality to construct the optimization algorithm.
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1. MOTIVATION

Traffic management is becoming more and more important with the development

of modern society. In [1], a basic dynamic model for congestion status of an inter-

section was reported by Rahman et al. without any attempt to optimize traffic flow.

In order to fully describe the dynamics of urban traffic, in this paper we propose a

stochastic model for urban traffic flow from system’s point of view [2], [3]. First we

consider one intersection and define the dynamics of traffic flow in eight directions,

four directions for cross traffic and four for straight traffic. The incoming traffic to

each stream is assumed to be a Poisson random process with variable intensity. Each

segment of the road where vehicles line up for service is finite. As soon as the segment

is partially occupied radio broadcast is made about developing congestion thereby en-

couraging drivers to choose alternate routes and thereby avoiding congestion. This

is used as a control variable. Another control variable is the fraction of time allo-

cated to each stream. The objective is to maximize throughput and minimize possible

congestion, delay and service time.

2. STOCHASTIC TRAFFIC MODEL

Traffic flow is a stochastic process. In other words, the number of vehicles crossing

any intersection over any given interval of time is a random variable. A reasonable
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mathematical model can be constructed on the basis of counting process, in particular,

the well known Poisson process. Here in this section we present one such model. Let

(Ω,F ,Ft≥0, P ) denote a filtered probability space, where Ω is the sample space, F

is the sigma algebra of Borel subsets of the space Ω and Ft ⊂ F is a family of

nondecreasing subsigma algebras and P is the probability measure.

A stochastic process {ξt ≡ p(0, t), t ≥ 0}, is called a Poisson random process

or a counting process giving the number of events over the time period [0, t]. More

precisely, for each ω ∈ Ω, pw is a set function defined on the sigma algebra of Borel

sets in R+ ≡ [0,∞) and taking values from the set of nonnegative integers N ≡

{0, 1, 2, 3, . . .}. For example, the number of cars arriving at the intersection during

the time interval (t1, t2] giving pw(t1, t2] is a random variable.

The process p is called a homogeneous Poisson process if the values of p over

disjoint intervals of time are stochastically independent or equivalently the increments

of ξ over disjoint intervals of time are statistically independent and there exists a

nonnegative constant λ such that the probability that there are exactly n events over

the time period (t1, t2] is given by

(2.1) P{pw(t1, t2] = n} = P{ξt2(ω) − ξt1(ω) = n} = e−λ(t2−t1)(λ(t2 − t1))
n/n!

The constant λ is called the mean or average number of events per unit time or

the frequency of occurrence of events. Indeed the reader can easily verify that the

expected value of the random variable pω((t1, t2]) is given by

(2.2) E{pω(t1, t2]} =
∞
∑

n=0

ne−λ(t2−t1)(λ(t2 − t1))
n/n! = λ(t2 − t1)

Throughout the rest of the paper we shall omit the variable ω.

In the study of urban traffic flow, the mean flow rate is not constant. It varies

with time. It is large at the rush hour in the morning when people go to work and

again in the evening when they return home. These are the two main peak hours and

there is also a moderate peak at lunch hour. So we need a nonhomogeneous Poisson

process with time varying mean. Let ξt ≡ p(0, t) be a nonhomogeneous Poisson

process with the mean rate function λ(t), t ≥ 0. Clearly, this is a nonnegative finite

real valued function (deterministic). Then the probability that there are exactly n

events during the time interval J ≡ (t1, t2] is given by

(2.3) P{p(t1, t2] = n} = P{ξt2 − ξt1 = n} = exp

(

−

∫ t2

t1

λ(t)dt

)

(

∫ t2

t1
λ(t)dt

)n

n!

