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1. INTRODUCTION

In the recent years, the investigation of fractional differential equation has been pick-

ing up much attention of researchers. This is due to the fact that fractional dif-

ferential equations have various applications in engineering and scientific disciplines,

for example, fluid dynamics, fractal theory, diffusion in porous media, fractional bio-

logical neurons, traffic flow, polymer rheology, neural network modeling, viscoelastic
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panel in super sonic gas flow, real system characterized by power laws, electrody-

namics of complex medium, sandwich system identification, nonlinear oscillation of

earthquake, models of population growth, mathematical modeling of the diffusion of

discrete particles in a turbulent fluid, nuclear reactors and theory of population dy-

namics. Fractional calculus is the generalization of the ordinary differentiation and

integration to arbitrary non integer order. The fractional differential equation is an

important tool to describe the memory and hereditary properties of various materials

and phenomena. For more details on fractional calculus see [2, 10, 19, 20].

On the other hand, control problems have attracted many physicists, engineers

and mathematicians and notable contributions have been made to both theory and

applications. The notion of controllability has played a central role throughout the

history of modern control theory. This is the qualitative property of control systems

and is of particular importance in control theory. Many dynamical systems are such

that the control does not affect the complete state of the dynamical system but only

a part of it. On the other hand, very often in real industrial processes it is possible to

observe only a certain part of the complete state of the dynamical system. Therefore,

it is very important to determine whether or not control of the complete state of the

dynamical system is possible. So, here the concept of complete controllability and

approximate controllability arises. Roughly speaking, controllability generally means

that it is possible to steer the dynamical system from an arbitrary initial state to the

desired final state using the set of admissible controls. Controllability is also strongly

connected with the theory of minimal realization of linear time-invariant control sys-

tems. Conceived by Kalman [9], controllability study was started systematically at

the beginning of the sixties. Since then various researches have been carried out

extensively in the context of finite -dimensional deterministic linear systems, non-

linear systems and infinite dimensional systems using different kinds of approaches.

Controllability of deterministic systems is widely used in many fields of science and

technology.

On the other hand, noise or stochastic perturbation is unavoidable and om-

nipresent in nature as well as in man-made systems, so we have to move from de-

terministic models to stochastic models. Stochastic differential equations play an

important role in formulation and analysis of mechanical, electrical, control engineer-

ing, and physical sciences. Motivated by these facts many researchers are showing

great interest to establish an appropriate system to investigate qualitative properties

such as existence, uniqueness, controllability and stability of these physical processes

with the help of fractional calculus, Stochastic analysis and fixed point theorems.

Klamka [12] studied the controllability of linear stochastic systems in finite di-

mensional spaces with delay and without delay in control. In [11], Klamka and Socha

discussed about the controllability of stochastic systems. Mahmudov et al. [17, 16]
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established results for controllability of linear and semilinear stochastic systems in

Hilbert spaces. Shen and Sun [15] studied the controllability of stochastic first order

nonlinear systems with delay in control in finite dimensional as well as in infinite

dimensional spaces.

On the other hand, non local conditions introduced by Byszewski et al. [4] are the

conditions given by an expression where the value of an unknown function is expressed

by the value(s) of this function at regular intervals rather than continuously over the

history period. He has done a great work on nonlocal condition problems and claim

that these types of conditions are usually more precise for physical measurements

than the classical ones as more information was taken into account at the oneset of

the experiment. In recent times, many researchers have studied the existence and

uniqueness of the mild solution of semilinear systems with nonlocal conditions.

Kumar.S and Sukavanam [13] established sufficient conditions for the controllabil-

ity of second order deterministic systems with nonlocal conditions in Banach spaces

using Sadovskii’s Fixed point theorem. Shukla et al.[14] established sufficient con-

ditions for the approximate controllability of retarded semilinear stochastic system

with nonlocal conditions by assuming that the corresponding linear system is approxi-

mately controllable. Arora and Sukavanam [1] established the controllability of second

order semilinear stochastic system with nonlocal conditions using Sadovskii’s Fixed

Point theorem. Very less papers deal with the controllability of fractional stochas-

tic systems of order ρ ∈ (1, 2]. Farahi and Guendouzi [7] studied the approximate

controllability of fractional neutral stochastic evolution equations of order ρ ∈ (0, 1]

with nonlocal conditions using Sadovskii’s Fixed Point theorem. In [8], Guendouzi

and Farahi established results on the aproximate controllability of semilinear frac-

tional stochastic dynamic systems with nonlocal conditions in Hilbert Spaces using

Schefer’s Fixed point theorem.

To the best of our knowledge, the existing articles in the literature concentrate

to examine the existence, uniqueness and controllability of mild solutions for frac-

tional stochastic systems of order ρ ∈ (1, 2] in Hilbert space H using Banach Fixed

Point Theorem, Schefer’s Fixed Point theorem. there is no work reported on the con-

trollability of fractional stochastic system of order ρ ∈ (1, 2] using Sadovskii’s Fixed

Point Theorem. Motivated by the above analysis, in this paper we establish sufficient

conditions for the approximate controllability of fractional stochastic system of order

ρ ∈ (1, 2] with nonlocal conditions using Sadovskii’s Fixed Point Theorem.

