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1. INTRODUCTION

In this paper we consider the following problem

(Pλ) uiυ(x) +Au′′(x) +Bu(x) = λα(x)f(u(x)), a.e. x ∈ R,

where A is a real negative constant and B is a real positive constant, λ is a positive

parameter and α, f : R → R are two functions such that α ∈ L1(R), α(x) ≥ 0, for

a.e. x ∈ R, α 6≡ 0 and also f is continuous and non-negative.

It is well known that fourth-order problems are important in describing a large

class of elastic deflections. Hence, many researchers have studied the existence and

multiplicity of solutions for fourth-order two-point boundary value problems. We refer

the reader to [5, 6, 7, 9, 10, 12].
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In [5], while A and B are real constants, using variational methods and critical

point theory, multiplicity results for the fourth-order elliptic problem

{

uiυ +Au′′ +Bu = λf(t, u), t ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1)

by condition on the nonlinear term was established, while in [9], applying the Morse

theory, the existence of three solutions to problem (1), with A = B = 0, were dis-

cussed.

Problems such as (Pλ) that are discussed on the whole space, occur naturally in

a variety of settings in physics and material scinces, as in, for example, the study

of mathematical models of deflection of beams.These beams which appear in many

structures, deflect under their own weight or under the influence of some external

forces. Due to the lack of compactness of the operators on whole space, the study of

such problems is very important. Because, in such cases the operators which solve the

problem are not regular enough in comparison to operators which arise in problems

on bounded domains.

In the present paper, using two kinds of critical point theorems obtained in [3]

which we recall in the next section (Theorems 2.3 and 2.4), we establish the existence

of at least one non-trivial and non-negative weak solution for the problem (Pλ).

We must note that the importance of using the Theorem 2.3 in relation to the

Theorem 2.5 in [11] is that, first, the sequential weak lower semi-continuity of Iλ (the

functional related to the problem (Pλ)) is not required and, secondly, the local mini-

mum is non-trivial. Also, in presenting Theorem 3.3, which one of the main results of

this paper, we aplly the requirements (Palais-Smale condition and unbounded from

below for functional Iλ) based on Theorem 2.4. In fact, using one of the types of

Ambrosetti-Rabinowitz conditions obtained in [1], we will ensure that functional Iλ

is unbounded from below.

2. PRELIMINARIES

Let us recall some basic consepts.

DenoteW 2,2
0 (R) is the closure of C∞

0 (R) inW 2,2(R) and it is clearly thatW 2,2
0 (R) =

W 2,2(R). We denote by |.|t the usual norm on Lt(R), for all t ∈ [1,+∞] and it is well

known that W 2,2(R) is continuously embedded in Lt(R) for each t ∈ [2,+∞].

The sobolev space W 2,2(R) is equipped with the following norm

‖ u ‖W 2,2(R)=

(
∫

R

(|u′′(x)|2 + |u′(x)|2 + |u(x)|2)dx
)1/2

,



FOURTH-ORDER ELASTIC BEAM EQUATIONS 151

for all u ∈ W 2,2(R).Also, we consider W 2,2(R) with the norm

‖ u ‖=
(
∫

R

(|u′′(x)|2 −A|u′(x)|2 +B|u(x)|2)dx
)1/2

,

for all u ∈ W 2,2(R). According to

(min{1,−A,B}) 1
2 ‖ u ‖W 2,2(R)≤‖ u ‖≤ (max{1,−A,B}) 1

2 ‖ u ‖W 2,2(R),

the norm ‖ . ‖ is equvalent to the norm ‖ . ‖W 2,2(R). Since embedding W 2,2(R) →
L∞(R) is continuous hence there exists a constant CA,B (depending on A and B) such

that

|u|∞ ≤ CA,B ‖ u ‖ , ∀u ∈ W 2,2(R).

In the following proposition, we provide an approximation for this constant.

Proposition 2.1. We have,

|u|∞ ≤ CA,B ‖ u ‖ (2)

where CA,B = ( −1
4AB )

1
4 .

