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ABSTRACT: We obtain the strong consistency, uniform asymptotic normality and

local asymptotic minimaxity (in the Hajek-LeCam sense) of the two stage sequen-

tial maximum likelihood estimator of a parameter appearing nonlinearly in the drift

coefficient of a stochastic differential equation when the corresponding non-Markov

diffusion type process is observed until the observed Fisher information of the process

exceeds a predetermined level of precision and the level becomes large. Main re-

sults are illustrated by the exponential memory non-Markovian Ornstein-Uhlenbeck

process.
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1. INTRODUCTION

For recent results on higher order likelihood asymptotics and Bayesian asymptotics

for drift estimation of finite and infinite dimensional Markovian stochastic differential

equations, see the monograph [3]. The long time asymptotics of the maximum likeli-

hood estimator (MLE) and the Bayes estimators (BEs) of the drift parameter in the

nonlinear nonhomogeneous Markov diffusion processes was studied by [4] and [34].

Here we study sequential estimation of the drift parameter of nonlinear nonhomo-

geneous non-Markovian diffusion type processes. For such processes Kutoyants [26]

showed the asymptotic properties of MLE and regular BEs as the intensity of noise
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ǫ → 0 when the model satisfies the LAN condition. Linkov [35] obtained the LAMN

property of such models as observation time T → ∞. Dietz [6] studied asymptotic

properties of MLE as the intensity of noise ǫ → 0 or the observation time T → ∞
when the model satisfies the LAMN condition. Dietz [7] studied the properties of

MLE in a concrete example of diffusion type process which is an exponential mem-

ory nonhomogeneous process, a non-Markovian alternative to the Ornstein-Uhlenbeck

process as the observation time T → ∞. For a linear stochastic differential equation

with time delay, the MLE shows eleven different behaviors for eleven parts of the

parameter space [16].

However, in addition to asymptotic theory which certainly play a predominant

role in statistical theory sequential asymptotics has certain advantages. Here we

study the asymptotic properties of a sequential estimate of the parameter appear-

ing in the drift coefficient of nonlinear nonhomogeneous diffusion type process, a

non-Markovian process, when the solution process is observed continuously up to a

random stopping time. In particular, we study the properties of sequential maximum

likelihood estimate (SMLE), i.e., the maximum likelihood estimate based on obser-

vation of the process on the random time interval [0, τ ] where τ is the stopping time

which is the first passage time until the observed (stochastic) Fisher information of

the process reaches a preassigned level of precision H. Under some regularity condi-

tions, the SMLE is shown to be strongly consistent, asymptotically normal and locally

asymptotically minimax in the Hajek-LeCam sense as H → ∞.

For the linear diffusion model where the drift coefficient is b(θ, t, x) = θa(t, x)

and the diffusion coefficient is σ(t, x) = 1, Novikov [42] (see also [32]) proved that

the SMLE of θ is unbiased and exactly normally distributed for all values of the

parameter in the parameter space Θ ⊂ R. Further, he showed that SMLE is optimal

in the mean square sense and is more efficient in the sense of having less mean square

error than the ordinary MLE based on fixed time observation, under the assumption

that the mean durations of observation time in both the sampling plans are the same.

Tikhov [47] proved that for the case b(θ, t, x) = θa(t) and σ(t, x) = 1, the SMLE is

optimal relative to the power loss function Lα(|δ(x)−θ|) = |δ(x)−θ|α, α ≥ 1. Tikhov

[48] generalised this to the case b(θ, t, x) = θb1(t, x) + b0(t, x). Sørensen [45] gave a

review of sequential maximum likelihood estimation in linearly parametrized diffusion

type processes. Sørensen [46] (see also [24]) studied similar properties of SMLE for

exponential families of stochastic processes. Musiela [40, 41] studied sequential ML

estimation in a linear diffusion model. Le Breton and Musiela [31] studied similar

properties of SMLE in linear homogeneous multidimensional SDE. Rozanskii [44]

extended the work of Novikov [42] to a linear homogeneous diffusion field. Brown

and Hewitt [5] studied the properties of sequential maximum likelihood estimator for

diffusion branching process using a different type of stopping rule.
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2. MODEL, ASSUMPTIONS AND THE SEQUENTIAL PLAN