In practical applications the function λ(t), t ≥ 0, can be estimated by survey of the

traffic at any given major intersection. Let us assume that the function λ is available

from midnight to midnight. Suppose this time interval is partitioned into a finite

number of intervals like (tk, tk+1], k = 0, 1, 2, . . . , N − 1 so that entire day denoted
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by I ≡ (0, T ] is given by I = ∪N−1
k=0 (tk, tk+1]. The function λ is then approximated by

step functions in the sense that it is constant on each interval and given by

(2.4) λ(t) = λ(tk) ≡ λk, for t ∈ (tk, tk+1], k = 0, 1, 2, . . . , N − 1.

This is quite reasonable if the length of each time interval (tk+1 − tk) is sufficiently

small, say, one minute. Thus the probability that there are exactly n events during

the interval (tk, tk+1] is given by

(2.5) P{ξtk+1
− ξtk = n} = exp (−λk(tk+1 − tk))

(λk(tk+1 − tk))
n

n!

In the modeling process we will denote the corresponding Poisson process by

p((tk, tk+1], λk)

and rewrite equation (2.5) as

(2.6) P{p((tk, tk+1], λk) = n} = exp
(

−λk(tk+1 − tk)
)(λk(tk+1 − tk))

n

n!

Note that the expected value of p((tk, tk+1], λk) is given by

E
[

p((tk, tk+1], λk)
]

= λk(tk+1 − tk)

and the second moment is given by

E
[

(p((tk, tk+1], λk))
2
]

= (λk(tk+1 − tk))
2 + λk(tk+1 − tk)

and hence the variance is given by

E
[

p((tk, tk+1], λk) − λk(tk+1 − tk)
]2

= λk(tk+1 − tk)

3. DYNAMIC MODEL OF TRAFFIC FLOW

Now we are prepared to develop a dynamic model of traffic flow at an intersection.

Let us consider an intersection of any two two-way roads having possibly multiple

lanes and let us denote the two roads by R1 (road one) and R2 (road two). At

the intersection there are several streams of traffic flow, total 12 in number. We

will disregard the flows that can take right turn from their right lane whenever it

is safe to do so. This will eliminate four simple streams. We are left with eight

more critical flows. There are 4 streams of straight traffic and 4 streams of cross

traffic. It is appropriate to consider discrete time evolution of the traffic status at

any intersection. We consider the sequence of time intervals Jk ≡ (tk, tk+1] starting

with k = 0, 0 = t0 < t1 < t2 < · · · < tk < tk+1 < · · · . Each interval of time Jk is also

considered as a cycle of traffic light sequence. Each interval is given by the union of

4 subintervals

Jk = τc1k ∪ τs1k ∪ τc2k ∪ τs2k

where τc1k is the period of time allocated for cross traffic from R1 to R2 during the

time segment Jk and τs1k is the period of time allocated for straight traffic on road
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R1. Similarly τc2k and τs2k denote the time intervals allocated for R2 traffic during

the time slot Jk. Let |Jk| ≡ (tk+1−tk) denote the length of one cycle, the time interval

Jk, and |τc1k| = γ1(tk)|Jk|, |τs1k| = γ2(tk)|Jk|, |τc2k| = γ3(tk)|Jk|, |τs2k| = γ4(tk)|Jk|

where {γi(·)} are positive fractions summing to one, that is
∑

γi(·) = 1. Clearly

these numbers denote the fraction of time allocated to cross and straight flows at the

intersection. The fractions {γi, i = 1, 2, 3, 4} are variables that can be adjusted. We

shall consider these as one set of control variables to be chosen to optimize traffic

flow.

Throughout the rest of the paper we use the notation I for the indicator function.

Let S denote any logical (or mathematical) statement. Then the indicator function

of this statement is defined as follow:

I(S) =







1 if S is true,

0 otherwise

For different statements such as Sj we use indicators with a subscript such as Ij ,

j = 1, 2, 3. For any two real numbers {a, b} we use the notation

a ∧ b ≡ min{a, b}

to denote the minimum of the two. Now we are prepared to introduce the traffic flow

dynamics.

