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1. INTRODUCTION

Applications in a wide variety of fields require the handling of two-point boundary

value problems. Many problems involving partial differential equations with bound-

ary conditions are reduced to such problems, for example, the well-known classical

Sturm-Liouville problems. Such problems also arise in many control and optimization

systems. The widely used LQG (linear quadratic Gaussian regulator) control prob-

lems often lead to the problem of solving a Riccati equation with boundary conditions.

Moreover, because of the need in modeling of complex and real-world systems, one is

forced to take random noise into consideration.

In this paper, we consider the following random two-point boundary value prob-
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lem:

ÿε(t) =
1

ε
F (yε(t), ẏε(t), ξε(t)) (1)

yε(0) = βε
1, yε(1) = βε

2. (2)

This paper is concerned with the limit associated with this type of boundary value

problems. For notation simplicity, we shall assume that yε(·), ξε(·) are real-valued

stochastic processes, and βε
i , i ≤ 2 are real-valued random variables throughout the

paper. However, all the subsequent development may be extended to multidimen-

sional cases. In (1), ε > 0 is a small parameter. We are particularly interested in

investigating the asymptotic behavior of the underlying system, and getting a limit

theorem as ε → 0.

Several people tackled random boundary value problems from different angles; see

for example, [18], [17], and [16], among others; see also related paper for deterministic

problems [4] for instance. Two point boundary value problems of nonlinear equations

with deterministic boundary conditions was studied in White and Franklin [18]. Lin-

ear and nonlinear deterministic ordinary differential equations with random boundary

conditions were treated in Xia, Boyce, and Barry [17]. Random boundary value prob-

lems in conjunction with the determination of joint probability density distribution

for the solution was developed in Xia [16].

Our main reference in this paper is [18], in which White and Franklin treated the

following boundary value problem:

ÿε(t) = F (yε(t), ẏε(t), ξε(t)) (3)

yε(0) = 0, yε(1) = 1. (4)

In lieu of dealing with (3)-(4) directly, an alternative approach–the method of shooting

parameter was employed.

Choose a shooting parameter αε, and replace the boundary condition (4) by the

initial condition

yε(0) = 0, ẏε(0) = αε. (5)

Let the solution of (3) and (5) be denoted by yε(t;αε). The solution of (3)-(4) is

then obtained for random variables αε satisfying the following nonlinear boundary

condition

yε(1;αε) = 1.

It was shown that with large probability, there is a solution to this problem. Moreover,

let y0(t, α) be the solution of the “averaged” system, then the normalized deviation

1√
ε

(

yε(t)− y0(t)

ẏε(t)− ẏ0(t)

)
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converges weakly to a diffusion process.

In [16], the following problem was investigated:

ẏε(t) = F (yε(t), ξε(t)),

Ayε(0) +Byε(1) = αε,

where ξε(t) = ξ0(t) + εξ1(t) + ε2ξ2(t) + · · · . By means of solving a sequence of

deterministic partial differential equations, the density function was determined.

In this work, the framework is different from the aforementioned papers. Although

our formulation is somewhat similar to that of [18], there are main differences. To put

into perspective and to see what is new in the current paper, we begin by noting that

the problem considered in this paper is very different from that of [18]. Seemingly

having similar form, the right-hand side of (1) is ε−1F (yε(t), ẏε(t), ξε(t)), whereas the

right-hand side of (3) is F (yε(t), ẏε(t), ξε(t)). Thus (3) can be considered as a “small”

perturbation about a deterministic ODE, whereas (1) is a “large” perturbation leading

to a limit SDE. The subtle difference due to the addition of the term ε−1 is that as

ε → 0, a limit ordinary differential equation is obtained in [18], whereas in this

paper, as ε → 0, the limit is a diffusion. To the best of our knowledge, such a

more “singularly” perturbed boundary value problem has not been considered in

the literature previously. As ε is getting smaller and smaller, there are more and

more fluctuations. However, contrary to one’s intuition, the system does not blow

up as ε → 0. It is interesting to note that because of the ε−1 used, the limit has a

“correction” term similar in spirit to theWong-Zakai approximation, whereas the error

term considered in [18] follows the work of Khasminskii [6]. Moreover, the techniques

used in this paper is based on the more up-to-dated martingale averaging methods.

