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1. INTRODUCTION

In this paper, we consider the first order impulsive differential inclusions with an-

tiperiodic and nonlinear boundary conditions




x′(t) ∈ F (t, x(t)), t ∈ J ′,

∆x(tk) = Ik(x(tk)), k = 1, . . . ,m,

g(x(0), x(T )) = 0,

(1.1)

where J ′ = J\{t1, . . . , tm}, J = [0, T ], T > 0, 0 < t1 < t2 < · · · < tm < T ,

∆x(tk) = x(t+k ) − x(t−k ), x(t+k ) = limε→0+ x(tk + ε), x(t−k ) = limε→0+ x(tk − ε),

F : J ×R → P (R) is a multivalued map, P (R) is the family of all nonempty subsets

of R, Ik ∈ C(R,R) (k = 1, . . . ,m), and g : R2 → R is a single valued map.

The theory of impulsive differential equations or inclusions has become an active

area of investigation due to their applications in the fields of mechanics, electrical
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engineering, medicine biology, ecology, and so on, see [5, 6, 12, 18]. Critical point

theory plays a major role in discussing the existence of solutions for boundary problem

for impulsive differential inclusions, see [9, 10, 11, 16, 17]. There are many other

methods such as in [1, 3, 7]. In [4], authors considered periodic boundary conditions

g(x, y) = x − y, i.e., x(0) = x(T ). Those results are applicable in some important

cases. However, they are not valid for antiperiodic boundary conditions, for example,

x(0) = −x(T ), which corresponds to g(x, y) = x + y. Note that in this case g is

nondecreasing in the second variable, and hence the results are not applicable. To

the author’s best knowledge, there is no paper discussing such boundary problem for

impulsive differential inclusions.

Motivated by the above mentioned works, the aim of this paper is to study the exis-

tence of solutions for antiperiodic and nonlinear boundary problem (1.1) by Martelli’s

fixed point theorem with upper and lower solutions method. The rest of the paper is

organized as follows. In Section 2, we introduce briefly some notations and necessary

preliminaries. In Section 3, we prove the existence results of solutions for system

(1.1).

2. PRELIMINARIES

In the paper, we introduce some notations, definitions and preliminary facts, which

are useful for the development of this paper.

Let X be a Banach space, Z be a subset of X. We denote P (X) = {Z ⊂ X | Z 6=

∅}, Pcv(X) = {Z ⊂ P (X) | Z is convex}, Pcp(X) = {Z ⊂ P (X) | Z is compact},

Pcv,cp(X) = Pcv(X) ∩ Pcp(X), and so forth. For example, let X = R, we have

notations P (R), Pcv(R), Pcp(R) and Pcv,cp(R). Let

L1(J,R) = {x : J → R| |x| : J → [0,+∞) is Lebesgue integrable},

then L1(J,R) is a Banach space with the norm ‖x‖L1 =
∫ T

0
|x(t)| dt.

PC(J,R) =

{
x : J → R|x(t) is continuous everywhere except for some tk, at which

x(t−k ), x(t+k ) exist and x(t−k ) = x(tk), k = 1, . . . ,m

}
,

which is a Banach space with the norm ‖x‖PC = sup{|x(t)| : t ∈ J }.

AC(J,R) is the space of all absolutely continuous functions x : J → R.

Definition 1. Throughout this paper, the multivalued map F : J × R → P (R) is

said to be L1-Carathéodory if

(i) t → F (t, x) is measurable for each x ∈ R,



IMPULSIVE DIFFERENTIAL INCLUSIONS 389

(ii) x → F (t, x) is upper semicontinuous on R for almost all t ∈ J ,

(iii) for each ρ > 0, there exists ϕρ ∈ L1(J, [0,+∞)) such that

‖F (t, x)‖P (R) = sup{|v| : v ∈ F (t, x)} ≤ ϕρ(t), ∀ |x| ≤ ρ, a.e. t ∈ J.

