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1. INTRODUCTION

Recently, differential equations involving fractional derivative have gained consider-

able popularity and importance, mainly due to its demonstrated applications in nu-

merous diverse and widespread fields in science and engineering. Fractional calculus
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has been successfully applied to problems in systems biology, physics, chemistry and

biochemistry, hydrology, medicine, and finance. In many cases, these new fractional-

order models are more adequate than the previously used integer-order models, be-

cause fractional derivatives and integrals enable the description of the memory and

hereditary properties inherent in various materials and processes that are governed by

anomalous diffusion. The fractional viscoelastic model, that is the linear viscoelastic

model involving fractional order operators in the constitutive equations, is capable of

describing the behavior of various viscoelastic materials utilizing a few parameters.

Hence, there is a growing need to find the solution behavior of these fractional dif-

ferential equations. For more details, we refer to the monographs [2], [3] and papers

[25, 27, 37, 38, 40, 43, 44]. In addition, neutral differential equations of integer or

fractional order arise in various areas of real world problems which play an important

role in the theory of functional differential equations, and receive much attention in

the last few decades. Such equations find many applications in natural sciences and

technology, for example, a study of heat conduction in materials with memory, but as

a rule, they have specific properties making their study difficult both in the aspects of

ideas and techniques. For more details, see [15, 19, 22, 29, 39, 43, 44, 45, 47, 48] and

references cited therein. For the study of differential equations with nonlocal initial

conditions, we refer to the papers [11, 12, 17, 19, 20, 36, 37, 39, 40, 42, 44, 49, 50, 52].

On the other hand, stochastic differential equations play a prominent role in a

range of application areas, including biology, chemistry, epidemiology, mechanics,

microelectronics, economics and finance. Some of the typical applications of nonlinear

stochastic differential equations are the vibration of tall building and bridges under the

action of wind or earthquake, vehicles moving on rough roads, ships and offshore oil

platform subjected to wind and ocean waves, price processes in financial markets and

electronic circuits subjected to thermal noise. For more study of stochastic differential

equations and their applications, we refer to the monographs [8, 9, 10]. Recently,

existence, uniqueness and stability results for stochastic differential equations have

been studied in [14, 15, 16, 19, 22, 28, 41, 42, 43, 45]. In recent years, many systems

in physics and biology exhibit impulsive dynamical behavior because of sudden jumps

at certain instants in the evolution process. A lot of dynamic systems have variable

structures subjects to stochastic abrupt changes resulting from abrupt phenomena, for

example, stochastic failure and repair of components, changes in the interconnections

of subsystems, sudden environmental changes and so on. For some recent works on

the existence results of impulsive stochastic differential equations, we refer the reader

to monographs [6, 7] and [14, 22, 23, 28, 39, 42, 43].

The study of controllability plays an important role in the control theory and

engineering. The problem of controllability of various kinds of differential, integro-

differential equations and impulsive differential equations are studied, see. The ap-
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proximate controllability is the weaker concept of controllability receiving much atten-

tion. In this case it is possible to steer the system to an arbitrary small neighborhood

of the final state [17, 18, 20, 21, 24, 32, 33, 35, 50, 51]. However, stochastic control the-

ory which is a generalization of classical control theory has rarely been reported. As a

matter of fact, the accurate analysis or assessment subjected to a realistic environment

has to take into account the potential randomness in the system properties, such as

fluctuations in the stock market or noise in a communication network. All these prob-

lems in mathematics are modeled and described by stochastic differential equations or

stochastic integro-differential equations with delay and impulse. The biggest difficulty

is the analysis of a stochastic control system and stochastic calculations induced by

the stochastic process. For more details, see [14, 16, 19, 23, 34, 36, 39, 50, 52].

In this paper, we study the the following integro-differential equation with infinite

delay involving nonlocal and impulsive conditions in a separable Hilbert space (E, ‖ ·
‖, < ·, · >)

CDq
t [u(t) +

∫ t

0

(t− s)G(s, us,

∫ s

0

a1(s, τ, uτ )dτ)ds] = Au(t) +Bx(t)

+F (t, ut,

∫ t

0

a2(t, s, us)ds) +H(t, ut,

∫ t

0

a3(t, s, us)ds)
dW (t)

dt
, t ∈ [0, T ],(1.1)

∆u(ti) = Ii(u(ti)), ∆u′(ti) = Ji(u(ti)) i = 1, 2, · · · ,m, m ∈ N, (1.2)

u(0) + g(u) = u0 = φ ∈ Bv, u′(0) + h(u) = u1 ∈ E, (1.3)

where 1 < q < 2, CDq
t is the generalized fractional derivative in Caputo sense, A :

D(A) ⊂ E → E is a closed and linear operator with the domain D(A) defined in a

Hilbert space E, ti(i = 1, · · · ,m) are the fixed number such that 0 = t0 < t1 < · · · <
tm = T , and ∆u|t=tk = u(t+k ) − u(t−k ), where u(t

+
k ) and u(t−k ) denote the right and

left limits of u(t) at t = tk, respectively. The W (t) denotes the K-valued Wiener

process with a finite trace nuclear covariance operator Q. The control function x(·)
takes the values L2([0, T ],U), where U is a Hilbert space and B is a bounded linear

operator from U into E. The history ut : (−∞, 0] → E, ut(θ) = u(t + θ), θ ≤ 0

belongs to an abstract phase space Bv and the initial function φ = {φ(t) : t ∈
(−∞, 0]} is a F0-measurable,Bv random variable independent of Wiener processW (t)

with finite second moments. The nonlinear functions G,F : [0, T ] × Bv × E → E,

H : [0, T ] × Bv × E → L(K,E), a1, a2, a3 : D1 × Bv → E and Ii, Ji : E → E

are appropriate mappings satisfying certain conditions to be specified later, where

D1 = {(t, s) ∈ [0, T ]× [0, T ] : s ≤ t} and L(K,E) denotes the space of linear bounded

operators from K into E. For study of differential equations with infinite delay, we

refer to the [4, 5].

The rest of the paper is organized as follows. Section 2 provides some basic

notations and preliminaries. Section 3 establishes the existence of the mild solution

to the nonlocal stochastic fractional system involving impulsive effects by utilizing
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stochastic analysis, resolvent operator and fixed point theorem. Section 4 derives

a set of sufficient conditions proving approximate controllability approximate of the

stochastic system. An example is also considered at the end of the article illustrating

the application of obtained results.

2. PRELIMINARIES

In this section, some basic definitions, preliminaries, theorems and lemmas and as-

sumptions which will be used to prove existence result, are stated.

Throughout the work, we assume that (E, ‖ · ‖, < ·, · >E) and (K, ‖ · ‖, <
·, · >K) are separable Hilbert spaces. The symbol C([0, T ];E) stands for the Ba-

nach space of all the continuous functions from [0, T ] into E equipped with the

norm ‖ z(t)‖C = supt∈[0,T ] ‖ z(t)‖E and Lp((0, T );E) stands for Banach space of

all Bochner-measurable functions from (0, T ) to E with the norm

‖ z‖Lp = (

∫

(0,T )

‖ z(s)‖pEds)1/p.

Let (Ω,F ,P) be a complete probability space with a normal filtration {Ft}t≥0 that

satisfies the right continuity and F0 containing all P-null sets of F . An E-valued

random variable is an F-measurable function u(t) : Ω → E and the collection of

random variables U = {u(t, w) : Ω → E|t∈[0,T ]} is called a stochastic process. In

general, we can write u(t) instead of u(t, w) and u(t) : [0, T ] → E in the space of U .
Assume that {w(t)}t≥0 is a K-valued Wiener process with finite trace nuclear covari-

ance operator Q and Tr(Q) =
∑∞

i=1 λi <∞ that fulfills Qei = λiei, where {ei}∞i=1 is

a complete orthonormal basis of K. Thus, w(t) =
∑∞

i=1

√
λiβi(t)ei. Here {βi(t)}∞i=1

are mutually independent one-dimensional standard Wiener processes. Suppose that

Ft = σ{w(s) : 0 ≤ s ≤ t} is the σ-algebra generated by W and Ft = F . Also, we

define

‖φ‖2Q = Tr(φQφ∗) =
∞∑

i=1

‖
√
λiφei‖2, for φ ∈ L(K,E).

If ‖φ‖Q < ∞, then φ is said to be a Q Hilbert-Schmidt operator. The space

LQ(K,E) = L0
2 = L2(K,E) represents the space of all Q-Hilbert-Schmidt opera-

tors φ : K → E. The notation L2(Ω,F ,P, E) = L2(Ω, E) stands for the Banach

space of all strongly measurable, square integrable H-valued random variables with

the norm ‖y(·)‖L2
= (E‖y(·, w)‖2E)1/2, where the E is known as expectation defined

by E(y) =
∫
Ω
y(w)dP.

