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1. INTRODUCTION AND PRELIMINARIES

In 1988, the theory of analysis on time scales was introduced by Stefan Hilger [11]

in his Ph.D thesis in order to unify and extend continuous and discrete calculus.

One of the most important problems in analysis on time scales is to consider the

stability of dynamic equations. There have been many papers dealing with this topic.

However, as far as we know, authors have used only the second Lyapunov method

(method of Lyapunov functions) to investigate whether a dynamic equation is stable
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or not, see [6, 9, 12, 16, 17]. Meanwhile, the first Lyapunov method (method of

Lyapunov exponents to know the growth rate of a function) was a quite classical and

basic concept for differential and difference equations [14, 16, 17] and it is a strong

tool to study the linear systems. But so far there have been no works dealing with

the concept of Lyapunov exponents for functions defined on time scales. The main

reason for this situation is that the traditional approach to Lyapunov exponents via

logarithm function is no longer valid because there is no reasonable definition for

logarithm function, which one regards as the inverse of the exponent function on the

time scale, even if there were some works trying to approach this notion, see [3].

In this paper, we introduce an approach to the first Lyapunov method for dynamic

equations on time scales. Although we can not define the logarithm function on time

scales, the idea of comparing the growth rate of a function with exponential functions

in the definition of the Lyapunov exponent is still useful on the time scales. Therefore,

instead of considering the limit

lim sup
t→∞

1

t
ln

|f(t)|
t

,

we can study the oscillation of the ratio

|f(t)|
eα(t, t0)

as t → ∞

in the parameter α to define the Lyapunov exponent of the function f . Where eα(t, t0)

is the exponential function with a certain parameter α.

This paper is organized as follows. In Section 1 we give a brief survey on the

theory of time scales. Section 2 defines Lyapunov exponent for functions defined on

time scales and establishes its fundamental properties. Section 3 deals with the Lya-

punov exponents of the solutions of linear dynamic equations. The relation between

Lyapunov spectrum and the stability of a linear dynamic equation on time scales is

considered in Section 4.

Firstly, we introduce some basic concepts on time scales. A time scale is a

nonempty closed subset of the real numbers R, and we usually denote it by T. We

assume that a time scale T has the induced topology from the real numbers with

the standard topology. We define the forward jump operator and the backward jump

operator σ, ρ : T → T by σ(t) = inf{s ∈ T : s > t} (supplemented by inf ∅ = supT)

and ρ(t) = sup{s ∈ T : s < t} (supplemented by sup ∅ = inf T). The graininess

µ : T → R
+ ∪ {0} is given by µ(t) = σ(t) − t. A point t ∈ T is said to be right-

dense if t < supT and σ(t) = t; right-scattered if σ(t) < t; left-dense if t > inf T and

ρ(t) = t; left-scattered if ρ(t) < t, and isolated if t is simultaneuosly right-scattered

and left-scattered. For every a, b ∈ T, by [a, b], we mean the set {t ∈ T : a 6 t 6 b}.
The set T

k is defined to be T if T does not have a left-scattered maximum; other-

wise it is T without this left-scattered maximum. Now, let f be a function defined
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on T. We say that f is delta differentiable (or simply, differentiable) at t ∈ T
k pro-

vided there exists an α such that for all ε > 0 there is a neighborhood V around

t with |f(σ(t)) − f(s) − α(σ(t) − s)| 6 ε|σ(t) − s| for all s ∈V. In this case we de-

note the α by f∆(t), and if f is differentiable for every t ∈ T
k, then f is said to be

differentiable on T. If T = R then delta derivative is f ′(t) from continuous calcu-

lus; if T = Z then the delta derivative is the forward difference, ∆f , from discrete

calculus. A function f defined on T, valued in a Banach space Y , is rd-continuous

if it is continuous at every right-dense point and if the left-sided limit exists at ev-

ery left-dense point. The set of all rd-continuous function from T to Y is denoted

by Crd(T, Y ). A function f ∈ Crd(T,R) is regressive (resp. positively regressive) if

1 + µ(t)f(t) 6= 0 (resp. 1 + µ(t)f(t) > 0) for every t ∈ T. We denote R (resp. R+)

the set of the regressive functions (resp. positively regressive). A matrix function

A ∈ CrdR(T,Rn×n) is regressive (resp. positively regressive) if det(I + µ(t)A(t)) 6= 0

(resp. det(I + µ(t)A(t)) > 0) for all t ∈ T.

Theorem 1 (see [5]). Let A(t) be a regressive n × n matrix function. Then, the

initial value problem (IVP) x∆ = A(t)x, x(t0) = x0 has a unique solution x defined

on T.

By this theorem, if A(t) is regressive then the IVP X∆ = A(t)X,X(t0) = I has a

unique matrix-valued solution, says ΦA(t, t0).

Theorem 2 (see [5]). Let A(t) be regressive. Then the following statements hold,

1. Any solution x(·) of the IVP x∆ = A(t)x, x(t0) = x0 can be written as x(·) =
ΦA(·, t0)x0.

2. The cocycle property is valid ΦA(t, τ) = ΦA(τ, s)ΦA(s, t) for all t, s, τ ∈ T.

3. ΦA(t, t0) is invertible.

Remark 3. When A(t) is not regressive, the solution of the corresponding matrix-

valued IVP X∆ = A(t)X,X(t0) = I (t > t0) also exists uniquely but in general it

does not exist for t < t0 and ΦA(t, t0) may not invertible (see [10, 19]).

We are concerned with the one dimension case. Let p : T → R be a regressive

function. The unique solution of IVP x∆ = p(t)x, x(t0) = 1 is called exponential

function on the time scale T. We denote this function by ep(·, t0).
In the following, one lists some fundamental properties of the exponential functions

which will be used in this paper.