2. PROBLEM FORMULATION AND PRELIMINARIES

Let Y, U and K be the separable Hilbert spaces. Let (Ω,ℑ,P) be a complete probabil-

ity space equipped with a normal filtration ℑt, t ∈ J = [0, b] such that the filtration
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ℑt is a right continuous increasing family and ℑ0 contains all P-null sets. Let ω be a

Q-Wiener process on (Ω,ℑt,P) with the covariance operator Q such that trQ < ∞. A

Y-valued random variable is a ℑ measurable function y(t) : Ω → Y and the collection

of random variables S = {y(t) : Ω → Y|t ∈ [0, b]} is called a stochastic process. We

assume that there exists a complete orthonormal system ek in K, a bounded sequence

of nonnegative real numbers λk such that Qek = λkek, k = 1, 2, · · · and a sequence

Bk of independent Brownian motions such that

< w(t), e >=

∞
∑

k=1

√

λk < ek, e > Bk(t), e ∈ K, t ∈ J

and ℑt = ℑt
ω, where ℑt

ω is the σ-algebra generated by ω. In order to define

stochastic integrals with respect to the Q-Wiener process ω(t), we introduce the sub-

space K0 = Q1/2(K) of K which is endowed with the inner product (y1, y2)K0
=

(Q−1/2y1, Q
−1/2y2) and is a Hilbert space. Let L2

0 = L2(Q
1/2K;Y) be the space of

all Hilbert-Schmidt operators from Q1/2K to Y with the norm

||ϕ||2L0

2

= tr((ϕQ1/2)(ϕQ1/2)∗),

for ϕ ∈ L0
2. Clearly, for any bounded linear operator ϕ ∈ L(K,Y), this norm reduces

to

||ϕ||2L0

2

= tr(ϕQϕ∗) =

∞
∑

k=1

||
√

λkϕζk||
2,

Let L2(Ω,ℑb,Y) be the Banach space of ℑb measurable square integrable ran-

dom variables with values in the Hilbert space Y. Let L2
ℑ(J,Y) be the space of

all ℑt-adapted, Y-valued measurable square integrable processes on J × Ω. Let

C([0, b];L2(Ω,ℑt,Y)) be the Banach space of continuous maps from [0, b] into L2(Ω,ℑt,

Y) satisfying the condition sup
t∈J

E||x(t)||2 < ∞.

Let Y2 be the closed subspace of C([0, b];L2(Ω,ℑt,Y)) consisting of measurable

and ℑt - adapted Y valued processes φ ∈ C([0, b];L2(Ω,ℑt,Y)) endowed with the

norm

||φ||Y2
=

(

sup
t∈[0,b]

E||φ(t)||2Y

)1/2

where E is defined as integration with respect to probability measure P.

In this paper, we consider a mathematical model given by the following semilinear

fractional stochastic system of order ρ ∈ (1, 2] with nonlocal conditions of the form

cD
ρ
t x(t) = [Ax(t) +Bu(t) + f(t, x(t))] + σ(t, x(t))

dω(t)

dt
, t ∈ J

x(0) = x0 + g(x), x′(0) = x1 + g1(x)







(2.1)

where ρ ∈ (1, 2], cD
ρ
t is the caputo fractional derivative and the positive constant

b < ∞. Here, the state x(.) takes values in a Banach space Y and the control function
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u ∈ L2
ℑ(J, U); a Banach space of admissible control functions. A is the infinitesimal

generator of strongly continuous ρ-order cosine family {Cρ(t)} on the Banach space

Y. B is a bounded linear operator from the Hilbert space U into Y. The maps

f : J × Y → Y; σ : J × Y → L0
2 are nonlinear suitable functions; x0 and x1 are

ℑ0 measurable Y valued random variables independent of ω; g, g1 are continuous

functions from C(J,Y) → Y.

For simplicity of considerations, we generally assume that the set of admissible

controls is Uad = L2
ℑ(J, U).

Now, we discuss some basic concepts of fractional calculus, stochastic integral and

semigroup theory of linear operators.

Here C([0, b];Y) and C1([0, b];Y) denote the space of functions which are contin-

uous and 1-time continuously differentiable, respectively.

Definition 2.1. [10]. If x(t) ∈ L1([0, b];Y), then the Riemann-liouville fractional

integral of order ρ > 0 is defined by

J
ρ
t x(t) =

1

Γ(ρ)

∫ t

0

(t− s)ρ−1x(s)ds

where Γ(ρ) is the Gamma function defined as Γ(ρ) =
∫∞

0
e−ttρ−1dt.