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis satisfying the usual hypotheses on which

we have a real valued non-Markovian diffusion type process {Xt, t ≥ 0} satisfying the

functional stochastic differential equation (SDE)

dXt = f(θ, t,X)dt+ dWt, t ≥ 0,

X0 = ξ
(2.1)

where {Wt, t ≥ 0} is a standard Wiener process, ξ is a F0-measurable random variable

with P{|ξ| < ∞} = 1, θ ∈ Θ a compact subset of R is the unknown parameter to

be estimated on the basis of observation of the process {Xt, t ≥ 0}. The measurable

function f(θ, t, x), t ≥ 0, θ ∈ Θ and x ∈ C are assumed to be (for each fixed θ)

nonanticipative, that is Bt-measurable for each t ≥ 0. Here (C,B) is the space of

continuous functions {xt, t ≥ 0} with x0 = ξ with the associated Borel σ-algebra B
and Bt = σ(Xs, s ≥ t) are σ-algebras in the measurable space (C,B).

Prime denotes derivative with respect to θ throughout the paper. We assume the

following conditions.

(A1)

∫ T

0

f2(θ, t, x)dt < ∞, T < ∞, x ∈ C, θ ∈ R,

(A2) P

(
∫ ∞

0

f ′2(θ, t,X)dt = ∞
)

= 1, θ ∈ R,

(A3) |f(θ, t, x)− f(θ, t, y)| ≤ M1

∫ t

0
|xs − ys|ds+M2|xt − yt|,

f2(θ, t, x) ≤ M1

∫ t

0

(1 + |xs|)ds+M2(1 + |xt|),

where xs, ys ∈ C, θ ∈ R,M1 and M2 are constants.

Under the condition (A3), it is well known that equation (2.1) has a unique solution

(see [24]).

We estimate the unknown parameter θ from the observation of the process {Xt, t ≥
0} until the observed Fisher information exceeds a predetermined level of precision.

This idea of using observed Fisher information to define a stopping rule dates back to

[1] (see also [11, 12]). This type of stopping rule was used for autoregressive parameter

estimation in [8, 9, 29, 38, 43] among others.

Let τ = τ(X) be a Markov stopping time with respect to the system {Bt}t≥0

and δ(t,X) be a progressively measurable real process defined on (C,B). The pair

of functions D = D(τ, δ), where τ(X) is a Markov time and δ = δ(τ(X), X) is an

estimate of θ resulting from the observation of the trajectory of X on the time interval

[0, τ(X)] yields a sequential sampling plan.

Let PT
θ be the measure generated by the process {Xt, 0 ≤ t ≤ T} on the space

(CT ,BT ) of continuous functions from [0, T ] → R with the associated Borel σ-algebra
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BT under the supremum norm and PT
W be the measure generated by ξ + Wt on

the space (CT ,BT ). Let ET
θ denote the expectation w.r.t. measure PT

θ . Under the

assumption (A1), PT
θ ≪ PT

W and the Radon-Nikodym derivative (likelihood function

based on sample path XT
0 := (Xs, 0 ≤ s ≤ T )) is given by

LT (θ) =
dPT

θ

dPT
W

(XT
0 ) = exp

{

∫ T

0

f(θ, t,X)dXt −
1

2

∫ T

0

f2(θ, t,X)dt

}

. (2.2)

Maximization of the likelihood LT (θ) provides the maximum likelihood estimate

(MLE) θT . Dietz [6] proved the consistency and asymptotic mixed normality of θT

as T → ∞. Kutoyants [25, 27] also studied the asymptotic properties of MLE as the

diffusion coefficient ǫ → 0 (for fixed T ).

Let lT (θ) := logLT (θ). We assume that differentiation under the stochastic and

ordinary integral sign is valid (see [23]).

Note that θt is the MLE based on the sample path Xt
0 := (Xs, 0 ≤ s ≤ t). The

MLE process satisfies the following evolution equation (see [34]) when X = Xt in the

drift coefficient in equation (2.1):

dθt = −l′′t
−1

(θt){f ′(θt, t,Xt)[dXt − f(θt, t,Xt)dt]

+ [
1

2
l′′′t (θt)l

′′
t
−2

(θt)f
′2(θt, t,Xt)− l′′t

−1
(θt)f

′(θt, t,Xt)f
′′(θt, t,Xt)]dt}, (2.3)

with initial conditions: θt0 < ∞, l′t(θt0) = 0, l′′t (θt0) < 0 where the initial time

t0 > 0 is fixed. This shows that in this case the MLE process itself is a continuous

semimartingale.

