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1. INTRODUCTION

This paper deals with oscillatory behavior of all solutions of the nonlinear odd order

differential equations with a nonpositive neutral term of the form

y(n)(t) + q(t)xβ(τ(t)) = 0, (1.1)

where y(t) = x(t)− p(t)x(σ(t)), t ≥ t0 > 0 and n ≥ 3 is an odd natural number.
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Throughout, we assume that the following assumptions hold:

(i) β is a ratio of odd positive integers;

(ii) p, q ∈ C([t0,∞), [0,∞)), 0 ≤ p(t) < 1;

(iii) τ, σ ∈ C1([t0,∞),R), τ(t) ≤ t, σ(t) ≤ t, τ ′(t) > 0, σ′(t) > 0, and lim
t→∞

τ(t) =

lim
t→∞

σ(t) = ∞;

(iv) h(t) := σ−1(τ(t)) ≤ t, h′(t) ≥ 0, limt→∞ h(t) = ∞.

Set tx = mint∈[t0,∞){σ(t), τ(t)}. By a solution of (1.1) we mean a nontrivial function

x(t) ∈ C([tx,∞),R) such that y(t) ∈ Cn([t0,∞),R) and x(t) satisfies (1.1) on [t0,∞).

We consider only those solutions x(t) of (1.1) which satisfy

sup{x(t) : t ≥ T} > 0 for any T ≥ t0,

and we tacitly assume that (1.1) possesses such solutions.

As customary, a solution is said to be oscillatory if it has infinitely many zeros,

and otherwise it is called nonoscillatory. Equation itself is termed oscillatory if all its

solutions are oscillatory.

In recent years, there has been much research activity concerning the oscillation

and nonoscillation of solutions of various differential equations with linear and non-

linear neutral term, and we refer the reader to [1, 2, 3, 16, 5, 6, 7, 8, 11, 14, 15, 16,

17, 18, 20] and the references cited therein. A commonly employed condition is

−1 ≤ p(t) ≤ 0

as well as the condition

−∞ < −p0 ≤ p(t) ≤ 0.

There are only few results dealing with the oscillation of differential equations with

a nonpositive neutral term. In a pioneering work [19], several oscillation results were

obtained for equation (1.1) in the special case n = 2 and β = 1 under the assumptions

0 ≤ p(t) ≤ p0 < 1, τ(t) = t− τ0, σ(t) = t− σ0.

Further contributions for odd-order equations with nonpositive neutral term of

type (1.1) and its generalizations were made in [5, 7, 8, 11, 10, 18], where authors

established sufficient conditions ensuring that every solution x of (1.1) is either oscil-

latory or converges to zero as t → ∞. Unfortunately, these results, mostly given for

n = 3, cannot distinguish solutions with different behaviors and to the best of our

knowledge, it seems there is nothing about oscillation of all solutions of (1.1) when n

is odd.
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In this article, we shall establish new oscillation theorems for all solutions of odd-

order nonlinear differential equations with a nonpositive neutral term of type (1.1).

When the neutral term is present, all the results are new even for n = 3.

2. MAIN RESULTS

In what follows, all functional inequalities are assumed to hold for all t large enough.

Without loss of generality, we can deal only with positive solutions of (1.1) since the

substitution z(t) = −x(t) transforms (1.1) into an equation of the same form.

First, we state some lemmas which will be useful in the proofs of our main results.

Lemma 1 is an adaptation of a well-known Kiguradze lemma (1964), while Lemmas

2 and 3 are due to Philos and Staikos (1981) and Staikos and Stavroulakis (1977),

respectively.

Lemma 1 (See [12]). Let u be a positive and k-times differentiable function on an

interval [ta,∞) with its k-th derivative u(k) nonpositive on [ta,∞) and not identically

zero on any subray of [ta,∞). Then there exist a tb ≥ ta and an integer l, 0 ≤ l ≤ k−1,

with k + l odd so that






(−1)l+ju(j) > 0 on [tb,∞) (j = l, . . . , k − 1),

u(i) > 0 on [tb,∞) (i = 1, . . . , l − 1), when l > 1.