The martingale averaging methods have been developed by Kushner; see for example,

[11], which have been developed further and used in stochastic approximation for a

wide range of systems in Kushner and Yin [12]. In this paper, our effort is devoted

to reduction of complexity. The original problem with wideband noise and small

parameter ε is difficult to deal with. The limit diffusion system is much simpler.

Thus, we may use the limit system as a good approximation to the original system.

We shall study the two-point boundary value problem from a weak convergence point

of view. By using recent results in diffusion approximation, the randomly perturbed

two-point boundary value problem is approximated by that of a limit diffusion process.

In lieu of using a “white noise” model, we consider a wide-band noise model, which

is more realistic in various applications. Roughly speaking, a wide-band noise is one

such that it approximates the “white noise”. To be more specific, let Rε(s) be the

correlation of ξε(·), i.e.,
Rε(s) = Eξε(t+ s)ξε(t), (6)
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and let Sε(·) be the power spectral density (we assume it exists) Sε(µ) =
∫∞

−∞
eiµs

Rε(s)ds. If ξ(·) is wide-band noise, then Sε(µ) is band limited, i.e., Sε(µ) = 0 for

|µ| > µ0, for some µ0 > 0, and the interval [−µ0, µ0] is wide enough. In fact, we shall

assume ξε(t) = ξ(t/ε2). Consequently, the correlation function is Rε(s) = R(s/ε)

and its spectral density is Sε(µ) = εS(εµ). The bandwidth is of the order 1/ε. As

ε is getting smaller and smaller, the bandwidth is getting wider and wider; and the

spectral of 1
εξ(

t
ε2 ) tends to that of white or Gaussian noise as ε → 0.

As mentioned before, our main goal is to obtain a limit theorem by means of weak

convergence methods. For definitions as well as general theory of weak convergence,

the readers are referred to [1], [11], and [3]. Terms as weak convergence, tightness,

Skorohod topology etc. will be used without specific mention.

To proceed, we assume that ξε(·) is exogenous in the sense, for each t and each

set G in σ(ξε(u);u > t), P (G|ξε(u);u ≤ t) = P (G|ξε(u), xε(u);u ≤ t). The symbol

K denotes a generic positive constant, its value may change from usage to usage

however; C2
0 denotes the set of C2 functions with compact support, and Dr[0,∞)

denotes the space of functions which live in R
r, and which are right continuous with

left-hand limits endowed with the Skorohod topology; Eε
t denotes the conditioning

on the σ-algebra σ(ξε(u);u ≤ t); “⇒” means “weak convergence.”

The organization of the remainder of the paper is as follows. The methods of

shooting parameters is discussed next, and the main theorem is stated. The proof of

the theorem is then presented in Section 3. Some examples are given in Section 4.

Finally, some concluding remarks are made in Section 5.

2. LIMIT RESULT

Solving boundary value problems by means of shooting parameter methods were dis-

cussed extensively in [5], for instance. In light of [18], [16], and [5], instead of treating

the boundary value problem (1)-(2), we consider the following initial value problem.

ÿε(t) =
1

ε
F (yε(t), ẏε(t), ξε(t)) (7)

yε(0) = βε
1, ẏε(0) = γε. (8)

where γε is a random variable.

We begin by assuming that F (·, ·) is smooth enough, and that for each ε > 0,

there is a unique solution (unique in the sense of in distribution) for (7)-(8). Because

of our main focus here is the limit property, it is more instructive to concentrate on

and emphasize on the weak convergence aspect. Note that regarding the solution to

(7)-(8), the uniqueness here is only assumed in the sense of in distribution because

that we only need to work with probability measures. The rational is that the problem
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with a small parameter is more difficult to deal with in general. Rather than treating

this problem, we can examine the limit process so as to substantially simplify the

calculations. Also as mentioned before, the limit in our case is no longer an ordinary

differential equation but rather a stochastic differential equation. We would also

like to add that in recent years, more analysis methods and techniques have been

developed to analyze singularly perturbed diffusions; see for example, the work of

Khasminskii and Yin [7, 8, 9] and references therein. In addition, for recent results

on the existence and uniqueness of solutions of boundary value problems, we refer to

[14] and references therein.