We have

l′T (θ) =

∫ T

0

f ′(θ, t,X)dXt −
∫ T

0

f(θ, t,X)f ′(θ, t,X)dt

=

∫ T

0

f ′(θ, t,X) [dXt − f(θ, t,X)dt]

=

∫ T

0

f ′(θ, t,X)dWt

(2.4)

when θ is the true parameter.

We shall use the Fisher information to define a stopping rule. The a priori Fisher

information is

I(θ) = var[l′T (θ)] = ET
θ [l

′
T (θ)]

2 = ET
θ

∫ T

0

f ′2(θ, t,X)dt. (2.5)

But I(θ) can not be observed since it depends on the unknown parameter. The a

posteriori observed Fisher information or stochastic Fisher information is given by

IT =

∫ T

0

f ′2(θt, t,X)dt (2.6)
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where θt is the MLE based on the observation {Xs, 0 ≤ s ≤ t}.
Note that in the linear case the a priori Fisher information does not contain the

unknown parameter. We are now ready to define the sequential sampling plan (τ, θτ )

as follows :

The stopping time τ is defined as

τ ≡ τH := inf{t ≥ 0 :

∫ t

0

f ′2(θs, s,X)ds ≥ H} (2.7)

where H > 0 specifies the desired precision which is predetermined and θs is the MLE

based on the observation of X in the time interval [0, s]. Note that by Sudakov’s

lemma, the likelihood based on [0, τ ] is given by

Lτ (θ) =
dP τ

θ

dP τ
W

(Xτ
0 ) = exp

{
∫ τ

0

f(θ, t,X)dXt −
1

2

∫ τ

0

f2(θ, t,X)dt

}

. (2.8)

(see [32]). The sequential maximum likelihood estimate (SMLE) is defined as

θτ := argmax
θ∈Θ

Lτ (θ).

We call the procedure here a two stage estimation procedure since we use an estimated

stopping time to define the sequential estimate. One can show that there exists a Fτ

measurable SMLE since Lτ (θ) is continuous in θ and Θ is compact. Hereafter we

assume the existence of such a measurable SMLE.

3. CONSISTENCY AND ASYMPTOTIC NORMALITY

We assume the following conditions to prove the main results of this section.

(B1) P τ
θ1 6= P τ

θ2 for θ1 6= θ2 in Θ.

(B2) lτ (θ) is twice continuously differentiable in a neighborhood Uθ of θ for every

θ ∈ Θ.

(B3) lim
H→∞

1

H

∫ τ

0

f ′′(θ, t,X)dWt = 0 in Pθ-probability.

Remark 3.1. Condition (B1) is the identifiability condition. Due to the consistency

of the MLE θt and by the definition of θτ this condition can be verified. Condition

(B2) is provided for regularity. Condition (B3) is related to the law of large numbers

for stochastic integrals.

Lemma 3.1. Let Aθ
t := f(θ ± δ, t,X) − f(θ, t,X) for some δ > 0. Then under

(A1)–(A3), we have

∫ τ

0
(Aθ

t )
2dt

∫ τ

0
(Aθt

t )2dt
→ 1 a.s. [P τ

θ ] as H → ∞.
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Proof. We have

Aθ
t = f(θ ± δ, t,X)− f(θ, t,X),

Aθt
t = f(θt ± δ, t,X)− f(θt, t,X).

Thus

(Aθ
t )

2 − (Aθt
t )2 = [f(θ ± δ, t,X)− f(θ, t,X)]2 − [f(θt ± δ, t,X)− f(θt, t,X)]2.

Since θt is a strongly consistent estimator of θ, θt → θ a.s. as t → ∞. Since f is

continuous, (Aθ
t )

2 − (Aθt
t )2 → 0 a.s. as t → ∞.

Further
∫ τ

0
(Aθt

t )2dt → c(θ) a.s. as H → ∞ and δ → 0

where c(θ) is a positive constant and

∫ τ

0
[(Aθ

t )
2 − (Aθt

t )2]dt → 0 a.s. as H → ∞.

Thus
∫ τ

0
[(Aθ

t )
2 − (Aθt

t )2]dt
∫ τ

0
(Aθt

t )2dt
→ 0 a.s. [P τ

θ ] as H → ∞.

This completes the proof of the lemma.

The definition of first order efficiency (in the sense of C.R. Rao) of estimators

for stochastic processes (cf. [17]) may be generalized to sequential sampling case as

follows:

Definition 3.1. An estimator VτH of θ is said to be first order efficient (FOE) if

√
H

[

VτH − θ − γ(θ)H−1 ∂lτ (θ)

∂θ

]

Pθ→ 0 as H → ∞

where γ(θ) is a nonrandom function.