Lemma 2 (See [15]). Let u be as in Lemma 1, tb ≥ ta be assigned to u by Lemma 1

and assume that limt→∞ u(t) 6= 0. Moreover, let θ be a number with 0 < θ < 1. Then

there exists a tc ≥ tb/θ such that

u(t) ≥
θ

(k − 1)!
tk−1u(k−1)(t), for every t ≥ tc. (2.1)

Lemma 3 (See [17]). Let u(t) be a bounded k-times differentiable function on an

interval [ta,∞) with

u(t) > 0 (−1)ku(k)(t) ≥ 0 for t ≥ ta.

Then there exists a tb ≥ ta such that

(−1)iu(i)(t) ≥ 0 for every t ≥ tb, i = 1, 2, . . . , k

and

u(ξ) ≥
(−1)k−1u(k−1)(η)

(k − 1)!
(η − ξ)k−1 for every t ≥ tb, tb ≤ ξ ≤ η. (2.2)

Now, we are able to state the following new result, which is based on the compar-

ison principle with first-order delay differential equations.
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Theorem 4. Let conditions (i) − (iv) hold and assume that there exists a nonin-

creasing function g ∈ C1([t0,∞), (0,∞)) such that τ(t) ≤ g(t) ≤ t and lim
t→∞

g(t) = ∞.

If the first-order delay differential equations

X ′(t) +

(

c1
(n− 1)!

τn−1(t)

)β

q(t)Xβ(τ(t)) = 0, (2.3)

Y ′(t) +

(

(g(t)− τ(t))n−1

(n− 1)!

)β

q(t)Y β(g(t)) = 0, (2.4)

and

Z ′(t) +

(

c2
(n− 2)!

hn−2(t)

)β (∫ ∞

t

q(s)

pβ(h(s))
ds

)

Zβ(h(t)) = 0 (2.5)

are oscillatory for some c1, c2 ∈ (0, 1), then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(τ(t)) > 0,

x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. By Eq. (1.1) and the definition of y(t), we

have

y(n)(t) = − q(t)xβ(τ(t)) ≤ 0. (2.6)

Hence y(n−1)(t) is nonincreasing and of one sign eventually. That is, there exists

t2 ≥ t1 such that either y(n−1)(t) > 0 or y(n−1)(t) < 0 for t ≥ t2. We claim that

y(n−1)(t) > 0 for t ≥ t2. To see this, suppose on the contrary that y(n−1)(t) < 0 for

t ≥ t2. Then limt→∞ y(t) = −∞. Since y(t) > −x(σ(t)), x(t) must be unbounded,

and so there exists a sequence {Tk}
∞

k=0 such that x(Tk) = max{x(s) : T0 ≤ s ≤ Tk}

with limk→∞ Tk = ∞ and limk→∞ x(Tk) = ∞. Furthermore, since σ(Tk) > T0 for all

k sufficiently large and σ(t) ≤ t, we see that

x(σ(Tk)) ≤ max{x(s) : T0 ≤ s ≤ Tk} = x(Tk)

Therefore, for all large k,

y(Tk) = x(Tk)− p(Tk)x(σ(Tk)) ≥ (1− p(Tk))x(Tk) > 0,

which contradicts the fact that limt→∞ y(t) = −∞. Hence, we have proven the claim.

Now, we have two cases to consider: (I) y(t) > 0 or (II) y(t) < 0 for t ≥ t2.

Case I Assume first that y(t) > 0 for t ≥ t2. From the definition of y(t), we see that

x(t) ≥ y(t). Thus, we have

y(n)(t) = − q(t)yβ(τ(t)) < 0, t ≥ t3 := τ−1(t2), (2.7)

By Lemma 1, we distinguish the following two cases:

(a) y(t) > 0, y′(t) > 0, . . . , y(n−2)(t) > 0, y(n−1)(t) > 0,
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(b) y(t) > 0, y′(t) < 0, y(n−2)(t) < 0, y(n−1)(t) > 0,

for t ≥ t3.