Denote the solution by yε(t; γε). The solution of the original boundary value

problem is obtained by choosing γε such that

yε(1; γε) = βε
2. (9)

We define xε
1(t) = yε(t), xε

2(t) = ẏε(t). Then (7)-(8) can be written as:

(

ẋε
1(t)

ẋε
2(t)

)

=





xε
2(t)
1

ε
F (xε(t), ξε(t))



 (10)

(

xε
1(0)

xε
2(0)

)

=

(

βε
1

γε

)

(11)

To proceed, the following assumptions are needed.

(A1) ξ(·) is a bounded and right continuous stationary φ-mixing process with zero

mean and mixing rate φ(·), such that

∫ ∞

0

φ1/2(s)ds < ∞. (12)

(A2) F (·, ·) and Fx(·, ·) are both continuous in (x, ξ), EF (x, ξ(t)) = 0, where

Fx(·, ·) denotes the partial derivative of F (·, ·) with respect to x. Recall that x = (y, ẏ)′

with z′ denotes the transpose of z.

(A3) There are continuous functions a(·) and b(·) such that a(·) is non-negative,

and
∫ T

s

EF (x, ξ(u))F (x, ξ(s))du → a(x)

∫ T

s

EFx2
(x, ξ(u))F (x, ξ(s))du → b(x)

as T − s → ∞, and s → ∞.

(A4) There exist random variables βi for i = 1, 2, and γ such that βε
i ⇒ βi and

γε ⇒ γ as ε → 0.

These conditions are not restrictive. The φ-mixing processes constitute a large

class of processes that have “decreasing dependence” property. In fact, we can work
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with an even larger class of processes that are approximated by functions of φ-mixing

processes; see [1]. The weak convergence assumption of βε
i and γε are not restrictive

either. If βε
i , γ

ε are bounded random variables then this condition will be satisfied.

If βε
i , γ

ε are uniformly integrable, then they are tight, and we can extract convergent

subsequences. In fact, our conditions here are more general than the fixed constants

auxiliary conditions used in [18]. Before proceeding further, we present a lemma

concerning the existence and uniqueness of solution of the boundary value problem

(1) and (2).

Lemma 2.1. Assume that conditions of (A1) and (A2) hold, and that for each

ε > 0, the differential equation (1) has a unique solution for each initial condition.

Then the boundary value problem given by the differential equation (1) with boundary

condition (2) has a unique solution in the almost sure sense.

Proof. We note that by (A1), {ξ(·)} is a bounded and right continuous process.

By (A2), F (·, ξ) is continuous and smooth for each ξ and each fixed ε. Thus for almost

all ω, it can be checked that all the conditions in the paper of Lasota and Opia [13,

Theorem 1, p.2] are satisfied. As a result, the boundary value problem (1) and (2)

has a unique solution almost surely. The lemma is thus proved.

The existence and uniqueness of the solution of the boundary value problem is

established for each fixed ε > 0. Our task next is to try to approximate the solution

of the boundary value problem as ε → 0. We proceed to state the main theorem.

Theorem 2.2. Suppose that the conditions of Lemma 2.1 are satisfied, that (A3)-

(A4) hold, and that (13) has a unique solution (unique in the sense of distribution)

for each initial condition. Then the process {xε(·)} given by (10) and (11) is tight in

D2[0,∞), and xε(·) ⇒ x(·) such that x(·) satisfies
(

dx1(t)

dx2(t)

)

=

(

x2(t)

b(x(t))

)

dt+

(

0 0

0 a
1

2 (x(t))

)(

0

1

)

dw(t), (13)

(

x1(0)

x2(0)

)

=

(

β1

γ

)

, (14)

where w(·) is a real-valued standard Brownian motion. Moreover, there exists an

x1(1) = x1(1; γ) satisfying

x1(1) = β2. (15)

Remark 2.3. The theorem above indicates that the solution of problem (10) with

initial condition (11) and condition xε
1(1) = xε

1(1, γ
ε) = βε

2 can be approximated by

(13)-(14) together with condition (15). The computation complexity is thus reduced.