Let J = (−∞, T ]. The notation C(J, L2(Ω, E)) stands for the Banach space of all

continuous maps from J into L2(Ω, E) fulfilling the condition supt∈J E‖y(t)‖2 <∞.
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To treat the impulsive neutral stochastic fractional differential equation, we present

the abstract space phase Bv. Let v : (−∞, 0] → (0,∞) be assumed to be a continuous

function with l =
∫ 0

−∞
v(t)dt <∞. For any c > 0, we define

Bv = {ϕ : (−∞, 0] → E such that (E|ϕ(ζ)|2)1/2 is a bounded and measurable on

[−c, 0] and

∫ 0

−∞

v(s) sup
ζ∈[0,s]

(E|ϕ(ζ)|2)1/2ds <∞}. (2.1)

It is not difficult to verify that Bv is a Banach space endowed with the norm

‖ϕ‖Bv
=

∫ 0

−∞

v(s) sup
s≤ζ≤0

(E|ϕ(ζ)|2)1/2ds, for all ϕ ∈ Bv, (2.2)

i.e., (Bv, ‖ · ‖Bv
) is a Banach space [5].

Next, we consider the space

BT = {u : (−∞, T ] → E such that u|Jk
∈ C(Jk, E) and there exist u(t−k ) = u(tk)

and u(t+k ), u0 = φ ∈ Bv, k = 0, 1, · · · ,m}. (2.3)

Here u|Jk
denotes the restriction of u to Jk = (tk, tk+1], k = 1, · · · ,m and the notation

C(Jk, E) stands for the space of all continuous E-valued stochastic processes {u(t) :
t ∈ Jk, k = 1, · · · ,m}. Let ‖ · ‖T be a seminorm in BT which is defined by

‖u‖T = ‖u0‖Bv
+ sup

s∈[0,T ]

(E(|u(s)|2))1/2, u ∈ BT . (2.4)

Now, we give the following lemma [29].

Lemma 2.1. [28]If u ∈ BT , then for t ∈ J , ut ∈ Bv. Moreover,

l(E‖u(t)‖2)1/2 ≤ ‖ut‖Bv
≤ l sup

s∈[0,t]

(E‖u(s)‖2)1/2 + ‖u0‖Bv
, (2.5)

here l =
∫ 0

−∞
v(s)ds <∞.

Now, we state some basic definitions and properties of fractional calculus.

Definition 2.2. The Riemann-Liouville fractional integral operator J of order q > 0

is defined as

Jq
t F (t) =

1

Γ(q)

∫ t

0

(t− s)q−1F (s)ds, (2.6)

where F ∈ L1((0, T ), E).

Definition 2.3. The Riemann-Liouville fractional derivative is given as

Dq
tF (t) = Dm

t J
m−q
t F (t), m− 1 < q < m, m ∈ N, (2.7)
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where Dm
t = dm

dtm , F ∈ L1((0, T );E), Jm−q
t ∈ Wm,1((0, T );E). Here the notation

Wm,1((0, T );E) stands for the Sobolev space defined as

Wm,1((0, T );E) = {y ∈ E : ∃ z ∈ L1((0, T );E) : y(t) =

m−1∑

k=0

dk
tk

k!

+
tm−1

(m− 1)!
∗ z(t), t ∈ (0, T )}.

Note that z(t) = ym(t), dk = yk(0).

Definition 2.4. The Caputo fractional derivative is given as

CDα
t F (t) =

1

Γ(m− α)

∫ t

0

(t− s)m−α−1Fm(t)dt, m− 1 < α < m. (2.8)

where F ∈ Cm−1((0, T ), E) ∩ L1((0, T ), E).

Definition 2.5. The definition of one parameter Mittag-Leffler function is given by

Eα(z) =

∞∑

k=0

zk

Γ(αk + 1)
,

and two parameter function of Mittag-Leffler type is defined by

Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
=

1

2πi

∫

C

µα−βeµ

µa − z
dµ, 0 < α, β, z ∈ C,

where C is a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |z|1/2
counter clockwise. The Laplace transform of the Mittag-Leffler is defined as

L(tβ−1Eα, β(−ραtα)) =
λα−β

λα + ρα
, Re λ > ρ1/α, ρ > 0.

For more details, we refer to [3].

Definition 2.6. [37]Let A : D(A) ⊂ E → E be a closed linear operator. A is said

to be sectorial operator of type (M, θ, µ) if there exist 0 < θ < π/2, M > 0 and µ ∈ R

such that the q-resolvent of A exists outside the sector

µ+ Sθ = {µ+ λ : λ ∈ C, |arg(−λ)| < θ},

and

‖(λI −A)−1‖ ≤ M

|λ− µ| , λ /∈ µ+ Sθ.

Definition 2.7. [37]Let A be a densely defined operator in E that satisfies the

following conditions:
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(i) For some 0 < θ < π/2, , µ+ Sθ = {µ+ λ : λ ∈ C, |Arg(−λ)| < θ},
(ii) There is a constant M > 0 such that

‖(λI −A)−1‖ ≤ M

|λ− µ| , λ /∈ µ+ Sθ.

Then, A is the infinitesimal generator of a semigroup T (t) fulfilling ‖T (t)‖ ≤ C.

Moreover,

T (t) =
1

2πi

∫

Γ̃

eλtR(λ,A)dλ,

where Γ̃ is a suitable path for λ /∈ µ+ Sθ and λ ∈ Γ̃.

Definition 2.8. [37]A closed linear operator A : D(A) ⊂ E → E said to be a

sectorial operator of type (M, θ, q, µ) if there exist 0 < θ < π/2, M > 0 and µ ∈ R

such that the q-resolvent of A exists outside the sector

µ+ Sθ = {µ+ λq : λ ∈ C, |Arg(−λq)| < θ},

and

‖(λqI −A)−1‖ ≤M/|λq − µ|, λq /∈ µ+ Sθ.

Remark 2.9. If A is a sectorial operator of type (M, θ, q, µ), then it is not difficult

to see that A is the infinitesimal generator of a q-resolvent family {Sq(t)}t≥0 in a

Banach space and

Sq(t) =
1

2πi

∫

Γ̃

eλtλq−1R(λq, A)dλ, (2.9)

Kq(t) =
1

2πi

∫

Γ̃

eλtλq−2R(λq, A)dλ, (2.10)

Rq(t) =
1

2πi

∫

Γ̃

eλtR(λq, A)dλ, (2.11)

and Γ̃ is a suitable path.

Now, the definition of the mild solution to equation (1.1) is presented.

Definition 2.10. A stochastic process u(t) : (−∞, T ] → E is said to be mild solution

of equation (1.1) if:

(i) u(t) is measurable and Ft adapted for all t ∈ (−∞, T ] having càdlàg path on

t ≥ 0 almost surely.

(ii) u(t) is Bv valued and the restriction of u(·) to the interval (ti, ti+1], i =

1, · · · ,m is continuous.
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(iii) For each t ≥ 0, u(t) satisfies the following integral equation

u(t) =





φ(t), t ∈ (−∞, 0],

Sq(t)[φ(0)− g(u)] +Kq(t)[u1 − h(u)]

−
∫ t

0
Kq(t− s)G(s, us,

∫ s

0
a1(s, τ, uτ )dτ)ds

+
∫ t

0
Rq(t− s)Bx(s)ds+

∫ t

0
Rq(t− s)F (s, us,

∫ s

0
a2(s, τ, uτ )dτ)ds

+
∫ t

0
Rq(t− s)H(s, us,

∫ s

0
a3(s, τ, uτ )dτ)dW (s)

+
∑

0<ti<t Sq(t− ti)Ii(u(ti))

+
∑

0<ti<tKq(t− ti)Ji(u(ti)), t ∈ [0, T ].

(2.12)

Lemma 2.11. For any uT ∈ L2(FT , E), there exists σ(·) ∈ L2
F (Ω, L

2([0, T ], L0
2))

such that uT = EuT +
∫ T

0
σ(s)dW (s).

Define the operator ΓT
0 : E → E associated with the linear system of (1.1) as

ΓT
0 =

∫ T

0

Rq(T − s)BB∗R∗
q(T − s)ds, R(λ,ΓT

0 ) = (λI + ΓT
0 )

−1, (2.13)

It is convenient at this point to define operators

ΓT
τ =

∫ T

τ

Rq(T − s)BB∗R∗
q(T − s)ds,

Γtk
tk−1

=

∫ tk

tk−1

Rq(tk − s)BB∗R∗
q(tk − s)ds,

R(λ,Γtk
tk−1

) = (λI + Γtk
tk−1

)−1 for a > 0, k = 1, · · · ,m (2.14)

where B∗ denotes the adjoint of B, ‖B‖ =MB and R∗
q(t) is the self adjoint of Rq(t).