Definition 2.2. [10]. The Riemann- liouville fractional derivative of a function

x(t) ∈ L1([0, b];Y) of order ρ ∈ (1, 2] is defined by

D
ρ
t x(t) = D2J

2−ρ
t x(t) =

1

Γ(2− ρ)

d2

dt2

∫ t

0

(t− s)1−ρx(s)ds

Definition 2.3. [10]. The Caputo fractional derivative of order ρ ∈ (1, 2] is defined

by

cD
ρ
t x(t) = J

2−ρ
t D2x(t) =

1

Γ(2− ρ)

∫ t

t0

(t− s)1−ρ

[

d2

ds2
x(s)

]

ds,

where x(t) ∈ L1([0, b];Y) ∩ C1([0, b];Y).

Consider the following fractional order system:

cD
ρ
t x(t) = Ax(t), x(0) = η x′(0) = 0, (2.2)

where ρ ∈ (1, 2]; A : D(A) ⊆ Y → Y is a closed and densely defined operator in a

Banach space Y. Applying Riemann fractional integral of order ρ on both sides of

(2.2), we get

x(t) = η +
1

Γ(ρ)

∫ t

0

(t− s)ρ−1Ax(s)ds (2.3)



50 U. ARORA, N. SUKAVANAM

Definition 2.4. [2]. Let ρ ∈ (1, 2]. A family {Cρ(t)}t≥0 ⊂ L(Y) is called a solution

operator (or a strongly continuous ρ-order fractional cosine family) for (2.2) if the

following conditions are satisfied:

1. Cρ(t) is strongly continuous for t ≥ 0 and Cρ(0) = I;

2. Cρ(t)D(A) ⊂ D(A) and ACρ(t)η = Cρ(t)Aη for all η ∈ D(A), t ≥ 0;

3. Cρ(t)η is a solution of (2.2) for all η ∈ D(A), t ≥ 0.

A is called infinitesimal generator of Cρ(t). The strongly continuous ρ-order frac-

tional cosine family is also called ρ-order cosine family.

Definition 2.5. The fractional sine family Sρ : [0,∞) → L(Y) associated with Cρ

is defined by

Sρ(t) =

∫ t

0

Cρ(s)ds, t ≥ 0

Definition 2.6. The fractional Riemann-Liouville family Pρ : [0,∞) → L(Y) asso-

ciated with Cρ is defined by

Pρ(t) = J
ρ−1
t Cρ(t)

Definition 2.7. The ρ-order cosine family Cρ(t) is called exponentially bounded if

there are constants M ≥ 1 and ω ≥ 0 such that

||Cρ(t)|| ≤ Meωt, t ≥ 0 (2.4)

An operator A is said to belong to Cρ(Y,M, ω), if the system (2.2) has an ρ-order

cosine family Cρ(t) satisfying (2.4).

Lemma 2.8. [21] Let G : J × Ω → L0
2 be a strongly measurable mapping such that

∫ b

0

E||G(t)||p
L0

2

dt < ∞. Then

E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

G(s)dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

p

≤ LG

∫ t

0

E||G(s)||p
L0

2

ds

for all t ∈ J and p ≥ 2, where LG is the constant involving p and b.

Definition 2.9. A function x ∈ Y2 is said to be the mild solution of (2.1) if it

satisfies

x(t) = Cρ(t)(x0 + g(x)) + Sρ(t)(x1 + g1(x)) +

∫ t

0

Pρ(t− s){Bu(s) + f(s, x(s))}ds

+

∫ t

0

Pρ(t− s)σ(s, x(s))dω(s), t ∈ [0, b] (2.5)



SEMILINEAR FRACTIONAL STOCHASTIC SYSTEM 51

Definition 2.10. The stochastic system (2.1) is approximately controllable on [0, b]

if ℜ(b) = L2(Ω,ℑb,Y).

Definition 2.11. (Kuratowski measure of noncompactness(MNC)) The Ku-

ratowski measure of noncompactness(MNC) of the set M in the Hilbert space Y is

the greatest lower bound of those ǫ > 0 for which the set M can be covered by finitely

many sets of diameter ≤ ǫ that is

µ(M) = inf{ǫ > 0 : M may be covered by finitely many sets of diameter ≤ ǫ}

for every bounded subset M in the Hilbert space Y.

Lemma 2.12. For any bounded set U, V ⊂ Y, we have the following results:

1. µ(U) = 0 if and only if U is precompact;

2. µ(U) = µ(convU) = µ(U), where convU and U denote the convex hull and

closure of U, respectively;

3. µ(U) ⊂ µ(V ), when U ⊂ V ;

4. µ(U + V ) ≤ µ(U) + µ(V ), where U + V = {u+ v : u ∈ U ; v ∈ V };

5. µ(U ∪ V ) ≤ max{µ(U);µ(V )};

6. µ(λU) = λµ(U), for any λ ∈ R;

7. If the map Q : D(Q) ⊂ Y → K is Lipschitz continuous with constant κ, then

µ(QU) ≤ κµ(U) for any bounded subset U ⊂ D(Q), where K is a Hilbert space.

Definition 2.13. (Condensing Operator) A condensing (or densifying) operator

is a mapping under which the image of any set is in a certain sense more compact

than the set itself. The degree of noncompactness of a set is measured by means of

functions called measures of noncompactness. The contractive maps and the compact

maps are condensing.