Complementary Cross Traffic from R1 to R2. The complementary cross traffic

from R1 to R2 in two opposite directions is given by the following pair of equations:

x11(tk+1) = x11(tk) + I1(0 ≤ x11(tk) < ℓ1(tk))p1(Jk, λ1(tk))

+I2(ℓ1(tk) ≤ x11(tk) ≤ C1)p1(Jk, θ1λ1(tk)) − (β1 ∧ x11(tk))γ1(tk)|Jk|(3.1)

x12(tk+1) = x12(tk) + I1(0 ≤ x12(tk) < ℓ2(tk))p2(Jk, λ2(tk))

+I2(ℓ2(tk) ≤ x12(tk) ≤ C2)p2(Jk, θ2λ2(tk)) − (β2 ∧ x12(tk))γ1(tk)|Jk|(3.2)

Equation (3.1) represents the cross traffic from R1 to R2 in one direction and

equation (3.2) represents the cross traffic in the opposite direction. The symbol

x11(tk+1) stands for the number of vehicles accumulated on this stream at time tk+1.

This is given by the algebraic sum of 4 terms. The first term on the right gives

the number of vehicles that was left on the stream from the previous cycle. The

second term gives the random number of vehicles arriving during the time period

Jk ≡ (tk, tk+1]. This is denoted by the Poisson random variable p1(Jk, λ1(tk)) (Poisson

random number) with the mean arrival rate λ(tk) provided that x11(tk) is below the

threshold ℓ1(tk). The number ℓ1(tk) denotes the warning level explained further in the

sequel. The third component on the right represents the number of vehicles arriving

after congestion has been broadcast at a reduced rate θ1λ(tk) where 0 ≤ θ1 < 1
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provided the lane capacity C1 is not exceeded. The last term on the right represents

the number of vehicles that leaves the stream during the fraction of the time interval

τc1k at the service capacity β1. The number β1 represents the service capacity of this

stream depending on the number of lanes. Thus the the departure rate is the smaller

of the two {β1, x11(tk)} denoted by β1 ∧ x11(tk).

Equation (3.2) represents the complementary cross traffic from R1 to R2 in the

opposite direction and has identical interpretation as equation (3.1).

Complementary Straight Traffic on R1.

x13(tk+1) = x13(tk) + I1(0 ≤ x13(tk) < ℓ3(tk))p3(Jk, λ3(tk))

+I2(ℓ3(tk) ≤ x13(tk) ≤ C3)p3(Jk, θ3λ3(tk)) − (β3 ∧ x13(tk))γ2(tk)|Jk|(3.3)

x14(tk+1) = x14(tk) + I1(0 ≤ x14(tk) < ℓ4(tk))p4(Jk, λ4(tk))

+I2(ℓ4(tk) ≤ x14(tk) ≤ C4)p4(Jk, θ4λ4(tk)) − (β4 ∧ x14(tk))γ2(tk)|Jk|(3.4)

Considering the complementary straight traffic on R1, equations (3.3) and (3.4) rep-

resent streams of straight traffic in opposite directions. Considering equation (3.3),

the number of vehicles on this stream at time tk+1 denoted by x13(tk+1) is given by

the sum of 4 terms. The first term represents the residue traffic from the previous

cycle ending at time tk. The second term represents the new arrivals during the time

cycle Jk and it is given by the Poisson random variable p3(Jk, λ3(tk)) corresponding

to the mean intensity λ3(tk) provided the threshold level ℓ3(tk) has not been reached.

The third term represents the number of vehicles which arrive at a reduced rate after

the congestion warning has been broadcast given that the road segment capacity C3 is

not reached. The fourth term on the righthand side represents the number of vehicles

that left the stream during the fraction of time τs1k with service capacity β3. Similar

interpretation is valid for the complementary traffic (traffic in the opposite direction).