We establish following properties of the SMLE.

Theorem 3.1. (a) Under the assumption (A1) – (A3), the sampling plan is closed,

i.e., τH < ∞ Pθ-a.s.

Under the assumptions (A1) – (A3) and (B1) – (B3), we have

(b) There exists a root of the likelihood equation which is strongly consistent, i.e.,

lim
H→∞

θτ = θ a.s. [Pθ]

(c)
√
H(θτ − θ)

D[Pθ]→ N (0, 1) as H → ∞ uniformly in θ ∈ Θ.

(d) θτ is first order efficient as H → ∞.

Proof. (a) From assumption (A2) it is obvious that τH < ∞ a.s. [Pθ].
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(b) Observe that, for δ > 0,

lτ (θ ± δ)− lτ (θ)

= log
dP τ

θ±δ

dP τ
θ

=

∫ τ

0

[f(θ ± δ, t,X)− f(θ, t,X)]dXt −
1

2

∫ τ

0

[f2(θ ± δ, t,X)− f2(θ, t,X)]dt

=

∫ τ

0

[f(θ ± δ, t,X)− f(θ, t,X)]dWt −
1

2

∫ τ

0

[f(θ ± δ, t,X)− f(θ, t,X)]2dt

=

∫ τ

0

Aθ
tdWt −

1

2

∫ τ

0

(Aθ
t )

2dt.

Let

Kτ :=

∫ τ

0

(Aθ
t )

2dt.

Then
lτ (θ ± δ)− lτ (θ)

Kτ
=

∫ τ

0
Aθ

tdWt
∫ τ

0
(Aθ

t )
2dt

− 1

2

=
W ∗(

∫ τ

0
(Aθ

t )
2dt)

∫ τ

0
(Aθ

t )
2dt

− 1

2

=
W ∗(Kτ )

Kτ
− 1

2

(3.1)

by the Skorohod embedding of the martingale
∫ τ

0
Aθ

tdWt where W ∗ is some other

Brownian motion with independent of Kτ .

Using the assumption (A2) and Lemma 3.1, and the strong law of large numbers

for Brownian motion (see [32]) the first term on the r.h.s. of (3.1) converges to zero

a.s. as H → ∞. Hence,

lτ (θ ± δ)− lτ (θ)

Kτ
→ −1

2
a.s. [Pθ] as H → ∞.

Furthermore, Kτ > 0 a.s. [Pθ] by (B1). Therefore, for almost every w ∈ Ω, δ and θ,

there exist some H0 such that for H ≥ H0

lτ (θ ± δ) < lτ (θ). (3.2)

Since lτ (θ) is continuous on the compact set [θ− δ, θ+ δ], it has a local maximum and

it is attained at a measurable θτ in [θ − δ, θ + δ]. In view of (3.2), θτ ∈ (θ − δ, θ + δ)

for H > H0. Since lτ (θ) is differentiable with respect to θ, it follows that l′τ (θτ ) = 0

for H ≥ H0 and θτ → θ a.s. as H → ∞.

(c) In view of the assumption (B3), we can apply Taylor’s expansion, for l′τ (θ)

around θτ and write

0 = l′τ (θτ ) = l′τ (θ) + (θτ − θ)l′′τ (θ + βτ (θτ − θ)) (3.3)

where |βτ | ≤ 1 a.s. for sufficiently large H.
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Since θτ → θ a.s. as H → ∞ by (b) and since l′′τ (θ) is continuous by (B3), it

follows that l′′τ (θ + βτ (θτ − θ))− l′′τ (θ) → 0 in P τ
θ -probability as H → ∞.

Hence as H → ∞

l′τ (θ) + (θτ − θ)l′′τ (θ) → 0 in P τ
θ -probability. (3.4)

We have l′τ (θ) =
∫ τ

0
f ′(θ, t,X)dWt. Hence using the C.L.T. for stochastic integral

(see [2]) and Lemma 3.1, we obtain

l′τ (θ)√
H

D[Pθ]→ N (0, 1) as H → ∞ (3.5)

Note that when θ is the true parameter

l′′τ (θ) =

∫ τ

0

f ′′(θ, t,X)dXt −
∫ τ

0

[f(θ, t,X)f ′′(θ, t,X) + f ′2(θ, t,X)]dt

=

∫ τ

0

f ′′(θ, t,X)dWt −
∫ τ

0

f ′2(θ, t,X)dt.