Proof. let v ∈ W 1,1(R), then from [[8]-P.138-formula 4.64],one has

|v(x)| ≤ 1

2

∫

R

|v′(t)|dt. (3)

Now if u ∈ W 2,2(R) then v(x) = (−AB)
1
2 |u(x)|2 ∈ W 1,1(R) and thus from (3) and

Hölder’s inequality one has,

(−AB)
1
2 |u(x)|2 ≤

∫

R

(−AB)
1
2 |u′(t)||u(t)|dt ≤ ((−A)

1
2 |u′|2)(B

1
2 |u|2)

that is,

|u(x)| ≤ (
−1

AB
)

1
4 ((−A)

1
2 |u′|2)

1
2 (B

1
2 |u|2)

1
2 . (4)

Now according to xay1−a ≤ aa(1−a)1−a(x+y), x, y ≥ 0, 0 < a < 1([[8],p.130,formula

4.47]), and classical inequality a
1
p + b

1
p ≤ 2

(p−1)
p (a+ b)

1
p , from (4) one has

|u(x)| ≤ (
−1

AB
)

1
4 (

1

2
)

1
2 (

1

2
)

1
2 [(

∫

R

−A|u′(t)|2dt) 1
2 + (

∫

R

B|u(t)|2dt) 1
2 ] ≤

(
−1

AB
)

1
4 (

1

2
)

1
2 (

1

2
)

1
2 (2)

1
2

(

∫

R

(−A|u′(t)|2 +B|u(t)|2)dt
)

1
2 ≤

(
−1

4AB
)

1
4

(

∫

R

(|u′′(t)|2 −A|u′(t)|2 +B|u(t)|2)dt
)

1
2

which means that, |u|∞ ≤ CA,B ‖ u ‖.
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Let Φ, Ψ : W 2,2(R) → R be defined by

Φ(u) =
1

2
‖ u ‖2= 1

2

∫

R

(|u′′(x)|2 −A|u′(x)|2 +B|u(x)|2)dx (5)

and

Ψ(u) =

∫

R

α(x)F (u(x))dx (6)

for every u ∈ W 2,2(R) where F (t) =
∫ t

0
f(ξ)dξ for all t ∈ R. Since F ′(t) = f(t) ≥ 0

for all t ∈ R so F is an increasing function. It is clear that Ψ is well defined. Because

for every u ∈ W 2,2(R) we have

|Ψ(u)| ≤
∫

R

α(x).max{−F (−|u|∞), F (|u|∞)}dx < +∞.

It is well known that Ψ is a differentiable functional whose differential at the point

u ∈ W 2,2(R) is

Ψ′(u)(v) =

∫

R

α(x)f(u(x))v(x)dx,

and, Φ is continuously Gâteaux differentiable functional whose differential at the point

u ∈ W 2,2(R) is

Φ′(u)(v) =

∫

R

(u′′(x)v′′(x)−Au′(x)v′(x) +Bu(x)v(x))dx

for every v ∈ W 2,2(R).

Definition 2.1. Let Φ and Ψ be defined as above. Put Iλ = Φ − λΨ, λ > 0.

We say that u ∈ W 2,2(R) is a critical point of Iλ when I ′λ(u) = 0{W 2,2(R)∗}, that is,

I ′λ(u)(v) = 0 for all v ∈ W 2,2(R).

Definition 2.2. A function u : R → R is a weak solution to the problem (Pλ) if

u ∈ W 2,2(R) and

∫

R

(u′′(x)v′′(x)−Au′(x)v′(x) +Bu(x)v(x) − λα(x)f(u(x))v(x))dx = 0,

for all v ∈ W 2,2(R).

Remark 2.1. We clearly observe that the weak solutions of the problem (Pλ) are

exactly the solutions of the equation I ′λ(u)(v) = Φ′(u)(v) − λΨ′(u)(v) = 0. Also if

α is, in addition, a continuous function on R then each weak solution of (Pλ) is a

classical solution.

Lemma 2.2. If u0 6≡ 0 is a weak solution for problem (Pλ) then u0 is non-negative.
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Proof. From remark 2.1 one has, I ′λ(u0)(v) = 0 for all v ∈ W 2,2(R). Chossing

v(x) = ū0 = max{−u0(x), 0} and let A = {x ∈ R : u0(x) < 0}. Then we have
∫

A∪Ac

(u′′
0(x)ū

′′
0 (x) −Au′

0(x)ū
′
0(x) +Bu0(x)ū0(x))dx =

∫

A∪Ac

λα(x)f(u(x))v(x)dx

that is

−
∫

A

(|ū′′
0(x)|2 −A|ū′

0(x)|2 +B|ū0(x)|2)dx =

∫

A

λα(x)f(u(x))v(x)dx ≥ 0

which means that − ‖ ū0 ‖2≥ 0 and one has, ū0 = 0. Hence −u0 ≤ 0, that is, u0 ≥ 0

and the proof is complete.