Theorem 2.14. [23](Sadovskii’s Fixed point theorem) Let N be a condensing

operator on a Banach space V , that is, N is continuous and takes bounded sets into

bounded sets, and µ(N(D)) < µ(D) for every bounded set D of V with β(D) > 0. If

N(S) ⊂ S for a convex, closed and bounded set S of V , then N has a fixed point in

S.(Here µ(.) denotes the Kuratowski measure of non-compactness).

To prove our main results, we list the following basic assumptions of this paper:
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(H1) A is the infinitesimal generator of a ρ-order cosine family Cρ(t) on V and there

exists a constant M ≥ 1 such that

||Cρ(t)|| ≤ M

(H2) The functions f : J × V → V and σ : J × V → L2
0 satisfy linear growth and

Lipschitz conditions. Moreover, there exist positive constants N1, N2,K1 and

K2 such that

||f(t, x)− f(t, y)||2 ≤ N1||x− y||2, ||f(t, x)||2 ≤ N2(1 + ||x||2)

||σ(t, x)− σ(t, y)||2L0

2

≤ K1||x− y||2, ||σ(t, x)||2L0

2

≤ K2(1 + ||x||2)

(H3) The functions g and g1 are completely continuous functions and there exist some

positive constants Mg and Mg1 such that

||g(x)− g(y)||2 ≤ Mg||x− y||2, ||g(x)||2 ≤ Mg(1 + ||x||2)

||g1(x)− g1(y)||
2 ≤ Mg1 ||x− y||2, ||g1(x)||

2 ≤ Mg1(1 + ||x||2)

for all x, y ∈ C(J, V )

(H4) The linear fractional system corresponding to system (2.1) is approximately

controllable on [0, b]. That is, for each 0 ≤ t < b, the operator β(βI+Ψb
t)

−1 → 0

in the strong operator topology as β → 0+, where

Ψb
t =

∫ b

t

Pρ(b− s)BB∗P ∗
ρ (b− s)ds

is the controllability Grammian. It is already known that the linear determin-

istic system corresponding to (2.1)

cD
ρ
t x(t) = [Ax(t) +Bu(t)]dt, t ∈ J

x(0) = x0 and x′(0) = x1

}

(2.6)

is approximately controllable on [t, b] iff the operator β(βI+Ψb
t)

−1 → 0 strongly

as β → 0+ [22].

3. MAIN RESULTS

Let us recall one lemma concerning approximate controllability, which will be used in

the proof.

Lemma 3.1. [17] For any xb ∈ L2(Ω,ℑb,Y), there exists φ ∈ Lℑ
2 (J, L

0
2) such that

xb = Exb +

∫ b

0

φ(s)dω(s).
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Now for any β > 0 and xb ∈ L2(Ω,ℑb,Y), control function is defined as

uβ(t, x) = B∗P ∗
ρ (b− t)

[

(βI +Ψb
0)

−1

(

Exb − Cρ(b)(x0 + g(x))− Sρ(b)(x1 + g1(x))

)

+

∫ t

0

(βI +Ψb
s)

−1φ(s)dω(s)

]

− B∗P ∗
ρ (b− t)

∫ t

0

(βI +Ψb
s)

−1Pρ(b− s)f(s, x(s))ds

− B∗P ∗
ρ (b− t)

∫ t

0

(βI +Ψb
s)

−1Pρ(b− s)σ(s, x(s))dω(s)

Lemma 3.2. There exists a positive constant Mu such that for all x, y ∈ Y2, we

have

E||uβ(t, x)− uβ(t, y)||2 ≤
Mu

β2
||x− y||2 (3.1)

E||uβ(t, x)||2 ≤
Mu

β2
(1 + ||x||2) (3.2)

Proof. Let us take x, y ∈ Y2. Now, using Holder’s inequality, Lemma 1 and the

assumed conditions, we get

E||uβ(t, x)− uβ(t, y)||2 ≤ 4E

∣

∣

∣

∣

∣

∣

∣

∣

B∗P ∗
ρ (b− t)(βI +Ψ0

b)
−1

Cρ(b)[g(x)− g(y)]

∣

∣

∣

∣

∣

∣

∣

∣

2

+ 4E

∣

∣

∣

∣

∣

∣

∣

∣

B∗P ∗
ρ (b− t)(βI +Ψ0

b)
−1

Sρ(b)[g1(x)− g1(y)]

∣

∣

∣

∣

∣

∣

∣

∣

2

+ 4E

∣

∣

∣

∣

∣

∣

∣

∣

B∗P ∗
ρ (b− t)

∫ t

0

(βI +Ψb
s)

−1Pρ(b− s)[f(s, x(s))− f(s, y(s))]ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+ 4E

∣

∣

∣

∣

∣

∣

∣

∣

B∗P ∗
ρ (b− t)

∫ t

0

(βI +Ψb
s)

−1Pρ(b− s)[σ(s, x(s))− σ(s, y(s))]dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

≤
4

β2
||B||2

(

Mbρ−1

Γ(ρ)