By Lemma 3.1 and (B3) it follows that

l′′τ (θ)

H
→ −1 in Pθ-probability as H → ∞. (3.6)

From (3.5) and (3.6) it follows that

√
H(θτ − θ)

D[Pθ]→ N (0, 1) as H → ∞.

(d) From (3.5) and (3.6) and the definition of first order efficiency with γ(θ) = 1,

SMLE θτ is first order efficient as H → ∞.

4. LOCAL ASYMPTOTIC MINIMAXITY

In this section we prove the local asymptotic minimaxity of the SMLE θτ in the

Hajek-Le Cam sense. Roughly speaking an estimator is said to be locally asymptoti-

cally minimax if it attains the lower bound in Hajek-Le Cam minimax theorem (see

[21, 33]), i.e. if it attains the lower bound to the local asymptotic minimax risk of

the normalized error an estimator. The minimum requirement for Hajek’s minimax

theorem is that the model should satisfy the LAN (locally asymptotically normal) or

LAMN (locally asymptotically mixed normal) condition. When these conditions are

satisfied the lower bound is attained only if the estimator is asymptotically centering

(AC) (see [21]). But there are situations where either of the above two conditions

may not be attained. Consider, for example, the Ornstein-Uhlenbeck process with
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drift coefficient θXt. This process exhibits qualitatively different behavior for differ-

ent values of the parameter θ. For θ < 0, the model satisfies the LAN condition and

for θ > 0 the model satisfies the LAMN condition. The point θ = 0 is critical. At

θ = 0, it satisfies neither the LAN condition nor the LAMN condition, but it sat-

isfies the LABF (locally asymptotically Brownian functional) condition. The model

satisfies LAQ (locally asymptotically quadraticity) for all θ. Similar situations occur

in its discrete time counterpart : the Gaussian autoregressive process of first order

and other processes like the Galton-Watson branching processes, pure birth processes

etc. (see [15]). Greenwood and Shiryayev [13] proved the uniform local asymptotic

minimaxity of the SMLE of the parameter in the first order Gaussian autoregressive

process by studying the uniform weak convergence of statistical experiments using the

convergence of the associated Hellinger processes. Under the LAQ condition, Hajek’s

minimax theorem is available, but the AC estimators do not attain the lower bound,

i.e., they will not be locally asymptotically minimax. Greenwood and Wefelmeyer [14]

showed that local asymptotic minimax bound is attained by asymptotically centering

estimators even at critical points, which requires sequential sampling. In the nonlin-

ear diffusion type model with sequential sampling, the more general functionally LAQ

condition is satisfied which allows us to obtain locally asymptotic minimax bound for

the normalized error of the sequential MLE. We now recall the definition of LAQ and

functionally LAQ conditions.

Definition 4.1 ([22, 33]). Let En = (Ωn,Fn, (P
n
θ , θ ∈ Θ)), n ≥ 1 be a sequence of

statistical experiments, where Θ is an open subset of R. We denote by

Λn
η,θ = log

(

dPn
η

dPn
θ

)

the log-likelihood between η and θ at stage n.

We say that the sequence En satisfies the local asymptotically quadratic (LAQ)

condition at a point θ ∈ Θ if there are random variables ∆n and Γn defined on

(Ωn,Fn),Γn > 0 a.s. [Pn
θ ] and a positive numerical sequence φn ↓ 0 such that for

each bounded sequence of numbers un,

Λn
θ+φnun,θ −

(

un∆n − 1

2
u2
nΓn

)

Pn
θ→ 0

and

(∆n,Γn) → (∆,Γ) in Pn
θ -distribution

where ∆ and Γ are random variables on a measurable space (Ω,F , P ) with Γ > 0 a.s.

(P ) and

EP exp

(

u∆− 1

2
u2Γ

)

= 1.
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The sequence of experiments is called locally asymptotically Brownian functional

(LABF) if ∆ =
∫ 1

0
FsdWs and Γ =

∫ 1

0
F 2
s ds with W a standard Brownian motion

and F a predictable process with respect to some filtration in F . It is called locally

asymptotically mixed normal (LAMN) if ∆ = Γ1/2W1 with W1 standard normal vari-

able independent of Γ and locally asymptotically normal (LAN) if, in addition, Γ is

nonrandom.

Definition 4.2 ([15]). Let the sequence (En) satisfy LAQ condition at a point θ ∈ Θ.

A sequence of estimators θ̂n is called asymptotically centering (AC) sequence at θ if

φ−1
n (θ̂n − θ)− Γ−1

n ∆n

Pn
θ→0.