Definition 2.3. (see [2]) Fix r ∈] − ∞,+∞]. A Gâtuax differentiable function I

satisfies the Palais-Smale condition cut off upper at r (in short (PS)[r] -condition) if

any sequence {un} such that:

(a) {I(un)} is bounded,

(b) lim
n→+∞

‖I ′(un)‖X∗ = 0,

(c) Φ(un) < r ∀n ∈ N,

has a convergent subsequence.

Definition 2.4. A Gâtuax differentiable function I satisfies the Palais-Smale con-

dition (in short (PS) -condition) if any sequence {un} such that:

(a) {I(un)} is bounded,

(b) lim
n→+∞

‖I ′(un)‖X∗ = 0, ∀n ∈ N,

has a convergent subsequence.

Our main tools are the following critical point theorems.

Theorem 2.3 ([3], Theorem 2.3). Let X be a real Banach space, and let Φ,Ψ :

X −→ R be two continuously Gâteaux differentiable functionals such that infX Φ =

Φ(0) = Ψ(0) = 0.

Assume that there are r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

supu∈Φ−1(]−∞,r[)Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
, (7)

and, for each λ ∈
]

Φ(ũ)

Ψ(ũ)
,

r

supu∈Φ−1(]−∞,r[)Ψ(u)

[

the functional Φ− λΨ satisfies the

(PS)[r]-condition. Then, for each

λ ∈
]

Φ(ũ)

Ψ(ũ)
,

r

supu∈Φ−1(]−∞,r[)Ψ(u)

[



154 M.R.H. TAVANI

there is uλ ∈ Φ−1(]0, r[) (hence uλ 6= 0) such that Iλ(uλ) < Iλ(u) for all u ∈
Φ−1(]0, r[) and I ′λ(uλ) = 0.

Theorem 2.4 ([3], Theorem 3.2). Let X be a real Banach space, and let Φ,Ψ : X −→
R be two continuously Gâteaux differentiable functionals such that Φ is bounded from

below and

Φ(0) = Ψ(0) = 0. Fix r > 0 such that supu∈Φ−1(]−∞,r[)Ψ(u) < +∞ and assume

that for each λ ∈
]

0,
r

supu∈Φ−1(]−∞,r[)Ψ(u)

[

the functional Φ−λΨ satisfies the (PS)-

condition and it is unbounded from below. Then, for each

λ ∈
]

0,
r

supu∈Φ−1(]−∞,r[)Ψ(u)

[

the functional Iλ admits two distinct critical points.

Now we present two propositions that will be needed to prove the main Theorems

of this paper.

Proposition 2.5. Take Φ and Ψ as in the definition 2.1 and fix λ > 0. Then

Iλ = Φ− λΨ satisfies the (PS)[r]-condition for any r > 0.

Proof. Consider sequence {un} ⊆ W 2,2(R) such that {Iλ(un)} is bounded,

lim
n→+∞

‖I ′λ(un)‖W 2,2(R)∗ = 0

and Φ(un) < r, ∀n ∈ N. Since Φ(un) < r, we have, 1
2 ‖ un ‖2< r and so {un} is

bounded in W 2,2(R). Therefore passing to a subsequence if necessary we can assume

that un(x) → u(x), x ∈ R(from the compact embedding W 2,2(R) → C([−T, T ]), T >

0) and {un} weakly converges to u in L∞(R) ( from the continuous embedding

W 2,2(R) → L∞(R) ) and hence there is s > 0 such that |un(x)| ≤ s for a.e. x ∈ R and

for all n ∈ N. Now according to Lebesque’s Dominated Convergence Theorem, Since

αf(un(x)) ≤ α.max|ξ|≤s f(ξ) ∈ L1(R) for all n ∈ N and f(un(x)) → f(u(x)) for a.e.

x ∈ R (f is continuous function), one has αf(un) is strongly converging to αf(u) in