Theorem 4 (see [1, 5]). Given p(·), q(·) ∈ CrdR(T,C), for all s, t ∈ T, we have

1. ep(t, t) = 1, e0(t, s) = 1.
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2. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s).

3. ep(t, s)eq(t, s) = ep⊕q(t, s), where (p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t).

4.
ep(t, s)

eq(t, s)
= ep⊖q(t, s), where (p⊖ q)(t) := p(t)−q(t)

1+µ(t)q(t) .

5. ep(t, s) =
1

ep(s, t)
= e⊖p(s, t).

6. If p(·), q(·) ∈ R+ and p 6 q then 0 < ep(t, s) 6 eq(t, s), for all t > s.

Lemma 5 (Gronwall’s Inequality (see [1, 18])). Let u, a, b ∈ Crd(T,R), b(t) > 0 for

all t ∈ T. Then, the inequality

u(t) 6 a(t) +

t∫

t0

b(s)u(s)∆s for all t > t0

implies

u(t) 6 a(t) +

t∫

t0

a(s)b(s)eb(t, σ(s))∆s for all t > t0.

We refer to [5, 10, 13] for more information on analysis on time scales.

From now on, we fix t0 ∈ T and denote Tt0 := [t0,∞) ∩ T. For our purpose, we

assume that the time scale T is unbounded above, i.e., supT = ∞ and the graininess

µ(t) is bounded on T, that is, µ∗ = supt∈T
µ(t) < ∞. This is equivalent to the

existence positive numbers m1,m2 such that for every t ∈ T, there exists c = c(t) ∈ T

satisfying m1 6 c − t < m2 (also see [19, p. 319]). Furthermore, by definition, if

α ∈ R+ ∩ R then α > − 1
µ(t) for all t ∈ T. As a consequence we have

inf(R+ ∩ R) = − 1

µ∗
, supplemented by

1

0
= ∞.

2. LYAPUNOV EXPONENTS:

DEFINITION AND BASIC PROPERTIES

2.1. DEFINITION OF LYAPUNOV EXPONENTS

The idea of comparing a considered function with exponential function motivates us

to use R+ ∩ R as possible values of Lyapunov exponents. Moreover, similar to the

case of analysis on the real line R, Lyapunov exponent of the zero function is −∞, the

left extreme exponent, that is infimum of all possible values of Lyapunov exponents.

Of course, Lyapunov exponent may be +∞, the right extreme exponent.
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Definition 6. Lyapunov exponent of the function f defined on Tt0 , valued in K

(K = R or K = C), is a real number a ∈ R+ such that for all arbitrary ε > 0

lim
t→∞

|f(t)|
ea⊕ε(t, t0)

= 0, (2.1)

lim sup
t→∞

|f(t)|
ea⊖ε(t, t0)

= ∞. (2.2)

The Lyapunov exponent of the function f is denoted by Υ[f ].

We introduce the concept of extreme exponents. If (2.1) is true for all a ∈ R+∩R

then we say by convention that f has left extreme exponent, Υ[f ] = −1/µ∗ = inf(R+∩
R). If (2.2) is true for all a ∈ R+∩R, we say the function f has right extreme exponent,

Υ[f ] = +∞. If Υ[f ] is neither left extreme exponent nor right extreme exponent, then

we call Υ[f ] by normal Lyapunov exponent.

The next lemma shows a necessary and sufficient condition for the existence of

the normal Lyapunov exponent.

Lemma 7. Let f : Tt0 → K be a function. Then, f has a normal Lyapunov exponent

if and only if there exist two real numbers λ, γ ∈ R+ with λ 6= inf(R+ ∩R) such that

lim
t→∞

|f(t)|
eγ(t, t0)

= 0; lim sup
t→∞

|f(t)|
eλ(t, t0)

= ∞. (2.3)

Proof. Let the Lyapunov exponent Υ[f ] of f be normal, this means that − 1
µ∗ <

Υ[f ] < ∞. Choose − 1
µ∗ < λ < Υ[f ] < γ < ∞. Since for small enough ε > 0,

λ < Υ[f ]⊖ ε(t) < Υ[f ]⊕ ε(t) < γ for any t ∈ T. From (2.1) and (2.2) it follows (2.3).

Suppose that there are λ and γ such that (2.3) takes place. Set

A =
{
λ0 ∈ R+ ∩ R : |f(t)|

eλ0
(t,t0)

is unbounded on Tt0

}
,

B =
{
λ1 ∈ R+ ∩ R : limt→∞

|f(t)|
eλ1

(t,t0)
= 0

}
.

(2.4)

Since λ ∈ A and γ ∈ B, hence A,B 6= ∅. Furthermore, if x ∈ A and y ∈ B then

x 6 y. As a consequence, A is bounded from above, B is bounded from below and

supA < γ, inf B > λ. It is easily seen that supA = inf B and we denote this common

value by a. For every ε > 0, let ε1 be a positive number satisfying a⊕ ε > a+ ε1. By

the definition of a,

lim
t→∞

|f(t)|
ea⊕ε(t, t0)

6 lim
t→∞

|f(t)|
ea+ε1(t, t0)

= 0,

which deduces limt→∞
|f(t)|

ea⊕ε(t,t0)
= 0. In addition, by setting ε2 = inft{1+aµ(t)}

1+ε supt µ(t)
we

have a ⊖ ε = a−ε
1+µ(t)ε 6 a − ε2 ∈ R+. Therefore, |f(t)|

ea⊖ε(t,t0)
>

|f(t)|
ea−ε2

(t,t0)
is unbounded

from above since a− ε2 ∈ A. Thus a satisfies Definition 6.
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For the uniqueness, let b be a real number satisfying (2.1) and (2.2). We show

that a = b. Suppose on the contrary that a < b. By choosing ε > 0 satisfying

µ∗(1 + µ∗|a|)ε2 + 2(1 + µ∗|a|)ε+ (a− b) 6 0 we see that a⊕ ε 6 b⊖ ε.