Generally, we consider x(t) = xλ(t, u) = B∗R∗
q(T − t)R(λ,ΓT

0 )k(u(·)), where

k(u(·)) =





EuT +
∫ T

0
σ(s)dW (s)− Sq(T )[φ(0)− g(u)]−Kq(T )[u1 − h(u)]

+
∫ T

0
Kq(T − s)G(s, us,

∫ s

0
a1(s, τ, uτ )dτ)ds

−
∫ T

0
Rq(T − s)F (s, us,

∫ s

0
a2(s, τ, uτ )dτ)ds

−
∫ T

0
Rq(T − s)H(s, us,

∫ s

0
a3(s, τ, uτ )dτ)ds, t ∈ [0, t1]

EuT +
∫ T

0
σ(s)dW (s)− Sq(T )[φ(0)− g(u)]−Kq(T )[u1 − h(u)]

+
∫ T

0
Kq(T − s)G(s, us,

∫ s

0
a1(s, τ, uτ )dτ)ds

−
∫ T

0
Rq(T − s)F (s, us,

∫ s

0
a2(s, τ, uτ )dτ)ds

−
∫ T

0
Rq(T − s)H(s, us,

∫ s

0
a3(s, τ, uτ )dτ)dW (s)

−
m∑

i=1

Sq(T − ti)Ii(u(ti))

−
∑m

i=1Kq(T − ti)Ji(u(ti)), t ∈ (ti, ti+1], i = 1, · · · ,m.
(2.15)
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Let u(t, φ, x) be the state value of system (1.1) at time t corresponding to the con-

trol x ∈ LF
2 (J,X). In particular, the state of system (1.1) at t = T , u(T, φ, x) is

known as the terminal state with control x. The set R(T, φ, x) = {u(T, φ, x) : x ∈
LF
2 ([0, T ], X)} is said to be reachable set of system (1.1).

Definition 2.12. The system (1.1) is said to be approximately controllable on [0, T ]

if R(T, φ, x) = L2(Ω,F , E), where R(T, φ, x) denotes the closure of the reachable set.

Now, we state the Krasnoselskii-Schaefer fixed point theorem which is our main

tool to establish our existence result.

Theorem 2.13. [26] Let Ψ1 and Ψ2 be two operators defined on E such that

(i) Ψ1 is contraction,

(ii) Ψ2 is completely continuous,

then, either

(1) the operator equation Ψ1y +Ψ2y = y has a solution, or

(2) the set G = {y ∈ E : λ1Ψ1(y/λ1) + λ1Ψ2y = y} is unbounded for λ1 ∈ (0, 1).

3. EXISTENCE OF MILD SOLUTIONS

For proving existence of the mild solution, we need to impose following assumptions

on the data of the system (1.1)-(1.3).

(A1) The operator Sq(t), Kq(t) and Rq(t), t ≥ 0 generated by A are compact in D(A)

such that supt∈[0,T ] ‖Sq(t)‖ ≤M , supt∈[0,T ] ‖Kq(t)‖ ≤M and supt∈[0,T ] ‖Rq(t)‖
≤M .

(A2) (i) G : [0, T ] ×Bv × E → E is continuous function and there exists a constant

LG > 0 such that

E‖G(t, u1, v1)−G(t, u2, v2)‖2 ≤ LG[‖u1 − u2‖2Bv
+ E‖v1 − v2‖2], (3.1)

for all uj(j = 1, 2) ∈ Bv, vj(j = 1, 2) ∈ E and t ∈ [0, T ] with

C1 = sup
t∈[0,T ]

‖G(t, 0, 0)‖2.

(ii) There exists a constant La1
> 0 such that

E‖
∫ t

0

[a1(t, s, u1)− g(t, s, u2)]ds‖2 ≤ La1
‖u1 − v1‖2Bv

, ∀ t ∈ [0, T ], u1, v1 ∈ Bv,

and C2 = T sup(t,s)∈D1
‖a1(t, s, 0)‖.
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(A3) (1) The function F : [0, T ]×Bv × E → E is a nonlinear function that satisfies

following conditions

(i) t→ F (t, u1, u2) is measurable for each (u1, u2) ∈ Bv × E.

(ii) (u1, u2) → F (t, u1, u2) is continuous for almost all t ∈ [0, T ].

(iii)There exist a continuous function mF : [0,∞) → (0,∞) and a continuous

increasing function ΘF : [0,∞) → [0,∞) such that

E‖F (t, u1, u2)‖2E ≤ mF (t)ΘF (‖u1‖2Bv
+ E‖u2‖2E),

for all (u1, u2) ∈ Bv × E and t ∈ [0, T ].

(2) For each (t, s) ∈ D1, the function a2(t, s, ·) : Bv → E is continuous and

a2(·, ·, u) : D1 → E is measurable for each u ∈ Bv. There exist a constant

La2
> 0 and a continuous increasing function Wa2

: [0,∞) → [0,∞) such that

E‖a2(t, s, u)‖2 ≤ La2
Wa2

(‖u‖2Bv
), ∀ u ∈ Bv.

(A4) (1). The function H : [0, T ] × Bv × E → L(K,E) satisfies the Carathéodory

condition and there exist a function mH(t) ∈ Lloc(J,R
+) and a nondecreasing

function ΘH : [0,∞) → (0,∞) such that

E‖H(t, u1, u2)‖2E ≤ mH(t)ΘH(‖u1‖2Bv
+ E‖u2‖2E),

∀ (u1, u2) ∈ Bv × E, t ∈ [0, T ].

(2). For each (t, s) ∈ D1, the function a3(t, s, ·) : Bv → E is continuous and

the map a3(·, ·, z) : D1 → E measurable for each z ∈ Bv. There is a constant

ma3
> 0 such that E‖a3(t, s, z)‖2 ≤ ma3

Θa3
(‖z‖2

Bv
), for all (t, s) ∈ D1 and

z ∈ Bv, where Wa3
: [0,∞) → [0,∞) is a nondecreasing function.

(A5) The functions Ii, Ji : E → E(i = 1, · · · ,m) are completely continuous functions

and there are positive constant Φi
1,Ψ

i
2 > 0 such that

E‖Ii(z)‖2E ≤ Φi
1, E‖Ji(z)‖2E ≤ Ψi

2, ∀ z ∈ E.

(A6) The function g, h : Bv → E are continuous and there exist some constant

L̂g, L̂h > 0 and L̂1
g, L̂

1
h > 0 such that

E‖g(z1)− g(z2)‖2E ≤ L̂g‖z1 − z2‖2Bv
,

E‖g(z)‖ ≤ L̂g‖z‖2Bv
+ L̂1

g,

E‖h(z1)− h(z2)‖2E ≤ L̂h‖z1 − z2‖2Bv
,

E‖h(z)‖ ≤ L̂h‖z‖2Bv
+ L̂1

h,

for all z1, z2, z ∈ Bv.
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(A7)
∫ T

0
m̂(s)ds ≤

∫∞

ξ(0)
ds

ΘF (s)+ΘH(s)+Θ(s) , where ξ(0) =
M̃

1−Ñ
, m̂(t) = max{m(t), TL}

m(t) = max{ 32

(1− Ñ)
× l2M2T 2 ×mF (t),

32

(1− Ñ)
l2M2Tr(Q)T ×mH(t)}

L = max{La2
,ma3

}, Θ(y) = max{Wa2
(y),Θa3

(y)},

and M̃, Ñ are defined later.

Theorem 3.1. The system (1.1) has a mild solution on (−∞, T ] if the assumptions

(A1)-(A7) are satisfied and

Θ = 3M2
[
Lg + Lh + T 2LG(1 + Lg)

]
< 1. (3.2)

Proof. We first consider the operator Υ : BT → BT defined by

Υu(t) =





φ(t), t ∈ (−∞, 0],

Sq(t)[φ(0)− g(u)] +Kq(t)[u1 − h(u)]

−
∫ t

0
Kq(t− s)G(s, us,

∫ s

0
a1(s, τ, uτ )dτ)ds

+
∫ t

0
Rq(t− s)Bx(s)ds+

∫ t

0
Rq(t− s)F (s, us,

∫ s

0
a2(s, τ, uτ )dτ)ds

+
∫ t

0
Rq(t− s)H(s, us,

∫ s

0
a3(s, τ, uτ )dτ)dW (s)

+
∑

0<ti<t Sq(t− ti)Ii(u(ti))

+
∑

0<ti<tKq(t− ti)Ji(u(ti)), t ∈ [0, T ].

(3.3)

We shall show that the operator Υ has a fixed point in the space BT which is the

mild solution of (1.1).