Similarly the traffic on and from R2 is given by another set of 4 equations. They

are as follows:

Complementary Cross Traffic from R2 to R1.

x21(tk+1) = x21(tk) + I1(0 ≤ x21(tk) < ℓ5(tk))p5(Jk, λ5(tk))

+I2(ℓ5(tk) ≤ x21(tk) ≤ C5)p5(Jk, θ5λ5(tk)) − (β5 ∧ x21(tk))γ3(tk)|Jk|(3.5)

x22(tk+1) = x22(tk) + I1(0 ≤ x22(tk) < ℓ6(tk))p6(Jk, λ6(tk))

+I2(ℓ6(tk) ≤ x22(tk) ≤ C6)p6(Jk, θ6λ6(tk)) − (β6 ∧ x22(tk))γ3(tk)|Jk|(3.6)

These equations describe the dynamics of complementary cross traffic from R2 to R1.

They have similar interpretation as those of equations (3.1) and (3.2).
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Complementary Straight Traffic on R2.

x23(tk+1) = x23(tk) + I1(0 ≤ x23(tk) < ℓ7(tk))p7(Jk, λ7(tk))

+I2(ℓ7(tk) ≤ x23(tk) ≤ C7)p7(Jk, θ7λ7(tk)) − (β7 ∧ x23(tk))γ4(tk)|Jk|(3.7)

x24(tk+1) = x24(tk) + I1(0 ≤ x24(tk) < ℓ8(tk))p8(Jk, λ8(tk))

+I2(ℓ8(tk) ≤ x24(tk) ≤ C8)p8(Jk, θ8λ8(tk)) − (β8 ∧ x24(tk))γ4(tk)|Jk|(3.8)

These equations describe the dynamics of complementary straight traffic on R2. They

have similar interpretation as those of equations (3.3) and (3.4).

4. TRAFFIC FLOW OPTIMIZATION PROBLEM

The objective is to maximize throughput through the intersection and minimize

congestion. The lane capacity is fixed. Thus the throughput depends on the lane

capacity and the traffic present and more importantly on the distribution of the

fraction of time {γi, i = 1, 2, 3, 4} allocated to each of the streams which is a decision

variable. Presently we denote this by the four dimensional vector γ ≡ (γ1, γ2, γ3, γ4)
′

∈

R4
+, R+ = [0,∞). Then the total throughput over one time period [t0, tN ] is given by

the following expression,

JTP (γ) ≡ E

{N−1
∑

k=0

(

{

2
∑

i=1

(βi ∧ x1i(tk))I3(t ∈ τc1k)

}

γ1(tk)(tk+1 − tk)

+

{

2
∑

i=1

(βi+2 ∧ x1(i+2)(tk)I3(t ∈ τs1k)

}

γ2(tk)(tk+1 − tk)

+

{

2
∑

i=1

(βi+4 ∧ x2i(tk))I3(t ∈ τc2k)

}

γ3(tk)(tk+1 − tk)

+

{

2
∑

i=1

(βi+6 ∧ x2(i+2)(tk))I3(t ∈ τs2k)

}

γ4(tk)(tk+1 − tk)

)}

(4.1)

where E{·} stands for the expected value of the random variable within the brace. The

first and the second sum within the braces give respectively the number of vehicles

served in the complementary cross flow and complementary straight flow from R1.

The third and the fourth sum represent the number of vehicles served from similar

flows with reference to road R2.

Now we must introduce a measure of congestion. It is clear that it depends on

the size of the lane capacity {Ci, i = 1, 2, . . . , 8}, the desired level of threshold for

congestion warning and the importance or weight given to the level of congestion.