L1(R). Now since un ⇀ u in L∞(R) and αf(un) → αf(u) in L1(R) ⊆ (L∞(R))∗ then

from [[4],proposition 3.5(iv)], one has

lim
n→+∞

∫

R

α(x)f(un(x))(un(x)− u(x))dx = 0. (8)

From lim
n→+∞

‖I ′λ(un)‖W 2,2(R)∗ = 0, there exists a sequence {εn}, with εn → 0+, such

that
∣

∣

∣

∣

∣

∫

R

(u′′
n(x)v

′′(x)−Au′
n(x)v

′(x) +Bun(x)v(x) − λα(x)f(un(x))v(x))dx

∣

∣

∣

∣

∣

≤ εn, (9)
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for all n ∈ N and for all v ∈ W 2,2(R) with ‖ v ‖≤ 1. Taking into account v(x) =
un(x)−u(x)
‖un−u‖ , from (9) one has

∣

∣

∣

∣

∣

∫

R

(u′′
n(x)(u

′′
n(x) − u′′(x))−Au′

n(x)(u
′
n(x)− u′(x)) +Bun(x)(un(x) − u(x))−

λα(x)f(un(x))(un(x) − u(x)))dx

∣

∣

∣

∣

∣

≤ εn ‖ un − u ‖ (10)

for all n ∈ N.Now according to inequality |a||b| ≤ 1
2 |a|2 + 1

2 |b|2 we have

∫

R

(u′′
n(x)(u

′′
n(x) − u′′(x))−Au′

n(x)(u
′
n(x) − u′(x)) +Bun(x)(un(x) − u(x)))dx

=

∫

R

(|u′′
n(x)|2−A|u′

n(x)|2+B|un(x)|2)dx−
∫

R

(u′′
n(x)u

′′(x)−Au′
n(x)u

′(x)+Bun(x)u(x))

≥‖ un ‖2 −
∫

R

(
1

2
|u′′

n(x)|2 +
1

2
|u′′(x)|2 − 1

2
A|u′

n(x)|2

− 1

2
A|u′(x)|2 + 1

2
B|un(x)|2 +

1

2
B|u(x)|2)dx

=‖ un ‖2 −1

2
‖ un ‖2 −1

2
‖ u ‖2= 1

2
‖ un ‖2 −1

2
‖ u ‖2 .

Hence from (10), we have

1

2
‖ un ‖2 −1

2
‖ u ‖2≤ λ

∫

R

α(x)f(un(x))(un(x) − u(x))dx + εn ‖ un − u ‖

that is,

1

2
‖ un ‖2≤ 1

2
‖ u ‖2 +λ

∫

R

α(x)f(un(x))(un(x) − u(x))dx + εn ‖ un − u ‖ . (11)

Taking into account (8),from (11) when εn → 0+, we have,

lim sup
n→+∞

‖ un ‖ ≤ ‖ u ‖ .

Thus [[4], proposition 3.32] ensures that un → u, strongly in W 2,2(R) and the proof

is complete.

Proposition 2.6. Assume that there are M > 0 and θ > 2 such that

0 < θF (ξ) ≤ ξf(ξ) (12)

for all ξ ≥ M . Then Iλ = Φ − λΨ satisfies the (PS)-condition and it is unbounded

from below.
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Proof. First we prove that Iλ satisfies (PS)-condition for every λ > 0. For this

purpose we will prove that for arbitrary sequence {un} ⊂ W 2,2(R) satisfying

|Iλ(un)| ≤ D for some D > 0 and for all n ∈ N, (13)

I ′λ(un) → 0 in W 2,2(R)∗ as n → ∞, (14)

contains a convergent subsequence. Let ūn(x) = max{0,−un(x)}. From (14) we have

|I ′λ(un)(v)| ≤ εn ‖ v ‖ (15)

for all v ∈ W 2,2(R) with εn → 0+. Hence |I ′λ(un)(ūn)| ≤ εn ‖ ūn ‖, that is,
∣

∣

∣

∣

∣

∫

R

(u′′
n(x)ū

′′
n(x)−Au′

n(x)ū
′
n(x) +Bun(x)ūn(x)− λ

∫

R

α(x)f(un(x))ūn(x)dx

∣

∣

∣

∣

∣

≤ εn ‖ ūn ‖ .

Therefore

‖ ūn ‖2 +λ

∫

R

α(x)f(un(x))ūn(x)dx ≤ εn ‖ ūn ‖ .