Hence, ea⊕ε(t, t0) 6 eb⊖ε(t, t0) which implies |f(t)|
ea⊕ε(t,t0)

>
|f(t)|

eb⊖ε(t,t0)
and we have a

contradiction. Lemma is proved.

Example 8.

1. In case T = R, the definition 6 leads to the classical one of Lyapunov exponent,

i.e.,

Υ[f ] = χ[f ] = lim sup
t→∞

ln |f(t)|
t

.

2. In case T = Z, it is easy to see that

ln (1 + Υ [f ]) = lim sup
n→∞

ln |f(n)|
n

= χ [f ] .

Furthermore, the left extreme exponent is inf(R+ ∩ R) = −1.

2.2. SOME FUNDAMENTAL PROPERTIES

Property 9. Let f, g : Tt0 → K be the functions, we have

1. Υ[|f |] = Υ[f ].

2. Υ[0] = inf(R+ ∩ R) (left extreme exponent).

3. Υ[cf ] = Υ[f ], where c 6= 0 is a constant.

4. If a ∈ R+ ∩ R and (2.1) is satisfied for any ε > 0 then Υ[f ] 6 a. Similarly, if

a ∈ R+ ∩ R and (2.2) holds for any ε > 0 then Υ[f ] > a.

5. If |f(t)| 6 |g(t)| for all large enough t then Υ[f ] 6 Υ[g].

6. If f is bounded from above (resp. from below) then Υ[f ] 6 0 (resp. Υ[f ] > 0).

As a consequence, if f is bounded then Υ[f ] = 0.

Proof. The proof immediately follows from the definition of Lyapunov exponents.

Property 10. For any λ ∈ R ∩ C, we have

1. Υ[eλ(·, t0)] = Υ[eℜ̂λ(·, t0)].

2. Υ[eλ(·, t0)] does not depend on t0.

3. If q(·) ∈ R+ then

Υ[eq(·, t0)]6 lim sup
t→∞

q(t). (2.5)
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4.

Υ[eλ(·, t0)]6 lim sup
t→∞

ℜ̂λ(t)6|λ|. (2.6)

5.

ℜλ6 lim inf
t→∞

ℜ̂λ(t)6Υ[eλ(·, t0)]. (2.7)

Proof. Since

ℜ̂λ(t) = lim
sցµ(t)

|1 + sλ| − 1

s
=





ℜλ if µ(t) = 0

|1 + µ(t)λ| − 1

µ(t)
if µ(t) 6= 0,

it follows that

ℜλ 6 ℜ̂λ(t) 6 |λ| ∀ t ∈ T

=⇒ℜλ 6 lim inf
t→∞

ℜ̂λ(t) 6 lim sup
t→∞

ℜ̂λ(t) 6 |λ|. (2.8)

1. It is known that |eλ(t, t0)| = eℜ̂λ(t, t0) (see [10], Theorem 7.4). Thus, Υ[eλ(·, t0)] =
Υ[eℜ̂λ(·, t0)].
2. For t1 > t0, we have eλ(t, t0) = eλ(t, t1)eλ(t1, t0). Furthermore, since λ ∈ R ∩ C,

eλ(t1, t0) 6= 0. Therefore, by Property 1.3 we see that Υ[eλ(·, t0)] = Υ[eλ(·, t1)].
3. Set α = lim sup

t→∞
q(t) = lim

T→∞
sup
t>T

q(t). For any ε > 0, we can find T0 > t0 such that

q(t) 6 α + ε for all t > T0, which implies that 0 < eq(·)(t, T0) 6 eα+ε(t, T0). Hence,

Υ
[
eq(·)(·, T0)

]
6 Υ [eα+ε(·, T0)] = α + ε by Property 1.5. Since ε > 0 is arbitrary,

Υ [eλ(·, t0)] 6 α.

4. This property follows from (2.8) and the Properties 2.1; 2.3.

5. Let β = lim inf
t→∞

ℜ̂λ(t) = lim
T→∞

inf
t>T

ℜ̂λ(t). We see that ℜλ 6 β by (2.8). In case

β = − 1
µ∗

the inequality is trivial since Υ [eλ(·, t0)] > − 1
µ∗

. We consider the case

β > − 1
µ∗

. For any sufficiently small ε > 0, we can find T0 > t0 such that − 1
µ∗

<

β − ε 6 ℜ̂λ(t) for all t > T0. Hence, 0 < eβ−ε(·, T0) 6 eℜ̂λ(·, T0) which follows

that β − ε = Υ [eβ−ε(·, T0)] 6 Υ
[
eℜ̂λ(·, T0)

]
= Υ

[
eℜ̂λ(·, t0)

]
= Υ [eλ(·, t0)]. Thus,

β 6 Υ [eλ(·, t0)]. The proof is complete.

Corollary 11. 1. If λ ∈ R+ ∩ R then ℜ̂λ(t) = λ, and hence Υ[eλ(·, t0)] = λ.

2. If T = R then Υ[eλ(·, t0)] = χ[eλ(t−t0)] = ℜλ (λ ∈ C).

3. If T is a homogeneous time scale, i.e., µ(t) ≡ h 6= 0 then Υ[eλ(·, t0)] = Υ[(1 +

hλ)t−t0 ] = |1+hλ|−1
h . Especially, if T = Z then Υ[eλ(·, t0)] = |1 + λ| − 1.