Definition 2. The function α, β ∈ PC(J,R)∩AC(J ′, R) are said to be related lower

and upper solutions for the antiperiodic problem (1.1) if there exist v1, v2 ∈ L1(J,R)

such that 



v1(t) ∈ F (t, α(t)), a.e. t ∈ J,

α′(t) ≤ v1(t), a.e. t ∈ J ′,

∆α(tk) ≤ Ik(α(tk)), k = 1, . . . ,m,

g(α(0), β(T )) ≤ 0,

and 



v2(t) ∈ F (t, β(t)), a.e. t ∈ J,

β′(t) ≥ v2(t), a.e. t ∈ J ′,

∆β(tk) ≥ Ik(β(tk)), k = 1, . . . ,m,

g(β(0), α(T )) ≥ 0.

Definition 3. A function x ∈ PC(J,R)∩AC(J ′, R) is said to be a solution of (1.1) if

there exists a function v ∈ L1(J,R) such that v(t) ∈ F (t, x(t)) a.e. on J , x′(t) = v(t)

a.e. on J ′, ∆x(tk) = Ik(x(tk)), k = 1, . . . ,m, and g(x(0), x(T )) = 0.

Lemma 4. (see [14]) Let X be a Banach space, and F : J × X → Pcv,cp(X) be a

L1-Carathéodory multivalued map with

SF,x = {f ∈ L1(J,X)| f(t) ∈ F (t, x(t)) for a.e. t ∈ J} 6= ∅,

and let Γ : L1(J,X) → C(J,X) be a linear continuous mapping, then the operator

Γ ◦ SF : C(J,X) → Pcv,cp(C(J,X)), u 7→ (Γ ◦ SF )(x) := Γ(SF,x)

is a closed graph operator in C(J,X)× C(J,X).

Lemma 5. (Martelli’s fixed point theorem [15]) Let X be a Banach space and

G : X → Pcv,cp(X) be an upper semicontinuous and condensing map. If the set

ℜ = {x ∈ X : λx ∈ G(x) for some λ > 1} is bounded, then G has a fixed point.

Remark 6. (i) If multivalued map F is completely continuous with nonempty

compact values, then F is upper semicontinuous if and only if F has a closed graph

(i.e., xn → x∗, yn → y∗, yn ∈ F (xn) imply y∗ ∈ F (x∗)).

(ii) If multivalued map F is completely continuous, then F is condensing. For

general information the reader can see [13].

Let J0 = [0, t1], Jk = (tk, tk+1], k = 1, . . . ,m, tm+1 = T .
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Definition 7. (See [2]) A family of functions S is said to be quasiequicontinuous on

J , if for every ε > 0 there exists δ > 0 such that if x ∈ S, k = 0, 1, . . . ,m, then

‖x(t1)− x(t2)‖ < ε, ∀ t1, t2 ∈ Jk and |t1 − t2| < δ.

Lemma 8. (Compactness Criterion, see [2]) The set S ∈ PC(J,Rn) is relatively

compact if and only if

(i) S is bounded, i.e., ‖x‖ < c for each x ∈ S and some c > 0,

(ii) S is quasiequicontinuous on J .

Definition 9. Let X be a Banach space, a multivalued map F is said to be com-

pletely continuous if F (U) is relatively compact for every bounded subset U ⊆ X.

3. MAIN RESULT

Theorem 10. Assume the following conditions hold.

(H1) F : J ×R → Pcv,cp(R) is an L1-Carathéodory multivalued map.

(H2) Functions α, β ∈ PC(J,R) ∩ AC(J ′, R) are related lower and upper solutions

of problem (1.1) such that α(t) ≤ β(t), t ∈ J .

(H3) Ik ∈ C(R,R), k = 1, . . . ,m.

(H4) g is a continuous single-valued map in (x, y) ∈ [α(0), β(0)]× [α(T ), β(T )], and

nondecreasing in y ∈ [α(T ), β(T )].

Then the system (1.1) has at least one solution x such that α(t) ≤ x(t) ≤ β(t) for all

t ∈ J .