Hence ‖ ūn ‖≤ εn. Thus {ūn} strongly converges to 0 in W 2,2(R) and so it is bounded

in W 2,2(R).Thus according to (2) it is bounded in L∞(R) and hence 0 ≤ ūn(x) ≤ L

for some L ≥ 0 and for a.e. x ∈ R and one has,

un(x) ≥ −L (16)

for a.e. x ∈ R and for all n ∈ N. Now we prove that {un} is bounded in W 2,2(R).

For this end from (15), we have

−I ′λ(un)(un) ≤ εn ‖ un ‖ (17)

for all n ∈ N with εn → 0+. Now we have

Iλ(un)−
1

θ
I ′λ(un)(un) =

(

1

2
− 1

θ

)

‖ un ‖2

+
λ

θ

∫

R

α(x)
[

f(un(x))un(x) − θF (un(x))
]

dx. (18)

From (27), one has

∫

un(x)≥M

α(x)
[

f(un(x))un(x)− θF (un(x))
]

dx ≥ 0.

On the other hand, in view of (16) we have
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∣

∣

∣

∫

−L≤un(x)<M

α(x)
[

f(un(x))un(x) − θF (un(x))
]

dx
∣

∣

∣

≤
∫

−L≤un(x)<M

α(x) max
ξ∈[−L,M ]

[

f(ξ)ξ − θF (ξ)
]

dx

≤ max
ξ∈[−L,M ]

[

f(ξ)ξ − θF (ξ)
]

.|α|1.

Hence from (18)

Iλ(un)−
1

θ
I ′λ(un)(un) ≥

(

1

2
− 1

θ

)

‖ un ‖2 −λ

θ
max

ξ∈[−L,M ]

[

f(ξ)ξ − θF (ξ)
]

.|α|1. (19)

Taking into account (13),(17), from (19), one has

(

1

2
− 1

θ

)

‖ un ‖2 −λ

θ
max

ξ∈[−L,M ]

[

f(ξ)ξ − θF (ξ)
]

.|α|1 ≤ D +
εn

θ
‖ un ‖

that is,

(

1

2
− 1

θ

)

‖ un ‖2≤ D +
εn

θ
‖ un ‖ +

λ

θ
max

ξ∈[−L,M ]

[

f(ξ)ξ − θF (ξ)
]

.|α|1. (20)

Thus, (20) ensures that {un} is bounded in W 2,2(R). Finally, as the argument used

to prove Proposition 2.5, {un} admits a convergent subsequence and so Iλ satisfies

(PS)-condition.

From (27), by standard computations, there are positive constants c1, c2 such that

F (ξ) ≥ c1ξ
θ − c2 (21)

for all ξ ≥ 0. Fixed u0 ∈ W 2,2(R)− {0}, and suppose that u0 ≥ 0.For each t > 1, we

have

Iλ(tu0) =
1

2
‖ tu0 ‖2 −λ

∫

R

α(x).F (tu0)dx.

Taking into account (21), one has

Iλ(tu0) ≤
t2

2
‖ u0 ‖2 −λc1t

θ

∫

R

α(x).u0
θdx+ λc2

∫

R

α(x)dx

and since θ > 2, this condition guarantees that Iλ is unbounded from below.
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3. MAIN RESULTS

Before presenting the main theorems of this section, we introduce notations that are

related to some constants that will appear in the main results of this section. Put

k =(
2048

27
− 32

9
A+

13

40
B)−1,

α0 =

∫ 5
8

3
8

α(x)dx,

E =

∫
5
8
3
8

α(x)dx
∫

R
α(x)dx

=
α0

|α|1
, and hence E ≤ 1,

h =CA,B

(

2

k

)
1
2

,

and

I =
E

h2
,

where CA,B is given in proposition 2.1.

Let us formulate the main results.

Theorem 3.1. Assume that there exist two positive constants η and θ with η < θ

such that
F (θ)

θ2
< I

F (η)

η2
. (22)

Then, for each

λ ∈
]

1

2|α|1C2
A,B

1

I

η2

F (η)
,

1

2|α|1C2
A,B

θ2

F (θ)

[

,

problem (Pλ) admits at least one non-trivial and non-negative weak solution u0 ∈
W 2,2(R) such that |u0|∞ < θ.

Proof. Our aim is to apply Theorem 2.3, to problem (Pλ). Fix λ, as in the conclusion.