Property 12. Υ[f + g] 6 max{Υ[f ],Υ[g]} and if Υ[f ] 6= Υ[g] then the equality

holds.
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Proof. Set α = Υ[f ], β = Υ[g] and suppose that α 6 β, α, β ∈ R+ ∩ R. It is seen

that
|(f + g)(t)|
eβ⊕ε(t, t0)

6
|f(t)|

eβ⊕ε(t, t0)
+

|g(t)|
eβ⊕ε(t, t0)

t→∞−→ 0,

which implies Υ[f + g] 6 β.

Let α < β. Choosing any small enough ε > 0 to α⊕ ε 6 β ⊖ ε gets

lim sup
t→∞

|(f + g)(t)|
eβ⊖ε(t, t0)

> lim sup
t→∞

( |g(t)|
eβ⊖ε(t, t0)

− |f(t)|
eβ⊖ε(t, t0)

)

> lim sup
t→∞

|g(t)|
eβ⊖ε(t, t0)

− lim sup
t→∞

|f(t)|
eα⊕ε(t, t0)

= ∞.

This means that Υ[f + g] > β. The proof is complete.

Remark 13.

1. If either α or β or both is the left extreme exponent or ∞ then the above

inequality is also valid.

2. We always have Υ[
∑n

i=1 cifi] 6 max16i6n Υ[fi], where fi is continuous on

[t0,∞)T, ci 6= 0. Moreover, if there exists an index i such that Υ[fi] >

Υ[fj ], ∀j 6= i then Υ[
∑n

i=1 cifi] = Υ[fi].

Because α, β ∈ R+ ∩ R does not imply α + β ∈ R+ ∩ R, we can not expect

Υ[fg] 6 Υ[f ] + Υ[g] as in the case T = R. However, we have

Property 14. Υ[fg] 6 Υ[eΥ[f ]⊕Υ[g](·, t0)].

Proof. Denote α = Υ[f ] and β = Υ[g]. For all ε > 0 one has

| (fg)(t) |
eΥ[eα⊕β(·,t0)]⊕ε(t, t0)

=
|f(t)|

eα⊕ε1(t, t0)
× |g(t)|

eβ⊕ε2(t, t0)

× eα⊕β(t, t0)eε1⊕ε2⊕ε3(t, t0)

eΥ[eα⊕β(·,t0)]⊕ε3(t, t0)eε(t, t0)
,

where ε1, ε2, ε3 > 0 are chosen such that (ε1 ⊕ ε2 ⊕ ε3)(t) 6 ε for all t ∈ Tt0 . Since

lim
t→∞

|f(t)|
eα⊕ε1(t, t0)

= 0, lim
t→∞

|g(t)|
eα⊕ε2(t, t0)

= 0

and

lim
t→∞

eα⊕β(t, t0)

eΥ[eα⊕β(·,t0)]⊕ε3(t, t0)
= 0,

it follows that lim
t→∞

|(fg)(t)|
eΥ[eα⊕β(·,t0)]⊕ε(t, t0)

= 0. According to Property 1.4 we have

Υ[fg] 6 Υ[eΥ[f ]⊕Υ[g](·, t0)]. The proof is complete.
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Definition 15. The function f is said to have exact Lyapunov exponent (shortly,

exact exponent) α if

lim
t→∞

|f(t)|
eα⊕ε(t, t0)

= 0 and lim
t→∞

|f(t)|
eα⊖ε(t, t0)

= ∞,

for any ε > 0.

Property 16. If at least one of the functions f and g has exact Lyapunov exponent

then Υ[fg] = Υ[eΥ[f ]⊕Υ[g](·, t0)].

Proof. Suppose that f has exact exponent. For any ε > 0, there is a sequence tn ↑ ∞
such that lim

n→∞
|g(tn)|

eΥ[g]⊖ε(tn,t0)
= ∞. Since f has exact exponent, lim

n→∞
|f(tn)|

eΥ[f]⊖ε(tn,t0)
= ∞.

Therefore,

lim sup
t→∞

|(fg)(t)|
eΥ[f ]⊕Υ[g]⊖ε(t, t0)

> lim
n→∞

|f(tn)|
eΥ[f ]⊖ε/2(tn, t0)

lim
n→∞

|g(tn)|
eΥ[g]⊖ε/2(tn, t0)

= ∞,

which implies that Υ[fg] > Υ[eΥ[f ]⊕Υ[g](·, t0)]. The proof of Property 5 is complete.

Remark 17. If both functions f and g have exact exponents then so does the

function fg, and Υ[fg] = Υ[eΥ[f ]⊕Υ[g](·, t0)]. Generally, if all of functions f1, f2, ..., fm

have exact exponents then

Υ[f1f2...fm] = Υ[eΥ[f1]⊕Υ[f2]⊕...⊕Υ[fm](·, t0)].

Remark 18.

1. In case T = R, Υ[fg] 6 Υ[eΥ[f ]⊕Υ[g](·, t0)] = Υ[f ] + Υ[g].

2. In case T = Z, Υ[fg] 6 Υ[eΥ[f ]⊕Υ[g](·, t0)] = Υ[f ] + Υ[g] + Υ[f ]Υ[g] (or equiva-

lently χ[fg] 6 χ[f ] + χ[g]).

3. Since Υ[f ]⊕Υ[g](·) ∈ R+, by the relation (2.5) we have

Υ[fg] 6 lim sup
t→∞

{Υ[f ]⊕Υ[g](t)}

= lim sup
t→∞

{(Υ[f ] + Υ[g] + µ(t)Υ[f ]Υ[g]) (t)}

=





Υ[f ] + Υ[g] + Υ[f ]Υ[g] lim sup
t→∞

µ(t) if Υ[f ]Υ[g] > 0

Υ[f ] + Υ[g] + Υ[f ]Υ[g] lim inf
t→∞

µ(t) if Υ[f ]Υ[g] < 0.
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2.3. EXPONENTS OF MATRIX FUNCTIONS

The Lyapunov exponent of a matrix function F (t) = [fij(t)]m×n, where fij : Tt0 → R,

is defined by Υ[F ] = maxi,j Υ[fij ]. It is easy to see that Υ[‖F‖] = Υ[F ] and Υ[F ]

has all properties 1, 3 and 4 as the case of Lyapunov exponent of one dimensional

functions.