Proof. We transform (1.1) into a fixed point problem. Consider the modified problem





x′(t) + x(t) ∈ F1(t, x(t)), t ∈ J ′,

∆x(tk) = Ik(τ(tk, x(tk))), k = 1, . . . ,m,

x(0) = τ(0, x(0)− g(τ(0, x), τ(T, x))),

(3.1)

where F1(t, x) = F (t, τ(t, x)) + τ(t, x), τ : C(J,R) → C(J,R) is defined by

τ(t, x) =





β(t), x(t) > β(t),

x(t), α(t) ≤ x(t) ≤ β(t),

α(t), x(t) < α(t).

Evidently, if x is a solution of (3.1), α(t) ≤ x(t) ≤ β(t), and α(0) ≤ x(0) −

g(τ(0, x), τ(T, x)) ≤ β(0), then x is a solution of (1.1).

By straightforward calculation, we have that a solution of (3.1) is a fixed point of

the operator N : PC(J,R) → P (PC(J,R)) defined by
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N(x) =

{
h ∈ PC(J,R) : h(t) = x(0) +

∫ t

0

[v(s) + τ(s, x)− x(s)]ds

+
∑

0<tk<t

Ik(τ(tk, x(tk))), v ∈ S̃F,x

}
,

where

S̃F,x = {v ∈ SF,τ(t,x) : v(t) ≥ v1(t) a.e. on A1, v(t) ≤ v2(t) a.e. on A2},

SF,τ(t,x) = {v ∈ L1(J,R) : v(t) ∈ F (t, τ(t, x)) for a.e. t ∈ J},

A1 = {t ∈ J : x(t) < α(t) ≤ β(t)}, A2 = {t ∈ J : α(t) ≤ β(t) < x(t)}.

Note that for each x ∈ C(J,R), SF,x is nonempty (see [14]), so S̃F,x is nonempty.

Next we will show that N has a fixed point by applying Lemma 5. The proof will

be given in several steps. We first show that N is a completely continuous multivalued

map, upper semicontinuous with convex closed values.

Step 1. N(x) is convex for each x ∈ PC(J,R).

Indeed, if h1, h2 belong to N(x), then there exist v1, v2 ∈ S̃F,x such that

hi(t) = x(0) +

∫ t

0

[vi(s) + τ(s, x)− x(s)]ds+
∑

0<tk<t

Ik(τ(tk, x(tk))),

i = 1, 2. Let 0 ≤ l ≤ 1, then for each t ∈ J , we have

[lh1 + (1− l)h2](t) = x(0) +
∑

0<tk<t

Ik(τ(tk, x(tk)))

+

∫ t

0

[lv1(s) + (1− l)v2(s) + τ(s, x)− x(s)]ds.

Since S̃F,x is convex (because F has convex values in (H1)), then lh1+(1−l)h2 ∈ N(x),

so N(x) is convex.

Step 2. N is completely continuous.

Firstly, we show that N maps bounded sets into bounded sets in PC(J,R). Let

q be a positive constant, Bq = {x ∈ PC(J,R) : ‖x‖PC < q} be a bounded set, and

x ∈ Bq. Then for each h ∈ N(x), there exists v ∈ S̃F,x such that

h(t) = x(0) +

∫ t

0

[v(s) + τ(s, x)− x(s)]ds+
∑

0<tk<t

Ik(τ(tk, x(tk))). (3.2)

Note the boundary condition of (3.1) and the definition of τ , we have

α(0) ≤ x(0) ≤ β(0), (3.3)

α(t) ≤ τ(t, x) ≤ β(t). (3.4)
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Let ρ1 = max(q, supt∈J |α(t)|, supt∈J |β(t)|), then |τ(t, x)| ≤ ρ1. From (H1), there

exists ϕρ1
∈ L1(J, [0,+∞)) such that

sup{|v| : v ∈ F (t, τ(t, x))} ≤ ϕρ1
(t). (3.5)