)2

M2

(

Mg||x− y||2Y2
+Mg1 ||x− y||2Y2

)

+
4

β2
||B||2

(

Mbρ−1

Γ(ρ)

)4(

b

∫ t

0

N1E||x(s)− y(s)||2Yds+ LG

∫ t

0

K1E||x(s)− y(s)||2Yds

)

=
4

β2
||B||2M4

(

bρ−1

Γ(ρ)

)2[

Mg +Mg1 +
b2ρ

Γ(ρ)
N1 sup

s∈[0,b]

E||x(s)− y(s)||2Y

+
b2ρ−1

Γ(ρ)
LGK1 sup

s∈[0,b]

E||x(s)− y(s)||2Y

]

≤
4

β2
||B||2M4

(

bρ−1

Γ(ρ)

)2[

Mg +Mg1 +
b2ρ

Γ(ρ)
N1 +

b2ρ−1

Γ(ρ)
LGK1b

]

||x− y||2Y2

=
Mu

β2
||x− y||2Y2

,
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where Mu = 4
β2 ||B||2M4

(

bρ−1

Γ(ρ)

)2[

Mg + Mg1 + b2ρ

Γ(ρ)N1 +
b2ρ−1

Γ(ρ) LGK1b

]

and p, q are

conjugate indices.

Similarly, we can prove the second inequality. So, the proof of lemma is completed.

For any β > 0, define the operator Fβ : Y2 → Y2 by

(Fβx)(t) = Cρ(t)(x0+g(x))+Sρ(t)(x1+g1(x))+

∫ t

0

Pρ(t−s)[Buβ(s, x)+f(s, x(s))]ds

+

∫ t

0

Pρ(t− s)σ(s, x(s))dω(s).

To prove the required result, we will use the Sadovskii’s Fixed Point theorem to prove

the existence of a fixed point of the operator Fβ defined above in Theorem 3.1. By

assuming the approximate controllability of the corresponding deterministic linear

system (2.6), we will prove the approximate controllability of system (2.1).

Theorem 3.3. Assume hypothesis (H1)− (H4) are satisfied. Then the system (2.1)

has a mild solution on [0, b] provided that

10M2(Mg +Mg1) + 5

(

Mbρ−1

Γ(ρ)

)2(
M2

Bb
2Mu

β2
+ b2N2 + LσK2b

)

< 1 (3.3)

and

3

(

Mbρ−1

Γ(ρ)

)2(
M2

BbMu

β2
+ bN1 + Lσ

)

< 1. (3.4)

Proof. Now the proof is divided into several steps.

Step 1. For any x ∈ Y2, Fβ(x)(t) is continuous on J .

Proof of Step 1. Let 0 ≤ t1 ≤ t2 ≤ b. Then for any fixed x ∈ Y2, it follows from

Holder’s inequality, Lemma 1 and assumptions on the theorem that

E||(Fβx)(t2)− (Fβx)(t1)||
2 ≤ 8

{

E||(Cρ(t2)− Cρ(t1))(x0 + g(x))||2

+ E||(Sρ(t2)− Sρ(t1))(x1 + g1(x))||
2

+ E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t1

0

[Pρ(t2 − s)− Pρ(t1 − s)]f(s, x(s))ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+ E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t2

t1

Pρ(t2 − s)f(s, x(s))ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+ E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t1

0

[Pρ(t2 − s)− Pρ(t1 − s)]σ(s, x(s))dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

+ E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t2

t1

Pρ(t2 − s)σ(s, x(s))dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

2
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+ E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t1

0

[Pρ(t2 − s)− Pρ(t1 − s)]Buβ(s, x)ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+ E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t2

t1

Pρ(t2 − s)Buβ(s, x)ds

∣

∣

∣

∣

∣

∣

∣

∣

2}

≤8

[

2

(

E||(Cρ(t2)− Cρ(t1))x0||
2 + E||(Cρ(t2)− Cρ(t1))g(x)||

2

+ E||(Sρ(t2)− Sρ(t1))x1||
2

+ E||(Sρ(t2)− Sρ(t1))g1(x)||
2

)

+ t1

∫ t1

0

E||[Pρ(t2 − s)− Pρ(t1 − s])f(s, x(s))||2ds

+

(

Mbρ−1

Γ(ρ)

)2

(t2 − t1)

∫ t2

t1

E||f(s, x(s))||2ds

+ LG

∫ t1

0

E||(Pρ(t2 − s)− Pρ(t1 − s))σ(s, x(s))||2ds

+

(

Mbρ−1

Γ(ρ)

)2

LG

∫ t2

t1

E||σ(s, x(s))||2ds

+ t1

∫ t1

0

E||[Pρ(t2 − s)− Pρ(t1 − s)]Buβ(s, x)||2ds

+ ||B||2
(

Mbρ−1

Γ(ρ)

)2

(t2 − t1)

∫ t2

t1

E||uβ(s, x)||2ds.