Similar to the approach of [18], using asymptotic expansion, it is possible to show
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that there exists some ∆ such that a unique solution of the original problem (1)-(2),

with shooting parameters within a ball of radius ∆ about those of the limit problem,

will exist with probability approaching 1 as ε → 0. In what follows, our main effort

however is devoted to obtaining limit (13)-(14) using weak convergence methods.

3. PROOF OF RESULT

The idea is to show that the limit of xε(·) solves a martingale problem with operator

Af(x) = f ′
x(x)

(

x2

b(x)

)

+
1

2

∑

ij

Gij(x)fxixj
(x)

for any f(·) ∈ C2
0 , where f ′

x denotes the transpose of fx, and G(x) =
(

0 0
0 a(x)

)

.

Following [15] and [10], we first define the notion p-lim and an operator Âε as follows.

Let M be the set of real-valued, measurable functions of (ω, t) that are none zero

only on a bounded t-interval. Let

M̄ε = {f ∈ M ; sup
t

E|f(t)| < ∞ and f(t) is Fε
t measurable }

Let f(·), fδ(·) ∈ M̄ε, for each δ > 0, f = p-limδ f
δ if and only if

sup
t,δ

E|fδ(t)| < ∞,

lim
δ→0

E|fδ(t)− f(t)| = 0 for each t.

We say that f(·) ∈ D(Âε) the domain of Âε, and Âεf = g, if f, g ∈ M̄ε and

p-lim
δ→0

(

Eε
t f(t+ δ)− f(t)

δ
− g(t)

)

= 0.

To proceed, we shall use the technique developed in [11] and [2]. In particular,

we use the perturbed test function methods in what follows. Fix f(·) ∈ C2
0 and

apply Âε to f(xε(·)). We are seeking a “small” perturbation fε
1 (t) of f(·), such that

Âε
(

f(xε(t))+fε
1 (t)

)

is approximated by an appropriate infinitesimal generator of the

diffusion.

We also need the notion of N -truncation. For each N > 0, let

SN = {x; |x| ≤ N}

be the N -ball, and let xε,N (0) = xε(0), xε,N (t) = xε(t) up until the first exit from

SN , and

lim
m→∞

lim sup
ε

P{sup
t≤T

|xε,N (t)| ≥ m} = 0 for each T < ∞
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xε,N (·) is said to be the N -truncation of xε(·).
In lieu of (10), we shall consider the following truncated version of the differential

equation
(

ẋε,N
1 (t)

ẋε,N
2 (t)

)

=





xε,N
2 (t)
1

ε
FN (xε,N (t), ξε(t))



 (16)

where

FN (xε,N (t), ξε(t)) = F (xε,N (t), ξε(t))qN (xε,N (t))

such that

qN (z) =

{

1, when |z| ≤ N

0, when |z| ≥ N + 1.

For ease of notations, we shall write x for xε,N (t) whenever is convenient.

It follows that for any f ∈ C2
0 ,

Âεf(x) = f ′
x(x)





x2

1

ε
F (x, ξε(t))



 . (17)

In other word, for our case, Âε is just a differential operator. Note that fx(x) stands

for the gradient of f(·), and f ′
x(x) = (fx1

(x), fx2
(x)).

Now, define

fε
1 (t) =

1

ε

∫ T

t

Eε
t f

′
x(x)

(

0

FN (x, ξε(u))

)

du. (18)

fε
1 (t) is introduced to effect the desired cancellation, and to guarantee that the per-

turbation is small in an appropriate sense. Making change of variable u
ε2 → u in (18)

yields

fε
1 (t) = ε

∫ T

ε2

t

ε2

Eε
t fx2

(x)FN (x, ξε(u))du. (19)

By virtue of the strong mixing conditions, the following equations hold for t < v < u,

(see [11], and references therein).

|Etξ(u)ξ(v)− Eξ(u)ξ(v)| ≤ 4φ
1

2 (u− v)φ
1

2 (v − t) (20)

|Etξ(t+ s)− Eξ(t+ s)| ≤ 2φ(s) (21)

where Et denotes the conditioning on F t
0 = σ{ξ(s); 0 ≤ s ≤ t}.