The threshold vector is denoted by ℓ = (ℓ1, ℓ2, . . . , ℓ8)
′

. So a reasonable measure of
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congestion is given by the following expression,

Jc(ℓ) ≡ E

{N−1
∑

k=0

( 4
∑

i=1

Wi(x1i(tk) − ℓi(tk))I2(x1i(tk) > ℓi(tk))

+
4
∑

i=1

Wi+4(x2i(tk) − ℓi+4(tk))I2(x2i(tk) > ℓi+4(tk))

)}

(4.2)

where the first sum within the round bracket gives the weighted level of congestion

on R1, and the second sum gives the weighted congestion level on R2. It is clear

that the waiting time for the drivers increases with the increase of threshold setting

(warning level). In order to incorporate the measure of waiting time we include a

third term to the objective functional given by

Jw(ℓ) ≡ E

{

N−1
∑

k=0

(

8
∑

i=1

Vi ℓi(tk)

)}

(4.3)

The objective is to choose the set of parameters, decision variables (γ, ℓ), that mini-

mizes the following functional

J(γ, ℓ) ≡ Jc(ℓ) − JTP (γ) + Jw(ℓ)(4.4)

5. COMPACT FORMULATION OF THE OPTIMIZATION PROBLEM

We are going to use the principle of dynamic programming to solve the optimiza-

tion problem stated in the preceding section. For this it is convenient to recast the

problem using vector notation. For any k ∈ {0, 1, 2, 3, . . . , N −1} let us denote tk ≡ k

and

(5.1) xk ≡ (x11(tk), x12(tk), x13(tk), x14(tk), x21(tk), x22(tk), x23(tk), x24(tk))
′

(5.2) γ̂k ≡ (γ1(tk), γ2(tk), γ3(tk), γ4(tk))
′

(5.3) ℓ̂k ≡ (ℓ1(tk), ℓ2(tk), ℓ3(tk), ℓ4(tk), ℓ5(tk), ℓ6(tk), ℓ7(tk), ℓ8(tk))
′

These are column vectors in R8, R4, and R8, respectively representing state and con-

trols. The expressions on the righthand side of the equations (3.1)–(3.8) are denoted

by the column vector

(5.4) xk + F (k, xk, γ̂k, ℓ̂k) ≡ G(k, xk, γ̂k, ℓ̂k) ∈ R8

Using the vectors (5.1), (5.2), (5.3) and (5.4) the system of equations (3.1)–(3.8) can

be written in the following compact form (as a vector difference equation)

(5.5) xk+1 = G(k, xk, γ̂k, ℓ̂k), k ∈ {0, 1, 2, . . . , N − 1}
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Parametric Constraints. Define the set Γ by

(5.6) Γ ≡

{

γ ∈ R4 : γi ≥ 0, i = 1, 2, 3, 4 and
4
∑

i=1

γi = 1

}

and the set Λ as

(5.7) Λ ≡ {ℓ ∈ R8 : αCi ≤ ℓi ≤ Ci, i = 1, 2, . . . , 8}

where the fraction α can be chosen by traffic planner in any desirable range such as

0.8 ≤ α ≤ 0.95. The vector ℓ defines the threshold level at which the intersection is

declared to have reached congestion. This information is broadcast so that drivers

may choose to avoid the particular direction of the intersection or the intersection

itself. This can be done by use of microelectronic devices for monitoring the traffic

status and transmitting the information to a central radio broadcasting station.

We denote the decision or control set by U ≡ Γ×Λ and use u = (γ, ℓ) to denote

any member of the admissible set U . Using this notation the dynamic system given

by (5.5) can be written in the standard form as follows:

(5.8) xk+1 = G(k, xk, uk), x0 = ξ, k ∈ Z ≡ {0, 1, 2, . . . , N − 1}

where x0 = ξ is the initial state and uk ≡ (γ̂k, ℓ̂k) is the control. Note that the vector

G at any stage k (time) depends on the Poisson random vector p ≡ (p1, p2, . . . , p8)
′

with the intensity (or mean) functions λ ≡ (λ1,k, λ2,k, . . . , λ8,k)
′ at time k and this

is an integral part of the model. This is what makes the system stochastic. As

mentioned earlier, these functions (data) are available from statistical survey of the

arrival history of the intersection under question.