Asymptotically centering estimators are also called asymptotic maximum likelihood

estimators.

Let (Ωn,Fn, {Fn
t }t≥0, {Pn

θ , θ ∈ Θ}) where Θ is an open subset of R, be a sequence

of filtered statistical experiments. Let Pn
θ,t be the restriction of Pn

θ to Fn
t .

The log-likelihood process Λn
η,θ at stage n between η and θ at time t is defined by

Λn
η,θ,t = log

(

dPn
η,t

dPn
θ,t

)

, t ≥ 0.

Definition 4.3 ([14]). We call the sequence of filtered experiments functionally LAQ

at θ if there exist processes ∆n and Γn > 0 a.s. and a positive numerical sequence

φn ↓ 0 such that for each bounded sequence of numbers un and all t > 0,

sup
s≤t

∣

∣

∣

∣

Λn
θ+φnun,θ,s −

(

un∆
n
s − 1

2
u2
nΓ

n
s

)∣

∣

∣

∣

Pn
θ→0

and

(∆n
t ,Γ

n
t ) → (∆t,Γt) in Pn

θ -distribution

where ∆t and Γt are processes on a filtered probability space (Ω,F , {Ft}t≥0, P ) with

Γt > 0 a.s. and

EP exp

(

u∆t −
1

2
u2Γt

)

= 1 for all t ≥ 0.

We call the sequence of filtered models functionally LABF if ∆t =
∫ t

0
FsdWs and

Γt =
∫ t

0
F 2
s ds where W is a standard Brownian motion and F is a predictable process.

Theorem 4.1 ([14]). Suppose the sequence of filtered models is functionally LAQ at

θ, with ∆ a continuous local martingale, Γ equal to the quadratic variation 〈∆〉 of ∆,

and Γ strictly increasing to infinity a.s. Let ω be a bounded, symmetric, bowl shaped

loss function on the real line, and let θ̂n be a sequence of estimator processes. For

each n ∈ N and t ≥ 0, let

T n
t = inf{s : Γn

s > t}.
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Then

lim
b→∞

lim inf
n→∞

sup
|u|≤b

Eθ+φnuω
(

φ−1
n (θ̂nT n

t
− (θ + φnu))

)

≥ Eω(W1/t).

If a filtered model satisfies the functionally LAN condition, then the filtered model

time changed by Tn satisfies the functionally LAQ condition, which is evident from

the following result in [14].

Lemma 4.1 Under the assumptions of Theorem 4.1, for each bounded sequence of

numbers un and all t > 0,

sup
s≤t

∣

∣

∣

∣

Λn
θ+φnun,θ,T n

s
−
(

un∆
n
T n
s
− 1

2
u2
ns

)∣

∣

∣

∣

Pn
θ→0

and

∆n
T n → W1 in Pn

θ -distribution.

If the assertions of Lemma 4.1 hold then the sequence of models is said to satisfy the

functionally LAN condition.

Definition 4.4 ([14]). If the sequence of filtered models is functionally LAQ at θ, we

call a sequence of estimator process θ̂n functionally AC at θ, if for all t > 0,

sup
s≤t

∣

∣

∣
φ−1
n (θ̂ns − θ)−∆n

s (Γ
n
s )

−1
∣

∣

∣

Pn
θ→0.

The filtered model observed up to T n
t is LAN, hence by the classical theory,

the local asymptotic minimax theorem applies and θ̂nT n
t

are locally asymptotically

minimax if and only if they are AC.

Let us return to our problem. Let us introduce the time changed estimator

processes. For each n ∈ N, we define the retimed processes Xn
t = n−1/2Xnt and

Wn
t = n−1/2Wnt, t ≥ 0 and the filtration {Fn

t }t≥0 be generated byXn,F t
n = {Xn

s , s ≤
t} = σ{Xs, s ≤ nt}. The log-likelihood process at stage n and time t between θ1 and

θ is given by

Γ
n

θ1,θ,t
=

∫ t

0

[f(θ1, s,X
n
s )− f(θ, s,Xn

s )]dW
n
s − 1

2

∫ t

0

[f(θ1, s,X
n
s )− f(θ, s,Xn

s )]ds.

We assume the following conditions in this section. There exist rn ↑ ∞ as n ↑ ∞ and

ν > 0 such that:

(C1)
1

r2n

∫ ν

0

f ′′2(θ, s,Xn
s )ds

Pn
θ→ ζν(θ) as n → ∞, where Pn

θ [ζν(θ) > 0] > 0.