Suppose that (a) holds. By Lemma 2, there exists t4 ∈ [t3,∞) such that

y(τ(t)) ≥
c1

(n− 1)!
τn−1(t)y(n−1)(τ(t)), (2.8)

for any c1 ∈ (0, 1) and t ≥ t4. Using (2.8) in (2.7), we get

X ′(t) +

(

c1
(n− 1)!

τ (n−1)(t)

)β

q(t)Xβ(τ(t)) ≤ 0,

where we set X(t) := y(n−1)(t) > 0. As in [16], it is easy to conclude that there

exists a positive solution X(t) of equation (2.3) with limt→∞ X(t) = 0, which

contradicts the fact that Eq. (2.3) is oscillatory.

Next, we consider (b). By Lemma 3, there exists t4 ∈ [t3,∞) such that

y(τ(t)) ≥
(g(t)− τ(t))n−1

(n− 1)!
y(n−1)(g(t)) (2.9)

for any t ≥ t4, where the function g satisfies the assumptions of the Theorem.

Similarly as in the proof of Case I (a), one can show that (2.4) has a positive

solution, which is a contradiction.

Case II Suppose that y(t) < 0 for t ≥ t2. Let z(t) := −y(t) > 0 for t ≥ t2. Then, by

virtue of (1.1) and the definition of y(t), we see that

z(n)(t) = q(t)xβ(τ(t)) (2.10)

and

z(t) = −y(t) = p(t)x(σ(t))− x(t) ≤ p(t)x(σ(t)),

i.e.,

x(t) ≥
1

p(σ−1(t))
z(σ−1(t)), t ≥ t2.

In view of (iv), it is obvious that

x(τ(t)) ≥
1

p(σ−1(τ(t)))
z(σ−1(τ(t)))

=
1

p(h(t))
z(h(t)), t ≥ t3 := τ−1(t2).

(2.11)

Using (2.11) in (2.10) yields

z(n)(t) ≥
q(t)

pβ(h(t))
zβ(h(t)), t ≥ t3. (2.12)
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Clearly, z(t) satisfies

z(t) > 0, z′(t) > 0, z(n−2)(t) > 0, z(n−1)(t) < 0, z(n)(t) > 0,

for t ≥ t3. Integrating (2.12) from t to u and letting u → ∞, we get

−z(n−1)(t) ≥

∫

∞

t

q(s)

pβ(h(s))
zβ(h(s))ds

≥ zβ(h(t))

∫

∞

t

q(s)

pβ(h(s))
ds.

(2.13)

Now, by Lemma 2, there exists t4 ∈ [t3,∞) such that

z(h(t)) ≥
c2

(n− 2)!
hn−2(t)z(n−2)(h(t)) (2.14)

for every c2 ∈ (0, 1). Using (2.14) in (2.13) yields

−z(n−1)(t) ≥
(

z(n−2)(h(t))
)β

(

c2
(n− 2)!

hn−2(t)

)β ∫ ∞

t

q(s)

pβ(h(s))
ds (2.15)

or

Z ′(t) +

(

c2
(n− 2)!

hn−2(t)

)β (∫ ∞

t

q(s)

pβ(h(s))
ds

)

Zβ(h(t)) ≤ 0,

where Z(t) := z(n−2)(t). Similarly as in the proof of Case I (a), one can show

that (2.11) has a positive solution, which is a contradiction.

The proof is complete.

Applying known oscillation criteria to first-order delay differential equations (2.3),

(2.4) and (2.5), one obtains sufficient conditions for oscillation of (1.1). In particular,

using the results reported in [6] and [13], respectively, we arrive at the following

propositions.