2.4. EXPONENTS OF INTEGRALS

Theorem 19. Given a continuous function f defined on Tt0 . Let

F (t) =





∫∞
t

f(s)∆s if Υ[f ] < 0
∫ t

t0
f(s)∆s if Υ[f ] > 0.

Then Υ[F ] 6 Υ[f ].

Proof. Set λ = Υ[f ] and suppose λ ∈ R+. By definition, for any ε1 > 0 there exist

C > 0 and T0 > t0 such that

|f(t)| 6 Ceλ⊕ε1(t, t0), ∀ t > T0. (2.9)

Suppose that λ < 0. Let ε > 0 and choose ε1 > 0, ε2 > 0 and ε3 > 0 such that,

λ⊕ ε1 6 λ+ ε2 6 λ⊕ ε⊖ ε3 and λ+ ε2 < 0 for all t > t0. For all t > T0, we have

|F (t)| 6 C

∫ ∞

t

eλ⊕ε1(s, t0)∆s

6 C

∫ ∞

t

eλ+ε2(s, t0)∆s =
−C

λ+ ε2
eλ+ε2(t, t0)

6
−C

λ+ ε2
eλ⊕ε⊖ε3(t, t0) =

−C

λ+ ε2

eλ⊕ε(t, t0)

eε3(t, t0)
.

Hence,
|F (t)|

eλ⊕ε(t, t0)
6

−C

λ+ ε2

1

eε3(t, t0)

t→∞−→ 0 (for all ε > 0).

Using Property 1.4 gets Υ[F ] 6 λ.

The case λ > 0 can be proved by a similar way. If λ = Υ[f ] is the left extreme

exponent or ∞, then we also have Υ[F ] 6 Υ[f ]. The theorem is proved.
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3. LYAPUNOV EXPONENTS OF THE SOLUTIONS

OF LINEAR EQUATIONS

3.1. LYAPUNOV SPECTRUM OF A LINEAR EQUATION

Consider the linear equation

x∆ = A(t)x, (3.1)

where A(t) is a regressive and rd-continuous n × n-matrix. It is known that the

equation (3.1) with the initial value x(t0) = x0 has a unique solution x(t) = x(t; t0, x0)

on T.

Theorem 20. Let M = lim sup
t→∞

‖A(t)‖. If x(·) is a nontrivial solution of the

equation (3.1), then Υ[x(·)] 6 M. Furthermore, if lim sup
t→∞

µ(t) < 1
M , then one has

the appreciation −M 6 Υ[x(·)] 6 M.

Proof. The first assertion can be proved by a similar way as in the continuous case

[8, Chapter III, Section 3] by using Gronwall’s Lemma.

We prove the second one. Let T1 > T0 satisfy µ(t) < 1
M , for all t > T1. It is easy

to see that Φ−1
A (t, T1) satisfies the adjoint dynamic equation

[Φ−1
A (t, T1)]

∆ = −Φ−1
A (σ(t), T1)A(t)

= −Φ−1
A (t, T1)(I + µ(t)A(t))−1A(t).

Therefore,

Φ−1
A (t, T1) = I −

∫ t

T1

Φ−1
A (s, T1)[I + µ(s)A(s)]−1A(s)∆s.

Hence,

‖Φ−1
A (t, T1)‖ 6 1 +

∫ t

T1

‖(I + µ(s)A(s))−1‖‖A(s)‖‖Φ−1
A (s, T1)‖∆s.

Using Gronwall’s Lemma gets

‖Φ−1
A (s, T1)‖ 6 e‖(I+µ(t)A(t))−1‖‖A(t)‖(t, T1),

which implies that ‖Φ−1
A (s, T1)‖−1 > e⊖‖(I+µ(t)A(t))−1‖‖A(t)‖(t, T1).

Since µ(t)‖A(t)‖ < 1, by Hille-Yosida Theorem we have

‖(I + µ(t)A(t))−1‖ 6
1

1− µ(t)‖A(t)‖ .

This deduces ⊖‖(I +µ(t)A(t))−1‖‖A(t)‖ > −‖A(t)‖ > −M ∈ R+ ∩R, for all t > T1.
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Furthermore,

‖x(t)‖
‖x(T1)‖

> ‖Φ−1
A (s, T1)‖−1

> (e⊖‖(I+µ(t)A(t))−1‖‖A(t)‖(t, T1) > e−M(t, T1).

Thus, Υ[x(·)] > Υ[e−M(t, T1)] = −M. The proof is complete.

If T = R, then µ(t) ≡ 0 we find again a popular inequality

−M 6 Υ[x(·)] = χ[x(·)] 6 M.

The set of all finite Lyapunov exponents of the solutions to the equation (3.1) is

called Lyapunov spectrum of this equation.

Theorem 21. The Lyapunov spectrum of the equation (3.1) has n distinct values

at most.

Proof. The argue is similar to the proof of Theorem 2.1 in [2].

3.2. LYAPUNOV’S INEQUALITY

Denote by X(t, t0) the fundamental solution matrix of the equation (3.1) satisfying

X(t0, t0) = X0 ∈ R
n×n and W (t, t0) = det(X(t, t0)). We see that W is the solution

of the equation W∆ = α(t)W (see [13]), where α(t) is defined by

α(t) = lim
sցµ(t)

det(I + sA(t))− 1

s
=




traceA(t) if µ(t) = 0
det(I+µ(t)A(t))−1

µ(t) if µ(t) 6= 0.