(C2)
1

r2n

∫ ν

0

f ′(θ, s,Xn
s )ds

Pn
θ→ ξν(θ) as n → ∞, where Pn

θ [ξν(θ) > 0] > 0.

(C3)
1

r2n

∫ ν

0

f ′′(θ, s,Xn
s )dW

n
s

Pn
θ→ 0 as n → ∞.
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Theorem 4.2. Under the assumptions (C1) – (C3), the sequence of filtered models

(Ωn,Fn, {Fn
t }t≥0, {Pn

θ , θ ∈ Θ}) generated by Xn
t satisfy the functionally LAQ condi-

tion at θ with

∆t =

∫ t

0

f ′(θ, s,Xs)dWs and Γt =

∫ t

0

f ′2(θ, s,Xs)ds.

Proof. For ν ≤ t, we have

Λn
θ+r−1

n un,θ,ν
=

∫ ν

0

[f(θ + r−1
n un, s,X

n
s )− f(θ, s,Xn

s )]dW
n
s

− 1

2

∫ ν

0

[f(θ + r−1
n un, s,X

n
s )− f(θ, s,Xn

s )]
2ds.

By Taylor’s formula

f(θ + r−1
n un, s,X

n
s )− f(θ, s,Xn

s ) = r−1
n unf

′(θ, s,Xn
s ) +

1

2
r−2
n u2

nf
′′(θ̄, s,Xn

s )

where

θ̄ = θ + q(s,Xn
s )r

−1
n un, |q(·, ·)| < 1.

Hence

Λn
θ+r−1

n un,θ,ν
=r−1

n un

∫ ν

0

f ′(θ, s,Xn
s )dW

n
s +

1

2
r−2
n u2

n

∫ ν

0

f ′′(θ̄, s,Xn
s )dW

n
s

− 1

2
r−2
n u2

n

∫ ν

0

f ′2(θ, s,Xn
s )ds−

1

8
r−4
n u4

n

∫ ν

0

f ′′2(θ̄, s,Xn
s )ds

− 1

8
r−3
n u3

n

∫ ν

0

f ′(θ, s,Xn
s )f

′′(θ̄, s,Xn
s )ds

=r−1
n un

∫ ν

0

f ′(θ, s,Xn
s )dW

n
s − 1

2
r−2
n u2

n

∫ ν

0

f ′2(θ, s,Xn
s )ds+ opn

θ
(1)

(by assumption (C1) – (C3))

=un∆
n
ν − 1

2
u2
nΓ

n
ν + oPn

θ
(1),

where

∆n
ν = r−2

n

∫ ν

0

f ′(θ, s,Xn
s )dW

n
s and Γn

ν = r−2
n

∫ ν

0

f ′2(θ, s,Xn
s )ds.

Let

∆ν =

∫ ν

0

f ′(θ, s,Xs)dWs and Γν =

∫ ν

0

f ′2(θ, s,Xs)ds.

By the functional CLT for martingales and stability of weak convergence (see [20]),

we obtain

(∆n
ν ,Γ

n
ν )

D[Pn
θ ]→ (∆ν ,Γν) as n → ∞.
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Here ∆ν and Γν are processes on a filtered probability space (Ω,F , {Ft}t≥0, P ) with

Γν > 0 a.s. and

EP exp

(

u∆ν − 1

2
u2Γν

)

= 1 for all ν ≥ 0.

Thus the sequence of filtered models are functionally LAQ at θ.

We now obtain the local asymptotic minimax theorem for SMLE processes.

Theorem 4.3. Let ω be a bounded, symmetric, bowl shaped loss function on the real

line. Let θnt be a sequence of MLE processes w.r.t. the filtered model (Ωn,Fn, {Fn
t }t≥0,

{Pθ, θ ∈ Θ}).
For each n ∈ N and t ≥ 0, let

τnH = inf{t ≥ 0 : r−2
n

∫ t

0

f ′2(θns , s,X
n
s )ds ≥ H}

Let conditions (C1) – (C3) be satisfied. Then

lim
b→∞

lim inf
n→∞

sup
|u|≤b

Eθ+r−1

n uω
(

θnτn
H
− (θ + r−1

n u)
)

≥ Eω(W1/H).

Proof. Since by Theorem 4.2 the sequence of filtered models generated by Xt
n is

functionally LAQ at θ with ∆t a continuous local martingale, Γt equal to the quadratic

variation 〈∆〉t of ∆t, and Γt ↑ ∞ a.s. hence the theorem follows from Theorem 4.1.