For φ ∈ Bv, we define φ̂ by

y(t) =




φ(t), t ∈ (−∞, 0]

Sq(t)φ(0), t ∈ [0, T ].

Then y ∈ BT . We also define a function

ẑ(t) =




0, t ∈ (−∞, 0],

z(t), t ∈ [0, T ],
(3.4)

for every z ∈ C(J,E). We set u(t) = y(t) + ẑ(t) for each t ∈ [0, T ]. It is clear that

u is the solution for problem (1.1)-(1.3) if and only if z satisfies z0 = 0, t ∈ (−∞, 0]

and

z(t) =Sq(t)[−g(y + ẑ)] +Kq(t)[u1 − h(y + ẑ)]

−
∫ t

0

Kq(t− s)G(s, ys + ẑs,

∫ s

0

a1(s, τ, yτ + ẑτ )dτ)ds
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+

∫ t

0

Rq(t− s)Bx(s)ds+

∫ t

0

Rq(t− s)F (s, ys + ẑs,

∫ s

0

a2(s, τ, yτ + ẑτ )dτ)ds

+

∫ t

0

Rq(t− s)H(s, ys + ẑs,

∫ s

0

a3(s, τ, yτ + ẑτ )dτ)dW (s)

+
∑

0<ti<t

Sq(t− ti)Ii(y(ti) + ẑ(ti)) +
∑

0<ti<t

Kq(t− ti)Ji(y(ti) + ẑ(ti)),

t ∈ [0, T ]. (3.5)

Let B0
T = {z ∈ BT : z0 = 0 ∈ Bv} and for any z ∈ B

0
T , we get

‖z‖T = ‖z0‖Bv
+ sup

t∈[0,T ]

(E‖z(t)‖2)1/2 = sup
t∈[0,T ]

(E‖z(t)‖2)1/2. (3.6)

It can be easy to verify that (B0
T , ‖ · ‖B0

T
) is a Banach space.

Now, we define the operator Ψ : B0
T → B

0
T by

Ψz(t) =





0, t ∈ (−∞, 0],

Sq(t)[−g(y + ẑ)] +Kq(t)[u1 − h(y + ẑ)]−
∫ t

0
Kq(t− s)

×G(s, ys + ẑs,
∫ s

0
a1(s, τ, yτ + ẑτ )dτ)ds+

∫ t

0
Rq(t− s)Bx(s)ds

+
∫ t

0
Rq(t− s)F (s, ys + ẑs,

∫ s

0
a2(s, τ, yτ + ẑτ )dτ)ds

+
∫ t

0
Rq(t− s)H(s, ys + ẑs,

∫ s

0
a3(s, τ, yτ + ẑτ )dτ)dW (s)

+
∑

0<ti<t

Sq(t− ti)Ii(y(ti) + ẑ(ti))

+
∑

0<ti<t

Kq(t− ti)Ji(y(ti) + ẑ(ti)), t ∈ [0, T ].

(3.7)

In order to prove the existence result, it is enough to prove that Ψ has a fixed point.

To this end, we introduce the decomposition of operator Ψ as

Ψ1z(t) = Sq(t)[−g(y + ẑ)] +Kq(t)[u1 − h(y + ẑ)]

−
∫ t

0

Kq(t− s)G(s, ys + ẑs,

∫ s

0

a1(s, τ, yτ + ẑτ )dτ)ds, (3.8)

for t ∈ [0, T ], and

Ψ2z(t) =

∫ t

0

Rq(t− s)Bx(s)ds+

∫ t

0

Rq(t− s)F (s, ys + ẑs,

∫ s

0

a2(s, τ, yτ + ẑτ )dτ)ds

+

∫ t

0

Rq(t− s)H(s, ys + ẑs,

∫ s

0

a3(s, τ, yτ + ẑτ )dτ)dW (s)

+
∑

0<ti<t

Sq(t− ti)Ii(y(ti) + ẑ(ti))

+
∑

0<ti<t

Kq(t− ti)Ji(y(ti) + ẑ(ti)), t ∈ [0, T ]. (3.9)
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Set Br = {y ∈ B
0
T : E‖y‖2

B0

T

≤ r, r > 0}. Clearly, Br a bounded closed convex set in

B
0
T . For y ∈ Br and Lemma 2.1, we have that

‖yt + ẑt‖2Bh
≤ 2(‖yt‖2Bv

+ ‖ẑt‖2Bv
),

≤ 4(l2 sup
τ∈[0,t]

E‖y(τ)‖2E + ‖y0‖2Bv
) + 4(l2 sup

τ∈[0,t]

E‖ẑ(τ)‖2E + ‖ẑ0‖2Bv
)

≤ 4(‖φ‖2Bv
+ l2(r +M2

SE‖φ(0)‖2E)). (3.10)

For establishing the existence result with the help of Theorem 2.13, we show that Ψ1

is a contraction while Ψ2 is compact operator. To this end, we divide the proof into

a several steps.

Step 1 Φ1 is a contraction on B
0
T .

Let z1, z2 ∈ B
0
T and t ∈ [0, t1]. Thus, we have

E‖(Ψ1z1)(t)− (Ψ1z2)(t)‖2E ≤ 3E‖Sq(t)[g(y + ẑ1)− g(y + ẑ2)]‖2

+ 3E‖Kq(t)[h(y + ẑ1)− h(y + ẑ2)]‖2

+ 3E‖
∫ t

0

Kq(t− s)[G(s, ys + ẑ1s,

∫ s

0

a1(s, ζ, yζ + ẑ1ζ)dζ)

−G(s, ys + ẑ2s,

∫ s

0

a1(s, ζ, yζ + ẑ2ζ)dζ)]ds‖2,

≤3M2Lg‖ẑ1 − ẑ2‖2 + 3M2Lh‖ẑ1 − ẑ2‖2 + 3M2T

×
∫ t

0

E‖G(s, ys + ẑ1s,

∫ s

0

a1(s, ζ, yζ + ẑ1ζ)dζ)−G
(
s, ys + ẑ2s,

∫ s

0

a1(s, ζ, yζ + ẑ2ζ)dζ
)
‖2ds,

≤3M2Lg‖ẑ1 − ẑ2‖2 + 3M2Lh‖ẑ1 − ẑ2‖2 + 3M2T 2LG

[
‖ẑ1s − ẑ2s‖2Bv

+ La1
‖ẑ1ζ − ẑ2ζ‖2Bv

]
,

≤3M2(Lg + Lh)‖ẑ1 − ẑ2‖2 + 3M2T 2LG(1 + La1
)× [ sup

t∈[0,T ]

‖ẑ1(t)− ẑ2(t)‖2

+ ‖(ẑ1)0‖2 + ‖(ẑ2)0‖2],

=3M2
[
Lg + Lh + T 2LG(1 + Lg)

]
‖ẑ1 − ẑ2‖2T . (3.11)

Using the facts that ‖(ẑ1)0‖2Bv
= 0 and ‖(ẑ2)0‖2Bv

. We take the supremum over t, we

obtain

‖(Ψ1ẑ1)− (Ψ1ẑ2)‖2T ≤ Θ‖z1 − z2‖2T , (3.12)

where Θ = 3M2
[
Lg +Lh +T 2LG(1+Lg)

]
. By inequality (3.2), we conclude that Ψ1

is a contraction on B
0
T .

Next, we show that Ψ2 is completely continuous in following steps.
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Step 2. We first prove that Ψ2 maps bounded sets into bounded sets in B
0
T . To

this end, it is enough to show that there exists a positive constant M such that for

each z ∈ Br one has E‖(Ψ2z)(t)‖2T ≤ M. Now, for each z ∈ Br and for t ∈ [0, T ]

E‖(Ψ2z)(t)‖2E

≤ 5E‖
∫ t

0

Rq(t− s)Bx(s)ds‖2 + 5E‖
∫ t

0

Rq(t− s)F
(
s, ys + ẑs,

∫ s

0

a2(s, τ, yτ + ẑτ )dτ
)
ds‖2 + 5E‖

∫ t

0

Rq(t− s)H
(
s, ys + ẑs,

∫ s

0

a3(s, τ, yτ + ẑτ )dτ
)
dW (s)‖2 + 5E‖

∑

0<ti<t

Sq(t− ti)Ii(y(ti) + ẑ(ti))‖2

+5E‖
∑

0<ti<t

Kq(t− ti)Ji(y(ti) + ẑ(ti))‖2,

≤ 5M2
B

∫ t

0

‖Rq(t− s)‖ds
∫ t

0

‖Rq(t− s)‖E‖x(s)‖ds+ 5

∫ t

0

‖Rq(t− s)‖ds

×
∫ t

0

‖Rq(t− s)‖ · E‖F (s, ys + ẑs,

∫ s

0

a2(s, τ, yτ + ẑτ )dτ)‖2ds

+5

∫ t

0

‖Rq(t− s)‖2 · E‖H(s, ys + ẑs,

∫ s

0

a3(s, τ, yτ + ẑτ )dτ)‖2ds

+5
∑

0<ti<t

‖Sq(t− ti)Ii(y(ti) + ẑ(ti))‖2 + 5
∑

0<ti<t

E‖Kq(t− ti)Ji(y(ti) + ẑ(ti))‖2,

≤ 5M2
BM

2T 2
O+ 5M2T 2

∫ t

0

mF (s)ΘF (r
∗ + T

∫ s

0

La2
Wa2

(r∗)dζ)ds

+5TM2Tr(Q)