If x ∈ Bq, then there exist ck > 0, k = 1, . . . ,m such that

|Ik(τ(tk, x(tk)))| ≤ ck,

since Ik are continuous in (H3) and (3.4). So, with (3.3) and (3.5), we have

|h(t)| ≤ |x(0)|+

∫ T

0

[|v(s)|+ |τ(s, x)|+ |x(s)|]ds+
∑

0<tk<t

|Ik(τ(tk, x(tk)))|

≤ max(|α(0)|, |β(0)|) + ‖ϕρ1
‖L1 + T (ρ1 + q) +

m∑

k=1

ck := K,

then ‖N(x)‖PC ≤ K.

Secondly, we prove that N maps bounded sets into quasiequicontinuous sets of

PC(J,R). Let u1, u2 ∈ Jk, k = 0, 1, . . . ,m, u1 < u2, x ∈ Bq and h ∈ N(x). Then,

|h(u2)− h(u1)| ≤

∫ u2

u1

ϕρ1
(s)ds+ (u2 − u1)(ρ1 + q) +

∑

u1<tk<u2

ck.

As u2 → u1, the right-hand side of the above inequality tends to zero. This proves

that N(Bq) is quasiequicontinuous. By Lemma 8, N is completely continuous, and

therefore a condensing map.

Step 3. N has a closed graph.

Let xn → x∗, hn ∈ N(xn), and hn → h∗. We will prove that h∗ ∈ N(x∗).

hn ∈ N(xn) means that there exists vn ∈ S̃F,xn
such that

hn(t) = xn(0) +

∫ t

0

[vn(s) + τ(s, xn)− xn(s)]ds+
∑

0<tk<t

Ik(τ(tk, xn(tk))).

Next we need prove that there exists v∗ ∈ S̃F,x∗ such that for each t ∈ J ,

h∗(t) = x∗(0) +

∫ t

0

[v∗(s) + τ(s, x∗)− x∗(s)]ds+
∑

0<tk<t

Ik(τ(tk, x
∗(tk))).

Since xn → x∗, hn → h∗, τ and Ik (k = 1, 2, . . . ,m) are continuous, we have

∥∥∥∥hn(t)− xn(0)−

∫ t

0

[τ(s, xn)− xn(s)]ds−
∑

0<tk<t

Ik(τ(tk, xn(tk)))−

[
h∗(t)− x∗(0)−

∫ t

0

[τ(s, x∗)− x∗(s)]ds−
∑

0<tk<t

Ik(τ(tk, x
∗(tk)))

]∥∥∥∥
PC

→ 0

(3.6)
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as n → ∞. Consider the linear and continuous operator Γ : L1(J,R) → C(J,R),

v 7→ Γ(v)(t) =

∫ t

0

v(s)ds.

From Lemma 4, Γ ◦ S̃F is a closed graph operator. Moreover,

hn(t)− xn(0)−

∫ t

0

[τ(s, xn)− xn(s)]ds−
∑

0<tk<t

Ik(τ(tk, xn(tk))) ∈ Γ(S̃F,xn
). (3.7)

Since xn → x∗, (3.6) and (3.7), there exists v∗ ∈ S̃F,x∗ satisfying

h∗(t)− x∗(0)−

∫ t

0

[τ(s, x∗)− x∗(s)]ds−
∑

0<tk<t

Ik(τ(tk, x
∗(tk))) =

∫ t

0

v∗(s)ds.

As a consequence of Steps 1 to 3, N is a completely continuous multivalued map,

upper semicontinuous with convex closed values.

Step 4. The set ℜ = {x ∈ PC(J,R) : λx ∈ N(x) for some λ > 1} is bounded.