Since A(·) ∈ CrdR(T,Kn×n) and µ(t) = σ(t)− t is rd-continuous, α(·) ∈ CrdR(T,C).

Therefore, the equation W∆ = α(t)W with the initial condition W (t0, t0) = det(X0)

has a unique solution W (t, t0) = det(X0)eα(t, t0).

Let {x1(t), x2(t), ..., xn(t)} be a system of regular fundamental solutions of the

equation (3.1), i.e., a system of fundamental solutions has the property that Lyapunov

exponent of some solution combined from arbitrary solutions of this system will be

equal to the Lyapunov exponent of a solution attending in the combination. In other

words, if x(t) = k1x1(t)+k2x2(t)+· · ·+knxn(t) then Υ[x(·)] = Υ[xi(·)] with some i (by

the finiteness of the set of Lyapunov spectrum, it is easy to find such a fundamental

solution system).

Denote by S = {α1 6 α2 6 · · · 6 αn} the set of Lyapunov spectrum of (3.1). In

adddition, suppose that αi ∈ R+ ∩ R, for all i = 1, 2, ..., n. .

Theorem 22 (Lyapunov’s inequality).

Υ[eα(·, t0)] 6 Υ[eα1⊕α2⊕...⊕αn
(·, t0)].
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Proof. By definition

W =
∑

σ∈Θ

sgn(σ)xσ(1)1 . . . xσ(n)n,

where xi = (x1i, x2i, . . . , xni)
T and Θ is the set of all permutations of n elements

1, 2, . . . , n. Therefore,

Υ[W ] 6 max
σ∈Θ

Υ
[
xσ(1)1 . . . xσ(n)n

]

6 max
σ∈Θ

Υ
[
eΥ[xσ(1)1]⊕···⊕Υ[xσ(n)n](·, t0)

]

= max
σ∈Θ

Υ
[
eΥ[xσ(1)1](·, t0) · · · eΥ[xσ(n)n](·, t0)

]

6 Υ [eα1
(·, t0) · · · eαn

(·, t0)]
= Υ [eα1⊕···⊕αn

(·, t0)] .

Thus we get Υ[eα(·, t0)] 6 Υ[eα1⊕···⊕αn
(·, t0)]. The proof of the theorem is complete.

Example 23. In case T = R one has

Υ[eα(·, t0)] = lim sup
t→∞

1

t− t0

∫ t

t0

(traceA(s))ds

and

Υ [eα1⊕···⊕αn
(·, t0)] = α1 + · · ·+ αn.

Thus, we get the Lyapunov’s inequality for ordinary differential equations in [15].

Remark 24. The question of equality if

Υ[eα(·, t0)] = Υ[e⊕n
i=1αi

(·, t0)]
is still open even if the matrix A is constant? However, the answer will be positive if

we have one more condition.

Consider the equation (3.1) with A(t) ≡ A being a constant and regressive n× n-

matrix. Let λi, i = 1, 2, ..., n be the eigenvalues of A. We show that α(t) = λ1 ⊕
λ2...⊕ λn. Indeed, let

det(A− λI) = (−1)nλn + (−1)n−1an−1λ
n−1 + · · · − a1λ+ a0.

Then, by Viete’s Theorem
∑

i1<i2<···<ik

λi1λi2 · · ·λik = an−k, for all k = 1, 2, ..., n.

Therefore,

α(t) = lim
sցµ(t)

det(I + sA)− 1

s

= a0µ(t)
n−1 + a1µ(t)

n−2 + · · ·+ an−2µ(t) + an−1.
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On the other hand, by induction

λ1 ⊕ λ2...⊕ λn(t) =
∑

λi +
∑

i<j

λiλjµ(t)

+
∑

i<j<k

λiλjλk(µ(t))
2 + · · ·+ λ1 · · ·λnµ(t)

n−1

= a0µ(t)
n−1 + a1µ(t)

n−2 + · · ·+ an−1 = α(t).

Hence,

λ1 ⊕ λ2...⊕ λn(t) = α(t), ∀ t ∈ T. (3.2)

Theorem 25. If for any eigenvalue λi of the matrix A the function eλi
(·, t0) has

the exact Lyapunov exponent then

Υ[eα(·, t0)] = Υ[eα1⊕α2⊕...⊕αn
(·, t0)],

where αi = Υ[eλi
(·, t0)].

Proof. From Remark 17 and (3.2) we have

Υ[eα(·, t0)] = Υ[e⊕n
i=1λi

(·, t0)] = Υ[Πn
i=1eλi

(·, t0)]
= Υ[e⊕n

i=1Υ[eλi
(·,t0)](·, t0)] = Υ[e⊕n

i=1αi
(·, t0)].

The proof is complete.

4. LYAPUNOV SPECTRUM AND

THE STABILITY OF AN EQUATION

We also consider the equation

x∆ = A(t)x, (4.1)

where A(t) is a regressive and rd-continuous n×n-matrix and ‖A(t)‖ 6 M, ∀ t ∈ Tτ .

Definition 26. The trivial solution x(t) ≡ 0 of the equation (4.1) is said to be ex-

ponentially asymptotically stable (shortly, the equation (4.1) is exponentially asymp-

totically stable) if all solutions x(t) of the equation (4.1) with the initial value x(t0)

satisfy the relation

‖x(t)‖ 6 N‖x(t0)‖e−α(t, t0), t > t0, t ∈ Tτ ,

for some positive constants N = N(t0) and α > 0 with −α ∈ R+.
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If the constant N can be chosen to be independent of t0 then this solution is called

uniformly exponentially asymptotically stable.

Theorem 27. Consider the equation (4.1) with the stated conditions on A(·). Then,

1. The equation (4.1) is exponentially asymptotically stable if and only if there

exists a constant α > 0 with −α ∈ R+ such that for every t0 ∈ Tτ , there is

N = N(t0) > 1 to ‖ΦA(t, t0)‖ 6 Ne−α(t, t0) for all t > t0, t ∈ Tτ .