∫ t

0

mH(s)ΘH(r∗ + T

∫ s

0

ma3
Θa3

(r∗)dζ)ds+ 5M2
m∑

i=1

Φ1
i

+ 5M2
m∑

i=1

Ψ2
i = M, (3.13)

where O is estimated as

‖x(s)‖2

≤ ‖B∗R∗
q(T − s)R(λ,ΓT

0 )

{
yT + ẑT +

∫ T

0

σ(s)dW (s)− Sq(T )[φ(0)− g(y + ẑ)]

−Kq(t)(u1 − h(y + ẑ)) +

∫ T

0

Kq(T − s)G(s, ys + ẑs,

∫ s

0

a1(s, ζ, yζ + ẑt)dζ)ds

−
∞∑

i=1

Sq(T − ti)Ii(y(ti) + ẑ(ti))−
∑

ti<t

Kq(s− ti)Ji(y(ti) + ẑ(ti))

−
∫ T

0

Rq(T − s)F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)ds−
∫ T

0

Rq(T − s)
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×H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑt)dζ)dW (s)

}
‖2,

≤ 8
M2

BM
2

λ2

{
2‖yT + ẑT ‖2 + 2

∫ T

0

E‖σ(s)‖2Qds+ 2M2[‖φ‖2Bv
+ L̂gr

∗ + L̂1
g]

+2M2[‖u1‖2 + L̂hr
∗ + L̂1

h] +M2
m∑

i=1

Φ1
i +M2

m∑

i=1

Ψ2
i +M2T 2[2LG(1 + 2La1

)r∗

+4LGC2 + 2C1] +M2T 2

∫ T

0

mF (s)ΘF (r
∗ + T

∫ s

0

La2
Wa2

(r∗)dζ)ds

+M2Tr(Q)×
∫ T

0

mH(s)ΘH(r∗ + T

∫ s

0

ma3
Θa3

(r∗)dζ)ds

}

= O,

where r∗ = 4[‖φ‖2
Bv

+ l2(r +M2
SE‖φ(0)‖2E)].

Thus, we get E‖(Ψ2z)(t)‖2E ≤ M.

Step 3. Φ2 is continuous.

Let {zn}∞n=1 be a sequence in Br with zn → z ∈ Br as n → ∞. By the continuity of

F,H, g, h and Ii, Ji(i = 1, · · · ,m), we have

F (s, ys + (ẑn)s,

∫ s

0

f(s, τ, yτ + (ẑn)τ )dτ) → F (s, ys + ẑs,

∫ s

0

f(s, τ, yτ + ẑτ )dτ),

H(s, ys + (ẑn)s,

∫ s

0

̺(s, τ, yτ + (ẑn)τ )dτ) → H(s, ys + ẑs,

∫ s

0

̺(s, τ, yτ + ẑτ )dτ),

g(s, ys + (ẑn)s, η) → g(s, ys + ẑs, η),

h(s, ys + (ẑn)s, η) → h(s, ys + ẑs, η), as n→ ∞.

For t ∈ [0, T ], we get

E‖(Φ2zn)(t)− (Φ2z)(t)‖2E

≤ 5E‖
∞∑

i=1

Sq(t− ti)[Ii(y(ti) + ẑn(ti))− Ii(y(ti) + ẑ(ti))]‖2

+5E‖
∑

ti<t

Kq(t− ti)[Ji(y(ti) + ẑn(ti))− Ji(y(ti) + ẑ(ti))]ds‖2

+5E‖
∫ t

0

Rq(t− s)BB∗R∗
q(T − s)R(λ,ΓT

0 )

{
(ẑn)T − ẑT − Sq(t)[g(y + ẑn)

−g(y + ẑ)]−Kq(t)[h(y + ẑn)− h(y + ẑ)]−
∞∑

i=1

Sq(T − ti)[Ii(y(ti) + ẑn(ti))

− Ii(y(ti) + ẑ(ti))]−
∑

ti<t

Kq(t− ti)[Ji(y(ti) + ẑn(ti))− Ji(y(ti) + ẑ(ti))]ds

−
∫ T

0

Kq(T − s)[G(s, ys + (ẑn)s,

∫ s

0

a1(s, ζ, yζ + (ẑn)ζ)dζ)
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−G(s, ys + ẑs,

∫ s

0

a1(s, ζ, yζ + ẑt)dζ)]ds−
∫ T

0

Rq(T − s)[F
(
s, ys + (ẑn)s,

∫ s

0

a2(s, ζ, yζ + (ẑn)ζ)dζ
)
− F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)]ds

−
∫ T

0

Rq(T − s)[H(s, ys + (ẑn)s,

∫ s

0

a3(s, ζ, yζ + (ẑn)ζ)dζ)

−H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑt)dζ)]dW (s)

}
ds‖2 + 5E‖

∫ t

0

Rq(t− s)

×[F (s, ys + (ẑn)s,

∫ s

0

a2(s, ζ, yζ + (ẑn)ζ)dζ)

−F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)]ds‖2

+5E‖
∫ t

0

Rα(t− s)[H(s, ys + (ẑn)s,

∫ s

0

a3(s, ζ, yζ + (ẑn)ζ)dζ)

−H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑζ)dζ)])dW (s)‖2 → 0, as n→ ∞.

Step 4. Ψ2 maps bounded sets into equicontinuous sets of Br.

Let τ1, τ2 ∈ (ti, ti+1], i = 1, · · · ,m with τ2 > τ1. For z ∈ Br

E‖Ψ2z(τ2)−Ψ2z(τ1)‖2E

≤ 5E‖
∑

0<ti<t

[Sq(τ2 − ti)− Sq(τ1 − ti)]Ii(y(ti) + ẑ(ti))‖2

+5E‖
∑

0<ti<t

‖[Kq(τ2 − ti)−Kq(τ1 − ti)]Ji(y(ti) + ẑ(ti))‖2

+5E‖
∫ τ2

0

Rq(τ2 − s)Bx(s)ds−
∫ τ1

0

Rq(τ1 − s)Bx(s)ds‖2

+5E‖
∫ τ2

0

Rq(τ2 − s)F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)ds−
∫ τ1

0

Rq(τ1 − s)

×F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)ds‖2 + 5E‖
∫ τ2

0

Rq(τ2 − s)

×H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑζ)dζ)dW (s)−
∫ τ1

0

Rq(τ1 − s)

×H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑζ)dζ)dW (s)‖2

≤ 5
∑

0<ti<t

E‖Sq(τ2 − ti)− Sq(τ1 − ti)‖2 · ‖Ii(y(ti) + ẑ(ti))‖2

+5
∑

0<ti<t

E‖Kq(τ2 − ti)−Kq(τ1 − ti)‖2‖Ji(y(ti) + ẑ(ti))‖2 + 10M2M2
B(τ2 − τ1)

×
∫ τ2

τ1

E‖x(s)‖2ds+ 10

∫ τ1

0

‖Rq(τ2 − s)−Rq(τ1 − s)‖ds



APPROXIMATE CONTROLLABILITY 17

×
∫ τ1

0

‖Rq(τ2 − s)−Rq(τ1 − s)‖E‖Bx(s)‖2ds+ 10M2(τ2 − τ1)

×
∫ τ2

τ1

E‖F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)‖2ds

+10

∫ τ1

0

‖Rq(τ2 − s)−Rq(τ1 − s)‖ds

×
∫ τ1

0

‖Rq(τ2 − s)−Rq(τ1 − s)‖E‖F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)‖2ds

+12Tr(Q)

×
∫ τ2

τ1

E‖Rq(t− s)H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑζ)dζ)‖2ds+ 10Tr(Q)

×
∫ τ1

0

‖Rq(τ2 − s)−Rq(τ1 − s)‖2E‖H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑζ)dζ)‖2ds

Thus compactness of Sq(·), Kq(·) and Rq(·) gives the continuity in the uniform oper-

ator topology which implies that the above inequality tends to zero as τ1 → τ2. This

implies that the set {Ψ2z : z ∈ Br} is a family of equicontinuous functions.