Let x ∈ ℜ, then λx ∈ N(x) for some λ > 1. Thus, for each t ∈ J ,

x(t) = λ−1

[
x(0) +

∫ t

0

[v(s) + τ(s, x)− x(s)]ds+
∑

0<tk<t

Ik(τ(tk, x(tk)))

]
,

for some v ∈ S̃F,x. Let ρ2 = max(supt∈J |α(t)|, supt∈J |β(t)|), it follows from (3.4)

that |τ(t, x)| ≤ ρ2. From (H1), there exists ϕρ2
∈ L1(J, [0,+∞)) such that

sup{|v| : v ∈ F (t, τ(t, x))} ≤ ϕρ2
(t). (3.8)

Since Ik are continuous in (H3) and (3.4), there exist c′k > 0, k = 1, . . . ,m such that

|Ik(τ(tk, x(tk)))| ≤ c′k. So, with (3.3) and (3.8), for each t ∈ J we have

|x(t)| ≤ |x(0)|+

∫ t

0

[|v(s)|+ |τ(s, x)|+ |x(s)|]ds

+
∑

0<tk<t

|Ik(τ(tk, x(tk)))|

≤ max(|α(0)|, |β(0)|) + ‖ϕρ2
‖L1 + Tρ2

+

∫ t

0

|x(s)|ds+
m∑

k=1

c′k.

Set

K0 = max(|α(0)|, |β(0)|) + ‖ϕρ2
‖L1 + Tρ2 +

m∑

k=1

c′k.

Using Gronwall’s lemma (see [8], page 36), for each t ∈ J , we have

|x(t)| ≤ K0e
t.



394 Y. LUO

So,

‖x‖PC ≤ K0e
T .

This shows that the set ℜ is bounded. As a consequence of Lemma 5, we deduce that

N has a fixed point, which is a solution of problem (3.1).

Step 5. The solution x of (3.1) satisfies

α(t) ≤ x(t) ≤ β(t), t ∈ J, (3.9)

and

α(0) ≤ x(0)− g(τ(0, x), τ(T, x)) ≤ β(0). (3.10)

We firstly prove (3.9). Let x be a solution of (3.1), we prove that x(t) ≤ β(t),

for all t ∈ J . Suppose that x − β attains a positive maximum on J at s0. As (3.3),

we consider the only possible case s0 ∈ (0, T ]. Then there exists s1 ∈ (0, s0) and

s1 6= tk (k = 1, 2, . . . ,m) such that

0 < x(t)− β(t) ≤ x(s0)− β(s0), t ∈ [s1, s0].

So, τ(t, x) = β(t) for t ∈ [s1, s0], and there exists v ∈ S̃F,x with v(t) ≤ v2(t) and

v(t) ∈ F (t, β(t)) such that

β(s0)− β(s1) ≤ x(s0)− x(s1) =

∫ s0

s1

[v(s) + β(s)− x(s)]ds

<

∫ s0

s1

v(s)ds ≤

∫ s0

s1

v2(s)ds

≤

∫ s0

s1

β′(s)ds = β(s0)− β(s1).

This is a contradiction. Consequently, x(t) ≤ β(t) for all t ∈ J .

Similarly, we can prove that α(t) ≤ x(t) on J . This shows that (3.9) holds.

Finally, we prove that the solution x of (3.1) satisfies (3.10). Suppose that

α(0) > x(0)− g(τ(0, x), τ(T, x)). (3.11)

Then with the boundary condition of (3.1) and the definition of τ , we have

x(0) = α(0). (3.12)

With (3.9) and the definition of τ , we have

τ(0, x) = x(0), τ(T, x) = x(T ). (3.13)

From (3.11) to (3.13), we get

g(α(0), x(T )) = g(τ(0, x), τ(T, x)) > 0.
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Since g is nondecreasing in the second variable in (H4) and x(T ) ≤ β(T ), we have

g(α(0), β(T )) ≥ g(α(0), x(T )) > 0,

which contradicts g(α(0), β(T )) ≤ 0 in Definition 2. So, we have

α(0) ≤ x(0)− g(τ(0, x), τ(T, x)). (3.14)

Analogously, we can prove that

x(0)− g(τ(0, x), τ(T, x)) ≤ β(0). (3.15)

(3.14) and (3.15) show that (3.10) holds.