Since Cρ(t) , Sρ(t) and Pρ(t) are strongly continuous. So, using Lebesgue’s dominated

convergence theorem, we get that Fβ(x)(t) is continuous on J .

Step 2. For each positive integer q, let Bq = {x ∈ Y2 : E||x(t)||2Y ≤ q}, then the

set Bq is clearly a bounded, closed and convex set in Y2. Using Holder’s inequality

and assumption (ii), we derive that

E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

Pρ(t− s)f(s, x(s))ds

∣

∣

∣

∣

∣

∣

∣

∣

2

Y

≤E

(
∫ t

0

||Pρ(t− s)f(s, x(s))||Yds

)2

≤

(

Mbρ−1

Γ(ρ)

)2

E

(
∫ t

0

||f(s, x(s))||Yds

)2

≤

(

Mbρ−1

Γ(ρ)

)2

b

∫ t

0

E||f(s, x(s))||2Yds

≤

(

Mbρ−1

Γ(ρ)

)2

b

∫ t

0

N2(1 + E||x(s)||2Y)ds

≤

(

Mbρ−1

Γ(ρ)

)2

bN2

∫ t

0

(

1 + sup
s∈[0,b]

E||x(s)||2Y

)

ds

≤

(

Mbρ−1

Γ(ρ)

)2

bN2b(1 + ||x||2Y2
)

≤

(

Mbρ−1

Γ(ρ)

)2

b2N2(1 + ||x||2Y2
)
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Which deduces that Pρ(t− s)f(s, x(s)) is integrable on J , by Bochner’s Theorem [18],

Fβ is well defined on Bq.

Similarly using lemma 2.8 and assumption (ii), we derive that

E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

Pρ(t− s)σ(s, x(s))dw(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

≤Lσ

∫ t

0

E||Pρ(t− s)σ(s, x(s))||2L0

2

ds

≤Lσ

(

Mbρ−1

Γ(ρ)

)2 ∫ t

0

E||σ(s, x(s))||2L0

2

ds

≤Lσ

(

Mbρ−1

Γ(ρ)

)2 ∫ t

0

K2(1 + E||x(s)||2Y)ds

≤Lσ

(

Mbρ−1

Γ(ρ)

)2

K2

∫ t

0

(

1 + sup
s∈[0,b]

E||x(s)||2Y

)

ds

≤Lσ

(

Mbρ−1

Γ(ρ)

)2

K2b(1 + ||x||2Y2
)

≤Lσ

(

Mbρ−1

Γ(ρ)

)2

K2b(1 + ||x||2Y2
)

Now, we claim that there exists a positive number q such that Fβ(Bq) ⊆ Bq.

If it is not true, then for each positive number q, there is a function xq(.) ∈ Bq

but Fβxq doesnot belong to Bq, that is E||Fβxq(t)||
2
Y > q for some t ∈ J .

On the other hand, from assumptions (ii),(iii) and lemma 1, we have

q ≤ E||Fβxq(t)||
2
Y = E

∣

∣

∣

∣

∣

∣

∣

∣

Cρ(t)(x0 + g(x)) + Sρ(t)(x1 + g1(x)) +

∫ t

0

Pρ(t− s)[Buβ(s, x)

+ f(s, x(s))]ds+

∫ t

0

Pρ(t− s)σ(s, x(s))dw(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

Y

≤5M2
E||x0 + g(x)||2 + 5M2

E||x1 + g1(x)||
2

+ 5

(

Mbρ−1

Γ(ρ)

)2

M2
Bb

2Mu

β2
(1 + ||x||2Y2

) + 5

(

Mbρ−1

Γ(ρ)

)2

b2N2(1 + ||x||2Y2
)

+ 5

(

Mbρ−1

Γ(ρ)

)2

LσK2b(1 + ||x||2Y2
)

≤5M2(2E||x0||
2 + 2E||g(x)||2) + 5M2(2E||x1||

2 + 2E||g1(x)||
2)

+ 5

(

Mbρ−1

Γ(ρ)

)2

M2
Bb

2Mu

β2
(1 + ||x||2Y2

) + 5

(

Mbρ−1

Γ(ρ)

)2

b2N2(1 + ||x||2Y2
)

+ 5

(

Mbρ−1

Γ(ρ)

)2

LσK2b(1 + ||x||2Y2
)

≤5M2[2E||x0||
2 + 2Mg(1 + ||x||2Y2

)] + 5M2[2E||x1||
2 + 2Mg1(1 + ||x||2Y2

)]

+ 5

(

Mbρ−1

Γ(ρ)

)2

M2
Bb

2Mu

β2
(1 + ||x||2Y2

) + 5

(

Mbρ−1

Γ(ρ)

)2

b2N2(1 + ||x||2Y2
)
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+ 5

(

Mbρ−1

Γ(ρ)

)2

LσK2b(1 + ||x||2Y2
)

≤5M2[2E||x0||
2 + 2Mg(1 + q)] + 5M2[2E||x1||

2 + 2Mg1(1 + q)]

+ 5

(

Mbρ−1

Γ(ρ)

)2

M2
Bb

2Mu

β2
(1 + q) + 5

(

Mbρ−1

Γ(ρ)

)2

b2N2(1 + q)

+ 5

(

Mbρ−1

Γ(ρ)

)2

LσK2b(1 + q)

≤

[

10M2
E||x0||

2 + 10M2Mg + 10M2
E||x1||

2 + 10M2Mg1

+ 5

(

Mbρ−1

Γ(ρ)

)2(
M2

Bb
2Mu

β2
+ b2N2 + LσK2b

)]

+

[

10M2Mg

+ 10M2Mg1 + 5

(

Mbρ−1

Γ(ρ)

)2(
M2

Bb
2Mu

β2
+ b2N2 + LσK2b

)]

q.