2. The equation (4.1) is uniformly exponentially asymptotically stable if and only

if there exist constants α > 0, N > 1 with −α ∈ R+ such that ‖ΦA(t, t0)‖ 6

Ne−α(t, t0) for all t > t0, t, t0 ∈ Tτ .

Proof. Every solution of the equation (4.1) satisfying the initial condition x(t0) = x0

can be expressed x(t) = ΦA(t, t0)x0. Combining with the definition of exponential

stability we have the proof.

Theorem 28 (A spectrum condition for exponential stability). Let −α := maxS,

where S is the set of Lyapunov spectrum of the equation (4.1). Then, the equation

(4.1) is exponentially asymptotically stable if and only if α > 0.

Proof. Let {xi(·) = (x1i(·), x2i(·), . . . , xni(·))T }, i = 1, 2, ..., n be a system of funda-

mental solutions of (4.1). By assumption Υ[xi(·)] 6 −α < 0 for all i = 1, 2, ..., n,

which implies that

lim
t→∞

‖xi(t)‖
e−α/2(t, t0)

= 0.

Therefore, there is T0 > 0 such that

‖xi(t)‖ 6 e−α/2(t, t0), ∀ t > T0, i = 1, 2, ..., n.

Taking N∗ > 1 such that N∗ > sup16i6n,t06t6T0

‖xi(t)‖
e−α/2(t,t0)

, we obtain

sup
16i6n,t06t6T0

‖xi(t)‖ 6 N∗e−α/2(t, t0), ∀ t > t0.

If x(·) is an arbitrary nontrivial solution of (4.1), then there are constants a1, a2, ..., an

such that

x(t) =
n∑

i=1

aixi(t).

Since {x1(t0), x2(t0), ..., xn(t0)} forms a basic of Rn and the norms are equivalent in

R
n, there is a constant c, independent of x(t0), such that c‖x(t0)‖ >

∑n
i=1 |ai|. Hence,

‖x(t)‖ 6

n∑

i=1

|ai|‖xi(t)‖ 6 N∗(
n∑

i=1

|ai|)e−α/2(t, t0)
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6 N‖x(t0)‖e−α/2(t, t0),

where N = cN∗. This means that the equation (4.1) is exponentially asymptotically

stable.

Conversely, suppose that (4.1) is exponentially asymptotically stable. Then, there

exist numbers N > 1, α > 0,−α ∈ R+ such that ‖x(t)‖ 6 Ne−α(t, t0) for any

solution x(t) of (4.1). By Property 1.5 we have Υ[x(·)] 6 −α. This means that

maxS 6 −α < 0. The proof is complete.

Consider the case, A is a regressive constant matrix

x∆ = Ax. (4.2)

Denote the set of all eigenvalues of the matrix A by σ(A). From the regressivity of

the matrix A, it follows that σ(A) ⊂ R.

Theorem 29. If the equation (4.2) is exponentially asymptotically stable then

Υ[eλ(·, t0)] < 0 for all λ ∈ σ(A). Suppose, in addition, that every λ ∈ σ(A) is uni-

formly regressive, i.e, there is a constant δ > 0 such that |1+λµ(t)| > δ for all t ∈ T
k.

Then, the assumption Υ[eλ(·, t0)] < 0 implies that the equation (4.2) is exponentially

asymptotically stable.

Proof. Suppose that the equation (4.2) is exponentially asymptotically stable. Let

λ ∈ σ(A) and x0 be its corresponding eigenvector. Since x(t; t0, x0) = eλ(t, t0)x0 is a

solution of (4.2),

‖x(t; t0, x0)‖ = |eλ(t, t0)|‖x0‖ 6 N‖x0‖e−α(t, t0),

where N > 1, α > 0,−α ∈ R+. Hence, Υ[eλ(·, t0)] 6 −α < 0. We define the

generalized λ-polynomial by

pλ0 (t, τ) = 1 and pλk(t, τ) =

∫ t

τ

1

1 + λµ(s)
pλk−1(s, τ)∆s.

Using this notation, we obtain an explicit representation for the time scale matrix

exponential (see [7])

ΦA(t, t0) =

m∑

i=1

si∑

k=1

Rikp
λi

k−1(t, t0)eλi
(t, t0), (4.3)

where Rik are constants and λ1, λ2, ..., λm are the distinct eigenvalues of A with the

respective multiples s1, s2, ..., sm (m 6 n).

Assume every λ ∈ σ(A), Υ[eλ(·, t0)] < 0 and λ is uniformly regressive.
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Let ε > 0. Using L’Hôpital’s rule (see [4]) we have

lim
t→∞

|pλ1 (t, t0)|
eε(t, t0)

6 lim
t→∞

∫ t

t0
1

|1+λµ(s)|∆s

eε(t, t0)
= lim

t→∞

(∫ t

t0
1

|1+λµ(s)|∆s
)∆

(eε(t, t0))∆

= lim
t→∞

1

ε|1 + λµ(s)|eε(t, t0)
6 lim

t→∞
1

εδeε(t, t0)
= 0.

Since ε is arbitrary, it follows from Property 1.4 that Υ[pλ1 (·, t0)] 6 0. By induction

we get Υ[pλk(·, t0)] 6 0, k = 0, 1, 2, ... Therefore,

Υ[pλk(t, t0)eλ(t, t0)] 6 Υ[eΥ[pλ
k(t,t0)]⊕Υ[eλ(t,t0)](t, t0)]

= Υ[eΥ[pλ
k(t,t0)]

(t, t0)eΥ[eλ(t,t0)](t, t0)]

6 Υ[eΥ[eλ(t,t0)](t, t0)] = Υ[eλ(t, t0)]

< 0.