Take X = W 2,2(R) and Φ and Ψ as in the previous section. We observe that the

regularity assumptions of Theorem 2.3 on Φ and Ψ are satisfied and also according

to proposition 2.5, the functional Iλ satisfies the (PS)[r]-condition for all r > 0.

Hence, our aim is to verify (7). Put

r :=
1

2

(

θ

CA,B

)2
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and

w(x) :=























−64η

9
(x2 − 3

4
x) if x ∈ [0, 3

8 ],

η if x ∈] 38 , 5
8 ],

− 64η
9 (x2 − 5

4x+ 1
4 ) if x ∈] 58 , 1],

0 otherwise.

(23)

We clearly observe that w ∈ X and, in particular,

Φ(w) =
1

2
‖ w ‖2= 1

2

∫

R

(|w′′(x)|2 −A|w′(x)|2 +B|w(x)|2)dx =

η2(
2048

27
− 32

9
A+

13

40
B) =

η2

k
=

1

2

(

η h

CA,B

)2

.

Moreover from
1

I
=

h2

E
≥ h2, η < θ and (22) we have,

η h3 F (θ)

θ2
≤ η h

1

I

F (θ)

θ2
< η h

1

I
.I

F (η)

η2
≤ h

F (θ)

η

that is, η h < θ and thus

Φ(w) =
1

2

(

η h

CA,B

)2

<
1

2

(

θ

CA,B

)2

= r,

Therefore, 0 < Φ(w) < r. Now for each u ∈ X and bearing (2) in mind, we see

that

Φ−1(]−∞, r[) = {u ∈ X ; Φ(u) < r} =






u ∈ X ;
1

2
‖u‖2 < 1

2

(

θ

CA,B

)2






=

{u ∈ X ;CA,B‖u‖ < θ} ⊆ {u ∈ X ; |u|∞ < θ} ,

and it follows that

sup
u∈Φ−1(]−∞,r[)

Ψ(u) = sup
u∈Φ−1(]−∞,r[)

∫

R

α(x) F (u(x))dx

≤
∫

R

α(x) sup
|ξ|<θ

F (ξ)dx = |α|1 F (θ).

Hence, we have

supu∈Φ−1(]−∞,r[)Ψ(u)

r
≤ |α|1 F (θ)

1
2

(

θ
CA,B

)2 = 2|α|1 C2
A,B

F (θ)

θ2
<

1

λ
. (24)
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On the other hand

Ψ(w)

Φ(w)
=

∫

R
α(x) F (w(x))dx

1
2

(

η h
CA,B

)2 ≥
∫

5
8
3
8

α(x) F (η)dx

1
2

(

η h
CA,B

)2 =
α0 F (η)

1
2

(

η h
CA,B

)2 =

2|α|1 C2
A,B

E

h2

F (η)

η2
= 2|α|1 C2

A,B I
F (η)

η2
>

1

λ
. (25)

Now from (24) and (25) we have,

supu∈Φ−1(]−∞,r[)Ψ(u)

r
<

Ψ(w)

Φ(w)

and (7) is proved. Finally, for each

λ ∈
]

1

2|α|1CA,B
2

1

I

η2

F (η)
,

1

2|α|1CA,B
2

θ2

F (θ)

[

⊆
]

Φ(w)

Ψ(w)
,

r

supu∈Φ−1(]−∞,r[)Ψ(u)

[

since the weak solutions of the problem (Pλ) are exactly the solutions of the

equation I ′λ(u) = 0, then Theorem 2.3 (with ũ = w) and lemma 2.2 will be guaranteed

the conclusion.

Now, we present the following example to illustrate Theorem 3.1.

Example 3.1. Suppose that f : R → R is continuous and non-negative function

and

α(x) :=

{

4 if x ∈ [ 38 ,
5
8 ],

0 otherwise.