Cost Functional. For convenience of notation, using the expressions inside the

parenthesis of the expressions (4.1), (4.2) and (4.3), we define and write

L(k, xk, uk) ≡

{( 4
∑

i=1

Wi(x1i(tk) − ℓi(tk))I2(x1i(tk) > ℓi(tk))

+

4
∑

i=1

Wi+4(x2i(tk) − ℓi+4(tk))I2(x2i(tk) > ℓi+4(tk))

)

−

(

{

2
∑

i=1

(βi ∧ x1i(tk))I3(t ∈ τc1k)
}

γ1(tk)(tk+1 − tk)

+
{

2
∑

i=1

(βi+2 ∧ x1(i+2)(tk)I3(t ∈ τs1k)
}

γ2(tk)(tk+1 − tk)

+
{

2
∑

i=1

(βi+4 ∧ x2i(tk))I3(t ∈ τc2k)
}

γ3(tk)(tk+1 − tk)
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+
{

2
∑

i=1

(βi+6 ∧ x2(i+2)(tk))I3(t ∈ τs2k)
}

γ4(tk)(tk+1 − tk)

)

+

( 8
∑

i=1

Viℓi(tk)

)}

(5.9)

Using this expression the objective (cost) functional (4.4) can be written compactly,

and also in the canonical form, as

(5.10) J(u) ≡ E

{

N−1
∑

k=0

L(k, xk, uk) + Ψ(xN)

}

where Ψ(xN) denotes the terminal cost, for example, penalty for deviation from a

desired final state and u ≡ {u0, u1, u2, . . . , uN−1} denotes the decision or control

policy over the time horizon. Note that there is no impact on the cost functional for

any control chosen at the final stage N . The terminal cost Ψ(xN) depends only on

the final state determined by the preceding state and the preceding control.

Optimization Problem. The problem is to minimize the objective functional J(u)

given by (5.10) subject to the dynamic constraint (5.8) and the decision or control

constraints U ≡ Γ × Λ.

6. DYNAMIC PROGRAMMING

There are two well known techniques for solving optimal control and decision

problems. One is the dynamic programming (DP ) technique developed by Bellman

[4] and the other is the maximum principle (MP ) developed by Pontryagin et al. [5].

Maximum principle requires differentiability of the vector field G with respect to the

state variable x. It is evident from the model that there are many indicator functions

required for its construction and clearly they are not differentiable in the usual sense.

However, dynamic programming method does not require this property and therefore

DP is the most suitable technique for the optimization problem stated here.

The idea of dynamic programming is based on the simple fact that, given the

present, nothing can alter the past but the future can be improved by appropriate

actions starting from the present. Suppose n − 1 stages have passed and the current

stage is n so that the available stages are {n, n + 1, . . . , N − 1} and the decisions at

these stages must be taken so as to minimize the “cost to go” to the final stage N .

Let xn = ξ denote the present state and let Φ(n, xn) = Φ(n, ξ) denote the minimum

future cost obtained by proper choice of the control policy {uo
n, u

o
n+1, . . . , u

o
N−1} over

the remaining time horizon. Thus according to this philosophy combined with the

Markov property (given the present the future is independent of the past) we obtain
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the following equations,

Φ(n, ξ) = inf
un,un+1,...,uN−1

E

{(

N−1
∑

k=n

L(k, xk, uk) + Ψ(xN )

)

|xn=ξ

}

(6.1)

= inf
un

E {L(n, ξ, un) + Φ(n + 1, xn+1)}(6.2)

The first equation (6.1) gives the conditional expectation of the random variable

within the parenthesis given that xn = ξ. The last term in (6.2) is not explicitly de-

pendent on controls but the state xn+1 is dependent on un through the state equation

xn+1 = G(n, ξ, un)

and thus equation (6.2) takes the form

Φ(n, ξ) = inf
un∈U

E {L(n, ξ, un) + Φ(n + 1, G(n, ξ, un))}(6.3)

This equation holds for all n ∈ {0, 1, 2, 3, . . . , N − 1} and ξ ∈ S ⊂ R8 where S

denotes the set of admissible states. In practice this may be a proper subset of R8.