Dividing both sides by q and taking the limit as q → ∞, we get

10M2(Mg +Mg1) + 5

(

Mbρ−1

Γ(ρ)

)2(
M2

Bb
2Mu

β2
+ b2N2 + LσK2b

)

> 1

This contradicts condition (3.3). Hence for some positive number q, FβBq ⊆ Bq.

Step 3. Now, we define operators Fβ1
and Pβ2

as

(Fβ1
x)(t) = Cρ(t)[x0 + g(x)] + Sρ(t)[x1 + g1(x)]

(Fβ2
x)(t) =

∫ t

0

Pρ(t− s)[Buβ(s, x) + f(s, x(s))]ds+

∫ t

0

Pρ(t− s)σ(s, x(s))dω(s)

for t ∈ J .

Here, we will prove that Fβ1
is completely continuous, while Fβ2

is a contraction

operator.

By assumption (iii), it is clear that Fβ1
is a completely continuous operator.

Next we show that Fβ2
is the contraction operator. For this, let x, y ∈ Bq, then

for each t ∈ J , we have from assumption (ii) and Lemma 4 E||(Fβ2
x)(t)−(Fβ2

y)(t)||2Y

≤ 3E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

Pρ(t− s)B[uβ(s, x)− uβ(s, y)]ds

∣

∣

∣

∣

∣

∣

∣

∣

2

Y

+3E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

Pρ(t− s)[f(s, x(s))− f(s, y(s))]ds

∣

∣

∣

∣

∣

∣

∣

∣

2

Y

+3E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

Pρ(t− s)[σ(s, x(s))− σ(s, y(s))]dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

Y

≤ 3

(

Mbρ−1

Γ(ρ)

)2

M2
B

∫ t

0

E||uβ(s, x)− uβ(s, y)||2Yds

+3

(

Mbρ−1

Γ(ρ)

)2 ∫ t

0

E||f(s, x(s))− f(s, y(s))||2ds
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+3

(

Mbρ−1

Γ(ρ)

)2 ∫ t

0

E||σ(s, x(s))− σ(s, y(s))||2dw(s)

≤ 3

(

Mbρ−1

Γ(ρ)

)2

M2
Bb

Mu

β2
||x− y||2Y2

+ 3

(

Mbρ−1

Γ(ρ)

)2

bN1||x− y||2Y2

+3

(

Mbρ−1

Γ(ρ)

)2

Lσ||x− y||2Y2

≤ 3

(

Mbρ−1

Γ(ρ)

)2(
M2

BbMu

β2
+ bN1 + Lσ

)

||x− y||2Y2

Taking supremum over t ∈ [0, b], we get

sup
t∈[0,b]

E||(Fβ2
x)(t)− (Fβ2

y)(t)||2Y ≤ L0||x− y||2Y2

therefore

||(Fβ2
x)− (Fβ2

y)||2Y2
≤ L0||x− y||2Y2

where

L0 = 3

(

Mbρ−1

Γ(ρ)

)2(
M2

BbMu

β2
+ bN1 + Lσ

)

< 1

Thus Fβ2
is a contraction mapping.

Now we have Fβ = Fβ1
+Fβ2

is a condensing map on Bq, so all the conditions of

Sadovskii’s Fixed Point theorem are satisfied. Hence we conclude that there exists a

fixed point x(.) for Fβ on Bq, which is the mild solution of (2.1).

Theorem 3.4. Assume that (H1) − (H3) hold and {Pρ(t) : t ≥ 0} is compact.

Moreover, if f and σ are uniformly bounded, then the system (2.1) is approximately

controllable on [0, b].