Corollary 5. Let conditions (i) − (iv) hold, β = 1 and assume that there ex-

ists a nonincreasing function g ∈ C1([t0,∞), (0,∞)) such that τ(t) ≤ g(t) ≤ t and

lim
t→∞

g(t) = ∞. If

lim inf
t→∞

∫ t

τ(t)

τn−1(s)q(s)ds >
(n− 1)!

e
,

lim inf
t→∞

∫ t

g(t)

(g(s)− τ(s))n−1q(s)ds >
(n− 1)!

e
,

and

lim inf
t→∞

∫ t

h(t)

hn−2(s)

∫

∞

s

q(u)

p(h(u))
du ds >

(n− 2)!

e

then (1.1) is oscillatory.
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Corollary 6. Let conditions (i) − (iv) hold and β ∈ (0, 1). Assume that there

exists a nonincreasing function g ∈ C1([t0,∞), (0,∞)) such that τ(t) ≤ g(t) ≤ t and

lim
t→∞

g(t) = ∞. If

∫

∞

t0

τβ(n−1)(s)q(s)ds = ∞,

∫

∞

t0

(g(s)− τ(s))β(n−1)q(s)ds = ∞,

and
∫

∞

t0

hβ(n−3)(s)

∫

∞

s

q(u)

pβ(h(u))
du ds = ∞

then (1.1) is oscillatory.

Below, we present another oscillation result for (1.1).

Theorem 7. Let conditions (i)− (iv) hold and β ∈ (0, 1]. If

lim sup
t→∞

(

τβ(n−1)(t)

∫

∞

t

q(s)ds

)

>







(n− 1)! if β = 1,

0 otherwise,
(2.16)

lim sup
t→∞

∫ t

τ(t)

q(s)(τ(t)− τ(s))β(n−1)ds >







(n− 1)! if β = 1,

0 otherwise,
(2.17)

and

lim sup
t→∞

∫ t

h(t)

q(s)

(

hn−2(s)(h(t)− h(s))

p(h(s))

)β

ds >







(n− 2)! if β = 1,

0 otherwise,
(2.18)

then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(τ(t)) > 0,

x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. As in the proof of Theorem 4, we have two

cases to consider: (I) y(t) > 0 or (II) y(t) < 0 for t ≥ t2.

Case I Suppose first that y(t) > 0 for t ≥ t2. As in the proof of Theorem 4, we

distinguish two cases:

(a) y(t) > 0, y′(t) > 0, . . . , y(n−2)(t) > 0, y(n−1)(t) > 0,

(b) y(t) > 0, y′(t) < 0, y(n−2)(t) < 0, y(n−1)(t) > 0,

for t ≥ t3, t3 ∈ [t2,∞).
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Suppose that (a) holds. Integrating (2.7) from t to u and letting u → ∞, we

have

y(n−1)(t) ≥

∫

∞

t

q(s)yβ(τ(s))ds ≥ yβ(τ(t))

∫

∞

t

q(s)ds.

Using (2.8) and the monotonicity of y(n−1)(t) in the above inequality, we obtain

y(n−1)(t) ≥
(

y(n−1)(τ(t))
)β

(

c1
(n− 1)!

τn−1(t)

)β ∫ ∞

t

q(s)ds

≥
(

y(n−1)(t)
)β

(

c1
(n− 1)!

τn−1(t)

)β ∫ ∞

t

q(s)ds, t ≥ t4,

for every c1 ∈ (0, 1) and t4 ∈ [t3,∞). Hence,

(

y(n−1)(t)
)1−β

≥

(

c1
(n− 1)!

τn−1(t)

)β ∫ ∞

t

q(s)ds.

Taking lim sup on both sides of this inequality as t → ∞, we get a contradiction

with (2.16).

Next, we consider (b). By Lemma 3, there exists t4 ∈ [t3,∞) such that

y(τ(s)) ≥
(τ(t)− τ(s))n−1

(n− 1)!
y(n−1)(τ(t)) (2.19)

for any t ≥ s ≥ t4. Integrating (2.7) from τ(t) to t and using (2.19) in the

resulting inequality yields

y(n−1)(τ(t)) ≥

∫ t

τ(t)

q(s)yβ(τ(s))ds

≥

(

y(n−1)(τ(t))

(n− 1)!

)β ∫ t

τ(t)

q(s)(τ(t)− τ(s))β(n−1)ds, t ≥ t3.