Step 5. Ψ2 maps Br into a precompact subset of B0
T .

Obviously, the set V(0) = {Ψ2(0)} is relatively compact in E. For t ∈ (0, T ], we

decompose the Ψ2 by Ψ2 = Λ1 + Λ2 as

Λ1z(t) =

∫ t

0

Rq(t− s)Bx(s)ds+

∫ t

0

Rq(t− s)F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)ds

+

∫ t

0

Rq(t− s)H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑζ)dζ)dW (s), t ∈ [0, T ], (3.14)

and

Λ2z(t) =
m∑

i=1

Sq(t− ti)Ii(y(ti) + ẑ(ti)) +
m∑

i=1

Kq(t− ti)Ji(y(ti) + ẑ(ti))ds,

t ∈ (0, T ]. (3.15)

Now, it will be shown that Λ1(Br)(t) = {(Λ1z)(t) : z ∈ Br} is relatively compact for

every t ∈ [0, T ]. Let 0 < t ≤ s ≤ t1 be fixed and let ǫ be a positive real number such

that ǫ < t. For z ∈ Br, we consider

(Λǫ
1z)(t) =

∫ t−ǫ

0

Rq(t−s)Bx(s)ds+
∫ t−ǫ

0

Rq(t−s)F (s, ys+ẑs,
∫ s

0

a2(s, ζ, yζ+ẑζ)dζ)ds

+

∫ t−ǫ

0

Rq(t− s)H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑζ)dζ)dW (s), t ∈ [0, T ].

By the compactness of Sq(t), Rq(t) t > 0, we have that the set Uǫ(t) = {(Λǫ
1z)(t) : z ∈

Br} is relatively compact in E for each ǫ with ǫ ∈ (0, t). Thus, we have E‖(Λ1z)(t)−
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(Λǫ
1z)(t)‖2E

≤ 3E‖
∫ t

t−ǫ

Rq(t− s)Bx(s)ds‖2

+3E‖
∫ t

t−ǫ

Rq(t− s)F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)ds‖2

+3E‖
∫ t

t−ǫ

Rq(t− s)H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑζ)dζ)dW (s)‖2

≤ 3M2M2
BOǫ

2 + 3M2ǫ2
∫ t

t−ǫ

mF (s)ΘF

(
4[‖φ‖2Bv

+ l2(r +M2
E‖φ(0)‖2E)]

+T

∫ s

0

La2
Wa2

(4[‖φ‖2Bv
+ l2(r +M2

E‖φ(0)‖2E)])dζ
)
ds+ 3M2Tr(Q)ǫ

×
∫ t

t−ǫ

mH(s)ΘH

(
4[‖φ‖2Bv

+ l2(r +M2
E‖φ(0)‖2E)] + T

∫ s

0

ma3
Θa3

(4[‖φ‖2Bv

+ l2(r +M2
E‖φ(0)‖2E)])dζ

)
ds.

As ǫ → 0, the right hand side of above inequality tends to zero. Thus, there are

relatively compact sets arbitrary close to the set U(t) = {(Λ1z)(t) : z ∈ Br} and

U(t) is relatively compact in E. It is not difficult to show that Λ1(Br) is uniformly

bounded. Since Ψ2 is equicontinuous. Thus, by the Arzelá-Ascoli theorem, we deduce

that Λ1 is compact.

Next, we show that Λ2(Bq)(t) is relatively compact for every t ∈ [0, T ]. For

t ∈ [0, t1], it is obvious. Now for t ∈ (ti, ti+1], i = 1, · · · ,m and z ∈ Br, we need to

show that U = {∑m
i=1 Sq(t− ti)Ii(y(ti) + ẑ(ti)) +

∑m
i=1Kq(t− ti)Ji(y(ti) + ẑ(ti))ds :

t ∈ (ti, ti+1], z ∈ Br} is relatively compact in C([ti, ti+1];E). By the compactness of

Sq(t),Kq(t) t ≥ 0 and assumptions on Ii, Ji, we conclude that the set {∑m
i=1 Sq(t −

ti)Ii(y(ti)+ ẑ(ti))+
∑m

i=1Kq(t−ti)Ji(y(ti)+ ẑ(ti))ds, z ∈ Br} is relatively compact in

E. It can be easily prove that the functions in U are equicontinuous. Thus, from the

Arzelá-Ascoli theorem, it follows that Λ2 is compact operator. Hence, Ψ2 = Λ1 + Λ2

is completely continuous operator.

Step 6. The set G = {u ∈ E : λ1Ψ1(u/λ1)+λ1Ψ2u = u} is bounded for λ1 ∈ (0, 1).

Consider the nonlinear operator equation of the form

z(t) = λ1Ψz(t), 0 < λ1 < 1, (3.16)

where Ψ is defined by the equation (3.7).

Let z ∈ B
0
T be a possible solution of equation (3.16) that gives that

z(t) = λ1Sq(t)[−g(y + ẑ)] + λ1Kq(t)[u1 − h(y + ẑ)] + λ1
∑

0<ti<t

Sq(t− ti)

×Ii(y(ti) + ẑ(ti)) + λ1
∑

ti<t

Kq(t− ti)Ji(y(ti) + ẑ(ti)) + λ1

∫ t

0

Kq(t− s)
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×G(s, ys + ẑs,

∫ s

0

a1(s, ζ, yζ + ẑζ)dζ)ds+ λ1

∫ t

0

Rq(t− s)Bx(s)ds

+λ1

∫ t

0

Rq(t− s)F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)ds

+λ1

∫ t

0

Rq(t− s)H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑζ)dζ)dW (s),

t ∈ [0, T ]. (3.17)

Let ν(t) = 4(‖φ‖2
Bv

+ l2(r+M2
SE‖φ(0)‖2E)) for each t ∈ [0, T ]. By using assumptions

(A2)-(A5), we get

E‖z(t)‖2 ≤ 8E‖Sq(t)[−g(y + ẑ)]‖2

+ 8E‖Kq(t)[u1 − h(y + ẑ)]‖2 + 8E‖
∑

0<ti<t

Sq(t− ti)

× Ii(y(ti) + ẑ(ti))‖2 + E‖
∑

ti<t

Kq(t− ti)Ji(y(ti) + ẑ(ti))‖2 + 8E‖
∫ t

0

Kq(t− s)

×G(s, ys + ẑs,

∫ s

0

a1(s, ζ, yζ + ẑζ)dζ)ds‖2 + 8E‖
∫ t

0

Rq(t− s)Bx(s)ds‖2

+ 8E‖
∫ t

0

Rq(t− s)F (s, ys + ẑs,

∫ s

0

a2(s, ζ, yζ + ẑζ)dζ)ds‖2

+ 8E‖
∫ t

0

Rq(t− s)H(s, ys + ẑs,

∫ s

0

a3(s, ζ, yζ + ẑζ)dζ)dW (s)‖2,

≤8M2‖ − g(y + ẑ)‖2 + 8M2
m∑

i=1

Φi
1 + 8M2

m∑

i=1

Ψi
2 + 64

M4M4
BT

2

λ2

{
2E‖yT + ẑT ‖2

+ 2

∫ T

0

E‖σ(s)‖2Qds+ 2M2[‖φ‖2Bv
+ L̂g‖y + ẑ‖2 + L̂1

g] + 2M2[‖u1‖2

+ L̂h‖y + ẑ‖2 + L̂1
h]

+M2
m∑

i=1

Φi
1 +M2

m∑

i=1

Ψi
2 +M2T 2[2LG(1 + 2La1

)r∗ + 4LGC2 + 2C1]

+M2T

∫ T

0

mF (s)ΘF (‖ys + ẑs‖2Bv
+ T

∫ s

0

La2
Wa2

(‖yζ + ẑζ‖2Bv
)dζ)ds+M2Tr(Q)

×
∫ T

0

mH(s)ΘH(‖ys + ẑs‖2Bv
+ T

∫ s

0

ma3
Θa3

(‖yζ + ẑζ‖2Bv
)dζ)ds

}
+ 8MT

×
∫ t

0

‖Rq(t− s)‖mF (s)ΘF

(
‖ys + ẑs‖2Bv

+ T

∫ s

0

La2
Wa2

(‖yζ + ẑζ‖2Bv
)dζ

)
ds

+ 8M2Tr(Q)