According to Steps 1 to 5, the solution x of (3.1) is also a solution of (1.1). The

proof is complete.

Remark 11. If g(x(0), x(T )) = x(0)+x(T )) in (1.1), i.e., x(0) = −x(T ), which sat-

isfies (H4), then (1.1) becomes an antiperiodic boundary value problem for impulsive

differential inclusions.

REFERENCES

[1] B. Ahmad, J.J. Nieto, A study of impulsive fractional differential inclusions with

anti-periodic boundary conditions, Fract. Diff. Calc., 2, No. 1 (2012), 1-15.

[2] D.D. Bainov, P.S. Simeonov, Impulsive differential equations: periodic solutions

and applications, Longman, Harlow (1993).

[3] M. Benchohra, J.R. Graef, S.K. Ntouyas and A. Ouahab, Upper and lower solu-

tions method for impulsive differential inclusions with nonlinear boundary con-

ditions and variable times, Dynam. Contin. Discrete Impuls. Systems Series A:

Math. Anal., 12, No-s: 3-4 (2005), 383-396.

[4] M. Benchohra, J. Henderson, S.K. Ntouyas, On first order impulsive differential

inclusions with periodic boundary conditions, Dynam. Contin. Discrete Impuls.

Systems Series A: Math. Anal., 9, No. 3 (2002), 417-427.

[5] E.N. Chukwu, Differential models and neutral systems for controlling the wealth

of nations, Workd Scientific, River Edge (2001).

[6] L.H. Erbe, H.I. Freedman, X.Z. Liu and J.H. Wu, Comparison principles for im-

pulsive parabolic equations with applications to models of single species growth,

J. Austral. Math. Soc. Ser. B, 32 (1991), 382-400.

[7] G. Gabor, Differential inclusions with state-dependent impulses on the half-line:

New Frchet space of functions and structure of solution sets, J. Math. Anal.

Appl., 446, No. 2 (2017), 1427-1448.



396 Y. LUO

[8] J.K. Hale, Ordinary differential equations, Pure and Appl. Math., John Wiley

and Sons, New York (1969).

[9] A. Hadjian, S. Heidarkhani, Existence of one non-trivial anti-periodic solution

for second-order impulsive differential inclusions, Math. Meth. Appl. Sci., 40,

No. 14 (2017), 5009-5017.

[10] S. Heidarkhani, G.A. Afrouzi, A. Hadjian, Existence of three anti-periodic so-

lutions for second-order impulsive differential inclusions with two parameters,

Discussiones Mathematicae Differential Inclusions, Control and Optimization,

33, No. 2 (2013), 115-133.

[11] S. Heidarkhani, G.A. Afrouzi, A. Hadjian, J. Henderson, Existence of infinitely

many anti-periodic solutions for second-order impulsive differential inclusions,

Electron. J. Diff. Equ., 2013, No. 97 (2013), 1-13.

[12] M. Kisielewicz, Differential inclusions and optimal control, Springer, Netherlands

(1991).

[13] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing multivalued maps

and semilinear differential inclusions in Banach spaces, Walter de Gruyter Co.,

Berlin, Germany (2001).

[14] A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the

theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math.

Astronom. Phys., 13 (1965), 781-786.

[15] M. Martelli, A Rothe’s type theorem for noncompact acyclic-valued maps, Boll.

Un. Mat. Ital., 4, No. 3 (1975), 70-76.

[16] N. Nyamoradi, Existence and multiplicity of solutions for second-order impulsive

differential inclusions, J. Contemp. Math. Anal., 49, No. 1 (2014), 33-41.

[17] Y. Tian, J. Hendenson, Three anti-periodic solutions for second-order impulsive

differential inclusions via nonsmooth critical point theory, Nonlinear Anal., 75,

No. 18 (2012), 6496-6505.

[18] L.M. Wang, L.S. Chen and J.J. Nieto, The dynamics of an epidemic model for

pest control with impulsive effect, Nonlinear Anal. Real World Appl., 11 (2010),

1374-1386.