Hence,

(

y(n−1)(τ(t))
)1−β

≥
1

((n− 1)!)
β

∫ t

τ(t)

q(s)(τ(t)− τ(s))β(n−1)ds,

which clearly contradicts to (2.17).

Case II Suppose that y(t) < 0 for t ≥ t2. As in the proof of Theorem 4, we obtain (2.12)

with z(t) = −y(t) for t ≥ t3, t3 ∈ [t2,∞), that is,

z(n)(t) ≥
q(t)

pβ(h(t))
zβ(h(t)). (2.20)

Clearly, z(t) satisfies

z(t) > 0, z′(t) > 0, z(n−2)(t) > 0, z(n−1)(t) < 0, z(n)(t) > 0,
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for t ≥ t3. Using (2.14) in (2.20), we get

z(n)(t) ≥ q(t)

(

c2
(n− 2)!

hn−2(t)

p(h(t))

)β
(

z(n−2)(h(t))
)β

for every c2 ∈ (0, 1) and t ≥ t3. Integrating the above inequality from h(t) to t,

we see that

−z(n−1)(h(t)) ≥ z(n−1)(t)− z(n−1)(h(t))

=

∫ t

h(t)

q(s)

(

c2
(n− 2)!

hn−2(s)

p(h(s))

)β
(

z(n−2)(h(s))
)β

ds.

On the other hand, for t ≥ s ≥ t3, we have

z(n−2)(h(s)) ≥ −z(n−2)(h(t)) + z(n−2)(h(s))

=

∫ h(t)

h(s)

−z(n−1)(u)du

≥ (h(t)− h(s))
(

−z(n−1)(h(t))
)

.

Thus,

− z(n−1)(h(t))

≥
(

−z(n−1)(h(t))
)β

∫ t

h(t)

q(s)

(

c2
(n− 2)!

hn−2(s)(h(t)− h(s))

p(h(s))

)β

ds

or

(

−z(n−1)(h(t))
)1−β

≥

∫ t

h(t)

q(s)

(

θ

(n− 2)!

hn−2(s)(h(t)− h(s))

p(h(s))

)β

ds,

which contradicts (2.18) as t → ∞.

The proof is complete.

Remark 8. If (1.1) is not of neutral type, i.e., if p(t) ≡ 0, then Case II in the proof

of Theorem 4 (7) cannot occur.

Theorem 9. Let conditions (i) − (iii) hold with p(t) ≡ 0. Assume that there

exists a function g(t) ∈ C1([t0,∞), (0,∞)) such that g′(t) ≥ 0, τ(t) ≤ g(t) ≤ t, and

limt→∞ g(t) = ∞. If the first order delay differential equations (2.3) and (2.4) are

oscillatory for some c1, c2 ∈ (0, 1), then (1.1) is oscillatory.

Theorem 10. Let conditions (i)− (iii) hold, β ∈ (0, 1], and p(t) ≡ 0. If (2.16) and

(2.17) hold, then (1.1) is oscillatory.
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Example 11. Consider the Euler type neutral delay differential equation

(x(t)− px(σt))
(n)

+
a

tn
x(λt) = 0, t ≥ 1, (2.21)

where n is odd, p ∈ (0, 1), σ, λ ∈ (0, 1) are such that λ/σ < 1.

It is easy to verify that conditions (i)− (iv) are satisfied. Now, let us set g(t) ≃ gt

and k(t) ≃ kt for any g ∈ (λ, 1) and k ∈ (λ/σ, 1). Then, by Corollary 1, we conclude

that (2.21) is oscillatory if

λn−1a ln
1

λ
>

(n− 1)!

e
,

(g − λ)n−1a ln
1

g
>

(n− 1)!

e

and
a

p

(

λ

σ

)n−2

ln
σ

λ
>

(n− 1)(n− 2)!

e
. (2.22)

Note that none of the results [5, 7, 8, 11, 10, 18] can ensure that (2.21) is oscillatory.

Remark 12. It would be of interest to study the oscillatory behavior of (1.1)

without imposing the assumption (iv). This is left for further research.
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