Note that the filtered model time-changed by τnH is functionally LAN i.e., for each

bounded sequence of numbers un and all H > 0

sup
G≤H

∣

∣

∣

∣

Λn
θ+r−1

n un,θ,τn
G

−
(

un∆
n
τn
G
− 1

2
u2G

)
∣

∣

∣

∣

= oPθn
0

(1)

and

∆n
τn
H

D[Pn
θ ]→ W1

by Lemma 4.1. Hence by Theorem 4.1 we obtain the local asymptotic minimax the-

orem.

Theorem 4.4. Under the conditions (B1) - (B3) and (C1) – (C3) the sequence of

estimators θnτn
H

are locally asymptotically minimax (LAM), i.e., they attain the lower

bound in Theorem 4.3.

Proof. Here we have only to show that θnτn
H

are asymptotically centering (AC), that

is

rn(θ
n
τn
H
− θ)−H−1∆n

τn
H
= oPn

θ
(1) as n → ∞. (4.1)
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Note that

rn(θ
n
τn
H
− θ) =

−r−1
n l′τn

H
(θ)

γ−2
n l′′τn

H
(θ + βτn

H
(θτn

H
− θ))

∼ −r−1
n

∫ τn
H

0
f ′(θ, s,Xn

s )dW
n
s

r−2
n

∫ τn
H

0
f ′′(θ, s,Xn

s )dW
n
s − r−2

n

∫ τn
H

0
f ′2(θ, s,Xn

s )ds

(4.2)

by the arguments similar to the proof of Theorem 3.1 (c). On the other hand,

H−1∆n
τn
H
=

γ−1
n

∫ τn
H

0
f ′(θ, s,Xn

s )dW
n
s

γ−2
n

∫

0
f ′2(θns , s,X

n
s )ds

. (4.3)

From (4.2) and (4.3) using (C3) and Lemma 3.1, we see that (4.1) holds.

5. ORNSTEIN-UHLENBECK PROCESS WITH MEMORY

We illustrate the results of the previous sections through the exponential memory

Ornstein-Uhlenbeck process. Consider the Ornstein-Uhlenbeck type process which is

a solution of the stochastic integro-differential equation (SIDE)

dXt = θ

(

α

∫ t

0

e−α(t−s)Xs ds

)

dt + dWt, X0 = 0

where α > 0 is known memory parameter and θ ∈ R+ is the parameter of interest.

For each θ the solution X is a diffusion type process where the nonanticipative drift

coefficient depends on the whole past of the process. This is a nonhomogeneous

Volterra integro-differential equation with a white noise input. Despite losing the

Markov property, it describes a linear stochastic system. Here the range of the memory

is governed by the parameter α. When α → ∞, the process losses memory and

converges almost surely to the classical Ornstein-Uhlenbeck process. Dietz [7] showed

that for θ < 0, the model is LAN and for θ > 0 the model is LAMN. Here the stopping

time is given by

τH = inf{v > 0 :

∫ v

0

(
∫ t

0

e−α(t−s)Xsds

)2

dt ≥ H}

and the SMLE is given by

θτH =

∫ τH
0

(
∫ t

0
e−α(t−s)Xsds)dXt

∫ τH
0

(
∫ t

0
e−α(t−s)Xsds)2dt

.

Here the model satisfies the functional LAN condition and the SMLE is unbiased,

strongly consistent and uniformly normally distributed and locally asymptotically

minimax.
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6. CONCLUDING REMARKS

(1) It is worth investigating to generalize the results in this paper to a nonlinear

semimartingale model which includes both the continuous and the discrete time mod-

els, e.g., diffusion processes, autoregressive processes and branching processes. For the

linear semimartingale model, properties of sequential maximum likelihood estimator

were studied in [39] extending the work in [42] for diffusion processes.

(2) It would be interesting to study the properties of sequential Bayes estima-

tors for nonlinear diffusion models. Sequential Bayes estimation for exponential type

processes was studied [10].

(3) Obtaining the limiting distribution of the stopping time would be an interesting

problem to investigate.

(4) Likelihood ratio processes for interacting particle systems was studied in [36,

37]. It is worth investigating results of this paper for such models.

(5) Replacing the standard Brownian motion W by fractional Brownian motion,

produces non-Markovian non-semimartingale solution process [3]. In our case, with

still noise driven by standard Brownin motion, using memory in the drift coefficient,

we have non-Markovian solution, but still in a semimartingale framework.
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