According to the above expression, it is clear that the optimal control at the stage

n depends on the state at this stage. Denoting the optimal policy by uo
n = v(n, ξ)

for n ∈ Z ≡ {0, 1, 2, 3, . . . , N − 1} we arrive at the celebrated Bellman’s functional

equation,

Φ(n, ξ) = E {L(n, ξ, v(n, ξ)) + Φ(n + 1, G(n, ξ, v(n, ξ)))}

n ∈ Z ≡ {0, 1, 2, 3, . . . , N − 1} and ξ ∈ S ⊂ R8(6.4)

where v(n, ·) is the optimal decision (control) at the stage n. In other words, the

optimal policy is given by

v(n, ξ) ≡ arg

{

inf
un∈U

E
{

L(n, ξ, un) + Φ(n + 1, G(n, ξ, un))
}

}

(6.5)

which is always expected to be a function of the state, the system is at that stage.

Before we discuss the algorithm, we present the following existence result.

Proposition 6.1. The dynamic programming problem consisting of equations (6.4)

and (6.5) has at least one solution and hence an optimal feedback control law, vo(n, ξ),

(n, ξ) ∈ Z × S, exists in the class of bounded measurable functions with values in U .

Proof. The proof follows from the simple facts that the set U is compact and that,

for every fixed stage n ∈ {0, 1, 2, . . . , N − 1} and state ξ ∈ S, the functions L(n, ξ, ·)

and G(n, ξ, ·) are continuous.

Using the Bellman equation (6.4) and the equation for the optimal policy (6.5)

one can develop an algorithm whereby one can compute the optimal policy and the

optimal cost. The functional equation (6.4) can be solved only backward because it

is the terminal condition Ψ(·) (not the initial condition) that is given. The backward
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sweep determines the optimal control policy. Once the optimal policy is determined

the state equation (5.8) is solved forward in time giving the optimal state. Once

we are able to construct the function Φ, all other necessary information such as the

optimal feedback control law, the optimal cost for the given initial state and the

optimal trajectory can be determined. The task of constructing this function using

the Bellman equation (6.4) is computationally intensive, which is the so called curse

of dimensionality.

7. SEQUENTIAL OR RECURSIVE ALGORITHM

Backward Sweep. Let S ⊂ R8 denote the set of admissible states. Examining the

original state equations (3.1)–(3.8) it is clear that this set is bounded (and closed).

Similarly the control set U ≡ Γ × Λ ⊂ R12 is also a bounded set. By construction

of the Bellman function it is meant that for each n ∈ {0, 1, 2, . . . , N − 1} we have

the function Φ(n, ·) = {Φ(n, ξ), ξ ∈ S}. If S consists of only a finite set of points,

the problem is computationally feasible. However if S is a continuum, the problem is

computationally formidable.

In any case the procedure is as described below. Starting at the stage N −1 with

any state xN−1 ∈ S we have

Φ(N − 1, xN−1) = inf
uN−1∈U

E {L(N − 1, xN−1, uN−1) + Ψ(xN )}

= inf
uN−1∈U

E {L(N − 1, xN−1, uN−1) + Ψ(G(N − 1, xN−1, uN−1))}(7.1)

By following (6.5) we have the corresponding optimal decision given by

(7.2) uo
N−1 = v(N − 1, xN−1)

where v is a suitable function of the current stage N − 1 and current state xN−1.