∫ t

0

mH(s)ΘH(‖ys + ẑs‖2Bv
+ T

∫ s

0

ma3
Θa3

(‖yζ + ẑζ‖2Bv
)dζ)ds

≤16M2[L̂g‖yt + ẑt‖2Bv
+ L̂1

g] + 16M2[‖u1‖2 + L̂h‖yt + ẑt‖2Bv
+ L̂1

h] + 8M2
m∑

i=1

Φi
1
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+ 8M2
m∑

i=1

Ψi
2 + 64

M4M4
BT

2

λ2
×
{
2E‖yT + ẑT ‖2 + 2

∫ T

0

E‖σ(s)‖2Qds+ 2M2[‖φ‖2Bv

+ L̂g‖yt + ẑt‖2Bv
+ L̂1

g] + 2M2[‖u1‖2E + L̂h‖y + ẑ‖2 + L̂1
h] +M2

m∑

i=1

Φi
1 +M2

m∑

i=1

Ψi
2

+M2T 2
[
2LG(1 + 2La1

)ν(t) + 4LGC2 + 2C1
]
+M2T 2

∫ T

0

mF (s)

×ΘF

(
ν(s) + T

∫ s

0

La2
Wa2

(ν(ζ))dζ
)
ds+M2Tr(Q)T

∫ T

0

mH(s)ΘH(ν(s)

+ T

∫ s

0

ma3
Θa3

(ν(ζ))dζ)ds

}
+ 8M2T 2

[
2LG(1 + 2La1

)ν(t) + 4LGC2 + 2C1
]

+ 8M2T 2

∫ t

0

mF (s)ΘF

(
ν(s) + T

∫ s

0

La2
Wa2

(ν(ζ))dζ

)
ds+ 8M2Tr(Q)T

×
∫ t

0

mH(s)ΘH

(
ν(s) + T

∫ s

0

ma3
Θa3

(ν(ζ))dζ
)
ds.

Therefore

ν(t) ≤ M̃

1− Ñ
+

32T 2l2M2

1− Ñ
×
∫ t

0

mF (s)ΘF

(
ν(s) + T

∫ s

0

La2
Wa2

(ν(ζ))dζ
)
ds

+
32l2M2Tr(Q)T

(1− Ñ)

∫ t

0

mH(s)ΘH

(
ν(s) + T

∫ s

0

ma3
Θa3

(ν(ζ))dζ
)
ds (3.18)

where

M̃ = 4(‖φ‖2Bv
+M2l2E‖φ(0)‖2) + 64M2l2L̂1

g + 64M2l2L̂1
h + 64l2M2(‖u1‖2E)

+32l2M2
m∑

i=1

Φi
1 + 32l2M2

m∑

i=1

Ψi
2 + 256l2

M4M4
BT

4

λ2
×
{
2E‖yT + ẑT ‖2

+2

∫ T

0

E‖σ(s)‖2Qds+ 2M2‖φ‖2Bv
+ 2M2L̂1

g + 2M2L̂1
h + 2M2‖u1‖2E +M2

m∑

i=1

Φi
1

+M2
m∑

i=1

Ψi
2 + 2M2T 2(2LGC2 + C1) +M2T 2

∫ T

0

mF (τ)ΘF

(
ν(τ)

+T

∫ τ

0

La2
Wa2

(ν(ζ))dζ

)
dτ +M2Tr(Q)T

∫ T

0

mH(τ)ΘH(ν(τ)

+T

∫ τ

0

ma3
Θa3

(ν(ζ))dζ)ds

}
+ 16M2T 2(2LGC2 + C1),

and

Ñ = 64l2M2L̂g + 64M2l2L̂h + 8l2
(64M4M4

BT
4

λ2
+ 8M2T 2

)
LG(1 + 2La1

)
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+
256M4M2

BT
4

λ2
l2 ×

{
2M2L̂g + 2M2L̂h

}
. (3.19)

Denote the right hand side of the inequality (3.18) by ξ and obtain

ν(t) ≤ ξ(t), ∀ t ∈ [0, T ], (3.20)

with ξ(0) = M̃

1−Ñ
. Therefore, we have

ξ′(t) =
32

(1− Ñ)

[
l2M2T 2 ×mF (t)ΘF

(
ν(t) + T

∫ t

0

La2
Wa2

(ν(s))ds
)

+ l2M2Tr(Q)T ×mH(t)ΘH

(
ν(t) + T

∫ t

0

ma3
Θa3

(ν(s))ds
)]
,

≤ 32

(1− Ñ)

[
l2M2T 2 ×mF (t)ΘF

(
ξ(t) + T

∫ t

0

La2
Wa2

(ξ(s))ds
)

+ l2M2Tr(Q)T ×mH(t)ΘH

(
ξ(t) + T

∫ t

0

ma3
Θa3

(ξ(s))ds
)]
,

≤ m(t)
[
ΘF

(
ξ(t) + T

∫ t

0

La2
Wa2

(ξ(s))ds
)

+ΘH

(
ξ(t) + T

∫ t

0

ma3
Θa3

(ξ(s))ds
)]
, (3.21)

where m(t) = max{ 32

(1−Ñ)
× l2M2T 2 × mF (t),

32

(1−Ñ)
l2M2Tr(Q)T × mH(t)}. Let

us consider ϕ(t) = ξ(t) +
∫ t

0
TLΘ(ξ(s))ds, where L = max{La2

,ma3
}, and Θ(y) =

max{Wa2
(y),Θa3

(y)}. Thus, ϕ(0) = ξ(0), ξ(t) ≤ ϕ(t) and

ϕ′(t) = ξ′(t) + TLΘ(ξ(t)),

≤ m(t)[ΘF (ϕ(t)) + ΘH(ϕ(t))] + TLΘ(ϕ(t)),

≤ m̂(t)[ΘF (ϕ(t)) + ΘH(ϕ(t)) + Θ(ϕ(t))], (3.22)

where m̂(t) = max{m(t), TL}. This implies that

∫ ϕ(t)

ϕ(0)

ds

ΘF (s) + ΘH(s) + Θ(s)
≤
∫ T

0

m̂(s)ds ≤
∫ ∞

ξ(0)

ds

ΘF (s) + ΘH(s) + Θ(s)
, (3.23)

which shows that ϕ(t) is bounded on [0, T ]. Therefore, there exists a constant C > 0

such that ‖u‖2T ≤ ν(t) ≤ ξ(t) ≤ ϕ(t) ≤ C for all t ∈ [0, T ], where constant C depends

on the function ΘF ,ΘH ,Θ,mF ,mH , m and m̂. Therefore, it implies that the set G
is bounded on [0, T ]. Hence, by the Krasnoselskii-Schaefer type fixed point theorem,

there exists a fixed point z for Ψ on Br such that Ψz(t) = z(t). Since u(t) = y(t)+ẑ(t),

therefore u(t) is the mild solution for the problem (1.1)-(1.3) on [0, T ].
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4. APPROXIMATE CONTROLLABILITY

This section presents the main result on approximate controllability of system (1.1)-

(1.3). For this, we have to make the following assumptions:

(B1) The function G : [0, T ] → Bv×E → E is continuous, and there exists a constant

C̃1 > 0 such that

E‖G(t, u1, u2)‖2 ≤ C̃1,

for t ∈ [0, T ] and u1 ∈ Bv, u2 ∈ E.

(B2) There exists a constant C̃2 > 0 such that

E‖F (t, u1, u2)‖2 ≤ C̃2, u1 ∈ Bv, u2 ∈ E, t ∈ [0, T ].

(B3) There exists a constant C̃3 > 0 such that

E‖H(t, u1, u2)‖2 ≤ C̃3, u1 ∈ Bv, u2 ∈ E, t ∈ [0, T ].

Theorem 4.1. Let us suppose that assumptions of Theorem 3.1 hold and (B1)-

(B3) are fulfilled and the linear system corresponding to system (1.1)-(1.3) is ap-

proximately controllable on [0, T ]. Then, stochastic control system (1.1) involving

fractional derivative is approximately controllable on [0,T].