Combining this inequality, the expression (4.3) and Theorem 28 follow the proof.

Corollary 30. If for any λ ∈ σ(A) we have ℑλ 6= 0 and Υ[eλ(·, t0)] < 0, then the

equation (4.2) is exponentially asymptotically stable.

Proof. The proof follows from the fact that if ℑλ 6= 0 then λ is uniformly regressive.

Theorem 31. Suppose that lim supt→∞ ℜ̂λ(t) < 0 for all λ ∈ σ(A). Then, the

equation (4.2) is exponentially asymptotically stable.

Proof. From the assumption and the inequality (2.6), we see that Υ[eλ(·, t0)] < 0,

for all λ ∈ σ(A).

Set α = lim supt→∞ ℜ̂λ(t) < 0, λ ∈ σ(A).

Choose 0 < ε 6 −α
2 . Then, there exists T0 ∈ T such that supt>T0

ℜ̂λ(t) 6 α + ε

which implies (ℜ̂λ ⊕ ε)(t) 6
α
2 < 0, for all t > T0. Hence, limt→∞ eℜ̂λ⊕ε(t, t0) = 0.

Applying L’Hôpital’s rule ([4]) obtains

lim sup
t→∞

|pλ1 (t, t0)eλ⊕ε(t, t0)| 6 lim sup
t→∞

∫ t

t0

1

|1 + λµ(s)|∆s× eℜ̂λ⊕ε(t, t0)

= lim
t→∞

(∫ t

t0
1

|1+λµ(s)|∆s
)∆

(
e⊖(ℜ̂λ⊕ε)(t, t0)

)∆
= lim

t→∞

eℜ̂λ⊕ε(t, t0)

⊖(ℜ̂λ⊕ ε)(t)× |1 + λµ(t)|

= − lim
t→∞

(1 + εµ(t))eℜ̂λ⊕ε(t, t0)

(ℜ̂λ⊕ ε)(t)
= 0.
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Therefore, pλ1 (t, t0)eλ⊕ε(t, t0) is upper bounded by certain constant C when t is large

enough, which implies that

|pλ1 (t, t0)eλ(t, t0)| = |pλ1 (t, t0)eλ⊕ε(t, t0)|e⊖ε(t, t0) 6 Ce⊖ε(t, t0).

Thus,

Υ[pλ1 (t, t0)eλ(t, t0)] 6 Υ[Ce⊖ε(t, t0)]

6 sup
t
(⊖ε) = sup

t
− ε

1 + εµ(t)
6 − ε

1 + εµ∗
< 0.

By induction we can prove that

Υ[pλk(t, t0)eλ(t, t0)] < 0,

for all k = 0, 1, 2, ...

Using the expression (4.3) and Theorem 28 we can complete the proof.

Note that if λ(·) ∈ R+, ℜ̂λ(t) = λ(t) for all t ∈ T. Therefore, in the following we

have a corollary of Theorem 31.

Corollary 32. If σ(A) ⊂ (−∞, 0) ∩ R+ then the equation (4.2) is exponentially

asymptotically stable.

Example 33. Consider the equation x∆(t) = Ax(t) on the time scale

T = ∪∞
k=0[2k, 2k + 1],

with

A =
1

24



−24 0 48

1 −24 24

33 −72 −48


 .

It is clear that

µ(t) =




0 if t ∈ ∪∞

k=0[2k, 2k + 1),

1 if t ∈ ∪∞
k=0{2k + 1},

the left extreme exponent is −1. Further,

σ(A) =

{
−2,−1 +

1

2
i,−1− 1

2
i

}

and all λ ∈ σ(A) are uniformly regressive.

i) With λ1 = −2 and t ∈ [2k, 2k + 1], we have

e−2(t, 0) = exp

∫ t

0

−2ds
∏

τ∈I0,t

(1− 2µ(τ)) exp

∫ σ(τ)

τ

2ds = e−2t(−1)ke2k.
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On the other hand,

e− 1
2
(t, 0) = exp

∫ t

0

−1

2
ds

∏

τ∈I0,t

(
1− 1

2
µ(τ)

)
exp

∫ σ(τ)

τ

1

2
ds

= e−
1
2 t

1

2k
e

1
2k, for all t ∈ [2k, 2k + 1].

By comparing these expressions, we see that there exists c > 0 such that |e−2(t, 0)| 6
ce− 1

2
(t, 0). Hence

Υ[e−2(·, 0)] 6 Υ[e− 1
2
(·, 0)] = −1

2
< 0.

ii) When λ2 = −1 + 1
2 i, we have

ℜ̂λ2(t) = lim
sցµ(t)

|1 + s(−1 + 1
2 i)| − 1

s
=




−1 if µ(t) = 0,

1√
2
− 1 if µ(t) = 1,

thus

Υ[eλ2
(·, 0)] 6 lim sup

t→∞
ℜ̂λ2(t) =

1√
2
− 1 < 0.

iii) Similarly, with λ3 = −1− 1
2 i we also get

Υ[eλ3
(·, 0)] 6 lim sup

t→∞
ℜ̂λ3(t) =

1√
2
− 1 < 0.

Therefore, by Theorem 29, the above equation is exponentially asymptotically stable.

Make a note that the equation x∆(t) = −2x(t), t ∈ T = ∪∞
k=0[2k, 2k + 1] is expo-

nentially asymptotically stable, meanwhile lim supt→∞ ℜ̂(−2)(t) = 0. This indicates

that, in general, the inverse of Theorem 31 is not true.
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[19] Pötzsche C., Exponential dichotomies of linear dynamic equations on measure

chains slowly varying coefficients, J. Anal. Math. Appl., 289 (2004), 317-335.