Note that this gives us only a pair of real numbers for (Φ, v) corresponding to the

pair (N − 1, xN−1) ∈ Z × S, that is, (Φ(N − 1, xN−1), v(N − 1, xN−1)). Keeping

n = N − 1 fixed one must solve the minimization problem (7.1) for a dense set of

values for xN−1 ∈ S. One can choose a finite number (m < ∞) of representative

points {ξ1, ξ2, . . . , ξm} from S and carry out the above procedure to obtain the set

{(Φ(N − 1, ξi), v(N − 1, ξi)), i = 1, 2, 3, . . . , m}

Then one can use interpolation to construct the functions

(7.3) (Φ(N − 1, ·), v(N − 1, ·)) ≡ {(Φ(N − 1, ξ), v(N − 1, ξ)), ξ ∈ S}

for the given stage N−1. This completes only one stage. To continue we go (backward

in time) to the next stage and state. Then we have, for any xN−2 ∈ S,

Φ(N − 2, xN−2) = inf
uN−2∈U

E

{

L(N − 2, xN−2, uN−2) + Φ(N − 1, xN−1)

}
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= inf
uN−2∈U

E

{

L(N − 2, xN−2, uN−2) + Φ(N − 1, G(N − 2, xN−2, uN−2))

}

(7.4)

Again following equation (6.5) we obtain the optimal decision at the stage N − 2

given by

(7.5) uo
N−2 = v(N − 2, xN−2)

Finally following the same procedure as in stage N − 1, we arrive at the following

pair of functions

(7.6) (Φ(N − 2, ·), v(N − 2, ·)) ≡ {(Φ(N − 2, ξ), v(N − 2, ξ)), ξ ∈ S}

for the stage N − 2. Continuing this process step by step backward till the initial

stage k = 0 is reached, we arrive at the following expression

(7.7) Φ(0, x0) = inf
u0∈U

E

{

L(0, x0, u0) + Φ(1, G(0, x0, uo))

}

Again following equation (6.5) we obtain the optimal decision uo
0 = v(0, x0) at stage

k = 0 and state x0 and finally the pair of functions

(7.8) (Φ(0, ·), v(0, ·)) ≡ {(Φ(0, ξ), v(0, ξ)), ξ ∈ S}

Forward Sweep. Using the feedback control law uo
k ≡ v(k, xk) determined from

the backward sweep, one can solve for the optimal state trajectory using the state

dynamics

(7.9) xk+1 = G(k, xk, v(k, xk)), x0 = ξ, k = 0, 1, 2, . . . , N − 1.

This gives the optimal state trajectory {xo
k, k ∈ Z}.

Backward-Forward Sweep Combined. Combining the results from the backward

and forward sweep, we obtain (i): the value function (Bellman function) Φ (ii): the

optimal feedback control law v (iii): the optimal cost J(uo) = J(v) and (iv): the

optimal state trajectory as follows:

(i) : Φ(k, x), k ∈ Z ≡ {0, 1, 2, . . . , N − 1}, x ∈ S(7.10)

(ii) : v(k, x), k ∈ Z, x ∈ S ⊂ R8(7.11)

(iii) : J(uo) = J(v) = Φ(0, x0)(7.12)

(iv) : xo
k+1 = G(k, xo

k, u
o
k) = G(k, xo

k, v(k, xo
k)), xo

0 = x0, k ∈ Z(7.13)

Based on the above algorithm, currently we are carrying out extensive numerical

computations to determine the optimal controls. We believe that implementation

of the optimal controls determined by the technique presented here will significantly

improve the overall quality of traffic flow in large cities.
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8. CONCLUSION

n this paper we have developed a novel stochastic dynamic model for traffic flow

in and around a busy intersection in an urban environment. The traffic is modelled

by use of nonhomogeneous Poisson process with variable intensity which is a function

of time (midnight to midnight) representing mean flow. We have also constructed

an appropriate objective functional that includes throughput, congestion and waiting

time. Using the principle of optimality due to Bellman, we have constructed the

dynamic programming equation to determine the optimal feedback control policies.

The technique developed here should be applied only to some major intersections of

the city to improve overall traffic flow, minimize congestion and avoid traffic jams.

This technique can be implemented on micro-electronic devices which can be deployed

at major intersections based on their corresponding statistics.
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