Let A = −1 and B = 1, then we have,

k = (861111080 )−1, CA,B =
√
2
2 , h = (861111080 )

1
2 , E = 1, I = 1080

86111 . Also let η = 1 and

θ = 10. Now if
1

100

∫ 10

0

f(ξ)dξ <
1080

86111

∫ 1

0

f(ξ)dξ,

then according to Theorem 3.1 for each

λ ∈
]

86111

1080
∫ 1

0 f(ξ)dξ
,

100
∫ 10

0 f(ξ)dξ

[

,

problem

{

uiv(x)− u′′(x) + u(x) = λα(x)f(u(x)) , x ∈ R,

u(−∞) = u(+∞) = 0
(26)

has at least one non-trivial and non-negative weak solution u0 such that |u0|∞ < 10.
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Remark 3.1. For example in problem (26) we can consider,

f(t) :=











100 t2 if t ≤ 1

−10000 t+ 10100 if 1 < t ≤ 1.01

0 if t > 1.01.

It should be kept in mind that under certain suitable asymptotic conditions on the

function f , existence a non-trivial weak solution will be guaranteed for problem (Pλ)

for any λ ∈ R
+. In this case the following proposition is a consequence of Theorem

3.1.

Corollary 3.2. Assume that

lim
ξ→0+

f(ξ)

ξ
= +∞ and lim

ξ→+∞

f(ξ)

ξ
= 0.

Then, for each λ ∈ R
+, problem (Pλ) admits at least one non-trivial and non-

negative solution.

Proof. Suppose that λ > 0 is fixed. Then from limξ→0+
f(ξ)
ξ = +∞ we have

limξ→0+
F (ξ)
ξ2 = +∞ and so 1

λ < 2|α|1C2
A,BI

F (η)
η2 , for some η > 0 such that

sufficiently small.

On the other hand from limξ→+∞
f(ξ)
ξ = 0 we have

limξ→+∞
F (ξ)
ξ2 = 0 and so 2|α|1C2

A,B
F (θ)
θ2 < 1

λ , for some θ > 0 with η < θ such

that sufficiently large. Finally we can apply Theorem 3.1 and the conclusion follows.

Now, we point out the following existence results, as consequences of Theorem

2.4.

Theorem 3.3. Suppose that there are M > 0 and θ > 2 such that

0 < θF (ξ) ≤ ξf(ξ) (27)

for all ξ ≥ M . Then for each λ ∈]0, λ∗[ where λ∗ = 1
|α|1F (

√
2 CA,B)

, problem (Pλ)

admits at least two distinct non-negative weak solutions.

Proof. Our aim is to apply Theorem 2.4, to problem (Pλ). Put r = 1 and fixed

λ ∈]0, λ∗[. Let X , Φ and Ψ be as given in the proof of Theorem 3.1. We observe

that the regularity assumptions of Theorem 2.4 on Φ and Ψ are satisfied and also

according to proposition 2.6, the functional Iλ satisfies the (PS)-condition and it is

unbounded from below. Since for each u ∈ X such that u ∈ Φ−1(] −∞, 1[) we have

‖ u ‖<
√
2, hence from (2) one has
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supu∈Φ−1(]−∞,r[)Ψ(u)

r
= sup

u∈Φ−1(]−∞,1[)

Ψ(u) = sup
u∈Φ−1(]−∞,1[)

∫

R

α(x) F (u(x))dx ≤

∫

R

α(x) sup
|ξ|<

√
2 CA,B

F (ξ)dx = |α|1 F (
√
2 CA,B) =

1

λ∗ <
1

λ
. (28)

From (28) we have

λ ∈]0, λ∗[ ⊆
]

0,
r

supu∈Φ−1(]−∞,r[)Ψ(u)

[

.

So all hypotheses of Theorem 2.4 are verified. Therefore, for each λ ∈]0, λ∗[, the func-

tional Iλ admits at least two distinct critical points which are, non-negative solutions

of problem (Pλ) and the proof is complete.

Example 3.2. Let A = −1 and B = 1 and so CA,B =
√
2
2 . Also suppose that

α(x) = e−x2

and hence |α|1 =
∫ +∞
−∞ e−x2

dx =
√
π. Now if we consider f(ξ) = 1 + ξ6,

one has

0 < 4(ξ +
ξ7

7
) ≤ ξ(1 + ξ6)

for all ξ ≥ 6
√
7 and so (27) is verified. Therefore since f(0) 6= 0 then according to

Theorem 3.3 for each λ ∈
]

0, 7
8
√
π

[

, problem

{

uiv(x) − u′′(x) + u(x) = λ e−x2

(1 + u(x)
6
) , x ∈ R,

u(−∞) = u(+∞) = 0
(29)

admits at least two non-trivial and non-negative classical solutions.
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