In view of (21) and (A1),

sup
t≤T

|fε
1 (t)| = sup

t≤T
|ε
∫ T

ε2

t

ε2

fx2
(x)Eε

tF
N (x, ξε(u))du|

≤ Kε sup
t≤T

(

∫ T

ε2

t

ε2

φ(u− t

ε2
)du
)

→ 0 as ε → 0.

(22)
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Define

fε(t) = f(x) + fε
1 (t). (23)

Since

Âεfε
1 (t) = −1

ε
fx2

(x)FN (x, ξε(t))

+ε

∫ T

ε2

t

ε2

Eε
t

(

fx2
(x)FN (x, ξ(u))

)′

x
˙xε,N (t)du,

(24)

Âεfε(t) = fx1
(x)x2 + gε(t)

+

∫ T

ε2

t

ε2

E
(

fx2
(x)FN (x, ξ(u))

)′

x

(

εx2

FN (x, ξε(t))

)

,
(25)

with

gε(t) =

∫ T

ε2

t

ε2

{

Eε
t

(

fx2
(x)FN (x, ξ(u))

)′

x

(

εx2

FN (x, ξε(t))

)

−E
(

fx2
(x)FN (x, ξ(u))

)′

x

(

εx2

FN (x, ξε(t))

)}

du.

(26)

By virtue of (20), p-limε g
ε(t) = 0.

As for the third term on the right-hand side of (25),

∫ T

ε2

t

ε2

E
(

fx2
(x)FN (x, ξ(u))

)

x

(

εx2

FN (x, ξε(t))

)

du

=

∫ T

ε2

t

ε2

Efx2x2
(x)FN (x, ξ(u))FN (x, ξε(t))du

+

∫ T

ε2

t

ε2

Efx2
(x)FN

x2
(x, ξ(u))FN (x, ξε(t))du

+ε

∫ T

ε2

t

ε2

Efx1x2
(x)x2F

N (x, ξ(u))du

+ε

∫ T

ε2

t

ε2

Efx2
(x)x2F

N
x1
(x, ξ(u))du.

(27)

In view of (A3), the first term on the right-hand side of (27) tends to fx2x2
(x)a(x),

and the second term tends to fx2
(x)b(x). For the third term, by the strong mixing,

ε

∫ T

ε2

t

ε2

Efx1x2
(x)x2F

N (x, ξ(u))du = ε

∫ T

ε2

t

ε2

Efx1x2
(x)x2E

ε
tF

N (x, ξ(u))du

→ 0 as ε → 0.

Similarly, the last term tends to 0 as ε → 0.

Consequently, {Âεfε(·); t > 0, t ≤ T} is uniformly integrable for each f ∈ C2
0 , and

lim
ε

P{sup
t≤T

|fε(t)− f(xε,N (t))| ≥ m} = 0 for each m > 0.
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By Theorem 3.3.4 in [11], we conclude that {xε,N (·)} is tight. By virtue of the above

result and (A1)

p-lim
ε

(Âεfε(t)− Âεf(xε,N (t))) = 0. (28)

It now follows from Theorem 3.3.2 in [11], xε,N (·) ⇒ xN (·).
Let P (·) and PN (·) be the measures induced by x(·) and xN (·) respectively, on

the Borel subsets of Dr[0,∞). The measure P (·) is unique, since the corresponding

martingale problem or the SDE has a unique solution. Now, for any T < ∞, let H be

any Borel subset of the set of paths in Dr[0,∞) with values in SN , P (H) = PN (H),

But P{supt≤T |x(t)| ≤ N} → 1 as N → ∞. This together with xε,N (·) ⇒ xN (·)
imply that xε(·) ⇒ x(·). Finally, looking at equation (12), the left-hand side converges

weakly to x1(1), and the right-hand side converges to β2. The proof of the theorem

is thus complete.