Proof. By Theorem 3.1, Fβ has a unique fixed point say xβ in Y2. Now, we can

show using stochastic Fubini Theorem that xβ satisfies

xβ(b) = xb − β(βI +Ψb
o)

−1

(

Exb − Cρ(b)(x0 + g(x))− Sρ(b)(x1 + g1(x))

)

+ β

∫ b

0

(βI +Ψb
s)

−1Pρ(b− s)f(s, xβ(s))ds

+ β

∫ b

0

(βI +Ψb
s)

−1[Pρ(b− s)σ(s, xβ(s))− φ(s)]dω(s) (3.5)

Using the uniform boundedness of f and σ, there exists D > 0 such that

||f(s, xβ(s))||
2 + ||σ(s, xβ(s))||

2 ≤ D

in [0, b]×Ω. Then we have a subsequence denoted by {f(s, xβ(s)), σ(s, xβ(s))} weakly

converging to say {f(s, ω), σ(s, ω)} in Y ×L0
2. Using the compactness of Pρ(t), we get

Pρ(b− s)f(s, xβ(s)) → Pρ(b− s)f(s); Pρ(b− s)σ(s, xβ(s)) → Pρ(b− s)σ(s) in J × Ω.
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Now, from the above equation, we get

E||xβ(b)− xb||
2 ≤ 6

∣

∣

∣

∣

∣

∣

∣

∣

β(βI +Ψb
0)

−1

[

Exb − Cρ(b)(x0 + g(x))− Sρ(b)(x1 + g1(x))

]∣

∣

∣

∣

∣

∣

∣

∣

2

+ 6E

(
∫ b

0

||β(βI +Ψb
s)

−1φ(s)||2L0

2

ds

)

+ 6E

(
∫ b

0

||β(βI +Ψb
s)

−1|| ||Pρ(b− s)[f(s, xβ(s))− f(s)]||ds

)2

+ 6E

(
∫ b

0

||β(βI +Ψb
s)

−1Pρ(b− s)f(s)||ds

)2

+ 6E

(
∫ b

0

||β(βI +Ψb
s)

−1|| ||Pρ(b− s)[σ(s, xβ(s))− σ(s)]||2L0

2

ds

)

+ 6E

(
∫ b

0

||β(βI + Γb
s)

−1Pρ(b− s)σ(s)||2L0

2

ds

)]

since by assumption (H4), for all 0 ≤ s < b the operator β(βI +Ψb
s)

−1 → 0 strongly

as β → 0+ and ||β(βI + Ψb
s)

−1|| ≤ 1. Thus by the Lebesgue dominated convergence

theorem, we obtain E||xβ(b)− xb||
2 → 0+. This gives the approximate controllability

of system (2.1).

4. EXAMPLE

Let us consider the control system governed by the following partial differential equa-

tion:

CD
ρ
t y(t, x) = yxx(t, x) + µ(t, x) + f(t, y(t)) + σ(t, x(t))

dω(t)

dt
; t ∈ [0, b]

y(t, 0) = y(t, π) = 0; for t ∈ [0, b]

y(0, x) +
n
∑

i=1

αiy(ti, x) = y0(x), t ∈ J

yt(0, x) +

k
∑

i=1

βiy(si, x) = y1(x)















































(4.1)

where ρ ∈ (1, 2], one can take arbitrary nonlinear function f satisfying the condition

(H2). Let Y = L2[0, π] be as in introduction. Let control function µ : [0, b]×(0, π) → R

be continuous in t.

Define A : D(A) ⊆ Y → Y by

Aw = w′′; w ∈ D(A)

where D(A) = {w ∈ Y : w,w′ are absolutely continuous, w′′ ∈ Y, w(0) = w(π) = 0}.
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Then, A has the spectral representation

Aw =
+∞
∑

n=1

−n2(w,wn)wn, w ∈ D(A),

where wn(s) =
√

2
π sin ns, n = 1, 2, 3, ... is the orthogonal set of eigenfunctions of A.

A is the infinitesimal generator of a strongly continuous cosine family {C(t) : t ∈ R},

defined on Y which is given by

C(t)w =
+∞
∑

n=1

cos nt(w,wn)wn, w ∈ Y,

and, the associated sine family is given by

S(t)w =

+∞
∑

n=1

1

n
sin nt(w,wn)wn, w ∈ Y,

Let the control operator Bu : [0, b] → Y defined by

(Bu)(t)(y) = µ(t, y); y ∈ (0, π).

For ρ ∈ (1, 2], since A is the infinitesimal generator of a strongly continuous cosine

family C(t), from the subordinate principle [2], it follows that A is the infinitesimal

generator of a strongly continuous exponentially bounded fractional cosine family

Cρ(t) such that Cρ(0) = I, and

Cρ(t) =

∫ ∞

0

ϕt,ρ/2(s)C(s)ds, t > 0

where ϕt,ρ/2(s) = t−ρ/2φρ/2(st
−ρ/2), and

φγ(x) =

∞
∑

n=0

(−x)n

n!Γ(−γn+ 1− γ)
, 0 < γ < 1.

The functions g, g1 : C(J,Y) → Y is defined as

g(y)(x) =
n
∑

i=1

αiy(ti, x) and g1(y)(x) =
k
∑

i=1

βiy(si, x)

for 0 < ti, si < b and x ∈ [0, π].

The problem (4.1) can be rewritten as

CD
ρ
t y(t) = Ay(t) +Bu(t) + f(t, x(t)) + σ(t, x(t))

dω

dt
; t ∈ [0, b]

y(0) = y0 + g(y);

y′(0) = y1 + g1(y)

Therefore, by Theorem 3.1, if the hypothesis (H1)− (H4) are satisfied, the differential

system (4.1) is approximately controllable on [0, b].
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