Proof. Let uλ(·) be a fixed point of Ψ in BT . Theorem 3.1 gives that any fixed

point of the operator Ψ is the mild solution of the system (1.1)-(1.3). By using the

stochastic Fubini theorem, any fixed point of Ψ is a mild solution of (1.1) if uλ(t)

fulfills

uλ(T ) = uT − λR(λ,ΓT
0 )k(u

λ(·)), (4.1)

where

k(uλ(·)) =EuT +

∫ T

0

σ(s)dW (s)− Sq(t)(φ(0)− g(uλ))−Kq(t)(u1 − h(uλ))

−
∞∑

i=1

Sq(T − ti)Ii(u
λ(ti))−

∑

ti<t

Kq(T − ti)Ji(u
λ(ti)) +

∫ T

0

Kq(T − s)

×G(s, uλs ,

∫ s

0

a1(s, ζ, u
λ
ζ )dζ)ds

−
∫ T

0

Rq(T − s)F (s, uλs ,

∫ s

0

a2(s, ζ, u
λ
ζ )dζ)ds

−
∫ T

0

Rq(T − s)H(s, uλs ,

∫ s

0

a3(s, ζ, u
λ
ζ )dζ)dW (s)

By the assumptions (B1)-(B3), we have that F,G and H are uniformly bounded on

[0, T ]. Then there are subsequence, denoted by {G(s, uλs ,
∫ s

0
a1(s, ζ, u

λ
ζ )dζ)},
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{F (s, uλs ,
∫ s

0
a2(s, ζ, u

λ
ζ )dζ)} and {H(s, uλs ,

∫ s

0
a3(s, ζ, u

λ
ζ )dζ)} which converges weakly

to say G(s), F (s) and H(s) in E,E and L(K,E), respectively. On the other hand,

the operator λ(λI + ΓT
s )

−1 strongly as λ → 0+ for all s ∈ [0, T ]. Thus, by Lebesgue

dominated convergence theorem, we have that for t ∈ [0, T ],

‖uλ(T )− uT ‖2 ≤ 6E‖λR(λ,ΓT
0 )[EuT

+

∫ T

0

σ(s)dW (s)− Sq(t)[φ(0)− g(uλ)]−Kq(s)(u1 − h(uλ))]‖

+ 6E‖
∞∑

i=1

λR(λ,ΓT
0 )Sq(T − ti)Ii(u

λ(ti))‖2

+ 6E‖
∑

ti<t

λR(λ,ΓT
0 )Kq(T − ti)Ji(u

λ(ti))‖2

+ 6E‖
∫ T

0

λR(λ,ΓT
0 )Kq(T − s)× [G(s, uλs ,

∫ s

0

a1(s, ζ, u
λ
ζ )dζ)−G(s)]ds‖2

+ 6E‖
∫ T

0

λR(λ,ΓT
0 )Rq(T − s)× [F (s, uλs ,

∫ s

0

a2(s, ζ, u
λ
ζ )dζ)− F (s)]ds‖2

+ 6E‖
∫ T

0

λR(λ,ΓT
0 )Rq(T − s)× [H(s, uλs ,

∫ s

0

a3(s, ζ, u
λ
ζ )dζ)−H(s)]dw(s)‖2

→0, as λ→ 0.

This gives the approximate controllability of (1.1).

5. EXAMPLE

Consider an impulsive neutral stochastic partial differential equation with nonlocal

conditions

CDq
t [y(t, w)−

∫ t

0

∫ s

−∞

(t− s)e4(τ−s)y(τ, w)dτds−
∫ t

0

(t− s)

×
∫ s

0

∫ 0

−∞

b1(τ1)b2(τ2)dτ1dτ2ds] =
∂2y(t, w)

∂w2
+ µ(t, w) +

∫ 0

−∞

ã1(t, s, w, y(s, w))ds

+

∫ t

0

∫ 0

−∞

ã2(t)ã3(s, τ, w, y(s, w))dτds+
(∫ 0

−∞

c̃1(t, s, w, y(s, w))ds

+

∫ t

0

∫ 0

−∞

c̃2(t)c̃3(s, τ, w, y(s, w))dτds
)dW (t)

dt
, 0 ≤ t ≤ T, w ∈ [0, π],

(5.1)

y(t, 0) = y(t, π) = 0, y′(t, 0) = y′(t, π) = 0, (5.2)

y(0, w) +

∫ π

0

k1(w, z)y(t, z)dz = φ(t, w), t ∈ (−∞, 0], (5.3)
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y′(0, w) +

∫ π

0

k2(w, z)y(t, z)dz = ψ(t, w), (5.4)

∆y(t, w)|t=ti = Ii(y(t
−
i , w)) =

∫ 0

−∞

d̃i(t− s)y(θ, w)ds, (5.5)

∆y′(t, w)|t=ti = Ji(y(t, w)) =

∫ 0

−∞

f̃i(t− s)y(θ, w)ds, (5.6)

where Ii, Ji ∈ C(R,R), i = 1, · · · ,m, W (t) denotes a standard cylindrical Wiener

process in E defined on a stochastic space (Ω,F , P ) and E = K = L2([0, π]) with the

norm ‖ · ‖, µ : [0, T ]× [0, π] → [0, π] is continuous in t, CDq
t represents the generalized

Caputo fractional derivative of order 1 < q < 2.

Choose U = E = L2([0, π]). Define the operator A : D(A) ⊂ E → E by y′′ = Ay

with the domain

D(A) = {y ∈ E : y, y′ are absolutely continuous, y′′ ∈ E and y(0) = y(π) = 0}.

Then, we have that A is densely defined in E and it is the infinitesimal generator of a

resolvent family {Sq(t) : t ≥ 0}. Further, A has a discrete spectrum with eigenvalues

of the form −n2, n = 0, 1, 2, · · · and corresponding normalized eigenfunctions are

given by yn(w) =
√

2
π sin(nw). Additionally, {yn : n ∈ N} is an orthonormal basis

for E and

T (t)y =

∞∑

i=1

e−n2t(y, yn)yn, ∀ y ∈ E, t > 0.

Now, we take v(t) = e2t, t < 0. Then we have l =
∫ 0

−∞
v(s)ds = 1/2(here s < 0) and

define

‖y‖Bv
=

∫ 0

−∞

v(s) sup
θ∈[s,0]

(E‖y(θ)‖2)1/2ds.

Clearly, (Bv, ‖ · ‖Bv
) is a Banach space. Thus, for (t, y) ∈ [0, T ]×Bv with y(θ)(w) =

y(θ, w), (θ, w) ∈ (−∞, 0]× [0, π]. Let y(t)w = y(t, w) and define the bounded linear

operator B : U → E by Bx(t)(w) = µ(t, w), w ∈ [0, π], u ∈ U. Thus, the functions

G : [0, T ]×Bv×E → E, F : [0, T ]×Bv×E → E and H : [0, T ]×Bv×E → LQ(K,E)

are given as

G(t, φ,

∫ t

0

a1(t, s, φ)ds)(w) =

∫ t

−∞

e4(τ−t)φ(τ, w)dτ

+

∫ t

0

∫ 0

−∞

b1(t)b2(τ)φ(τ, w)dτds,

F (t, φ,

∫ t

0

a2(t, s, φ)ds)(w) =

∫ 0

−∞

ã1(t, s, w, φ(s, w))ds

+

∫ t

0

∫ 0

−∞

ã2(t)ã3(s, τ, w, φ(s, w))dτds,
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H(t, φ,

∫ t

0

a3(t, s, φ)ds)(w) =

∫ 0

−∞

c̃1(t, s, w, φ(s, w))ds

+

∫ t

0

∫ 0

−∞

c̃2(t)c̃3(s, τ, w, φ(s, w))dτds,

where:

(1) b1, b2 : R → R are continuous, and

γ2 =
(∫ 0

−∞

(b2(s))
2

v(s)
ds
)1/2

<∞.

(2) The functions ã2, c̃2 : R → R are continuous and ãj , c̃j(j = 1, 3) : R → R are

continuous and there exist continuous functions pi, qi : R → R(i = 1, 2, 3, 4) such that

|ã1(t, s, x, y)| ≤ p1(t)p2(s)|y|, (t, s, x, y) ∈ R
4,

|ã3(t, s, x, y)| ≤ p3(t)p4(s)|y|, (t, s, x, y) ∈ R
4,

|c̃1(t, s, x, y)| ≤ q1(t)q2(s)|y|, (t, s, x, y) ∈ R
4,

|c̃3(t, s, x, y)| ≤ q3(t)q4(s)|y|, (t, s, x, y) ∈ R
4,

with

Lã
1 = (

∫ 0

−∞

(p2(s))
2

v(s)
ds)1/2 <∞, Lã

2 = (

∫ 0

−∞

(p4(s))
2

v(s)
ds)1/2 <∞,

Lc̃
1 = (

∫ 0

−∞

(q2(s))
2

v(s)
ds)1/2 <∞ and Lc̃

2 = (

∫ 0

−∞

(q4(s))
2

v(s)
ds)1/2 <∞.

(3) The functions d̃i, f̃i and LIi = (
∫ 0

−∞

(d̃i)
2

v(s) ds)
1/2, LJi

= (
∫ 0

−∞

(f̃i)
2

v(s) ds)
1/2, where

i = 1, · · · ,m, m ∈ N are finite.

Thus, the system (5.1)-(5.6) can be reformulated as (1.1)-(1.3) and neutral fractional

stochastic system with nonlocal and impulsive conditions corresponding to (5.1)-(5.6)

is approximately controllable. Therefore, we may easily verify all the assumptions

of Theorem 3.1, 4.1 and hence, fractional control system (5.1)-(5.6) is approximately

controllable on (−∞, T ].
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