4. EXAMPLES

Some examples are given in this section. The verification of the statements is a straight

forward application of our theorem. In what follows, w is a standard Brownian motion.

The F (·), F0(·), and F1(·) are all continuous functions, and

(

x1

x2

)

=

(

y

ẏ

)

.

Example 4.1. Consider

ÿε(t) = F (yε(t)) +
1

ε
ξε(t) (29)

yε(0) = 0, yε(1) = 1. (30)

Suppose ξε(t) = ξ( t
ε2 ), and ξ(·) is a right continuous stationary random process,

satisfying (A1). Suppose that EF (x, ξ(t)) = 0, and E
(

ξ(t)
)2

= R2 for some R > 0.

then as ε → 0,

(

xε
1(·)

xε
2(·)

)

⇒
(

x1(·)
x2(·)

)

, and

(

dx1(t)

dx2(t)

)

=

(

x2(t)

F (x1(t))

)

dt+

(

0 0

0 R

)(

0

1

)

dw(t), (31)

where w(·) is a standard real-valued Brownian motion,

x1(0) = 0, x2(0) = γ, (32)

and there is an x1(1; γ) satisfying x1(1; γ) = 1.
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Example 4.2. Consider

ÿε(t) = F0(y
ε(t)) +

1

ε
F1(y

ε(t))ξε(t) (33)

yε(0) = 0, yε(1) = 1. (34)

Let ξ(·) satisfy the same conditions as in Example 4.1. Then

(

xε
1(·)

xε
2(·)

)

⇒
(

x1(·)
x2(·)

)

,

with
(

dx1(t)

dx2(t)

)

=

(

x2

F0(x1(t))

)

dt+

(

0 0

0 RF1(x1(t))

)(

0

1

)

dw(t), (35)

where w(·) is a standard real-valued Brownian motion,

x1(0) = 0, x2(0) = γ, (36)

and there is an x1(1; γ) satisfying x1(1; γ) = 1.

Example 4.3. In particular, if in Example 4.2, F0(y) = −K2
1y, for some K1 > 0,

and F1(y) = y, then (34) becomes the well-known Helmholtz equation

ÿε(t) = −K2
1y

ε(t) +
1

ε
yε(t)ξε(t).

The limit is then given as the solution of

(

dx1(t)

dx2(t)

)

=

(

x2(t)

−K2
1x1(t)

)

dt+

(

0 0

0 Rx1(t)

)(

0

1

)

dw(t),

where w(·) is a real-valued standard Brownian motion.

5. CONCLUDING REMARKS

We conclude this paper by noting the following points.

(a) A limit result associated with a nonlinear differential equation with wide-band

noise perturbations and random boundary conditions is obtained in this paper.

A diffusion limit is derived by using weak convergence methods.

(b) This result leads to an approximation to the two-point boundary value problem

(1) and (2). If ε is sufficiently small, in lieu of solving the original problem, we

can find solutions for the limit problem and use the limit as an approximation.
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(c) Equation (10) is generally nonlinear. Since random variables are involved, typ-

ical numerical schemes for searching roots of nonlinear equations will not work.

However, the methods of stochastic approximation can be applied. Stochastic

approximation is a well studied subject with a huge literature. For most recent

development, see [12] and references therein. We shall not dwell on it here.

(d) We proved the limit theorem under the assumption that the noise satisfies

mixing property. Other noise models can be considered too. for example, if

ξ(t) =
∫ t

−∞
h(t − s)dw(s) and ξε(t) = ξ( t

ε2 ), with h(t) → 0 exponentially as

t → ∞; and F (x, ξ) = F1(x)ξ with F1(·) ∈ C2, then the limit theorem still

holds with minor modifications.

(e) For recent results on two-time-scale diffusions and Markovian systems, we refer

the reader to [7, 8, 9, 19], and the references therein. It is possible to extend

the results of this paper to the case that there is an additional continuous-time

Markov chain. The resulting systems will be switching diffusions. We refer the

reader to [20] but omit the details.
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