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1. INTRODUCTION

In recent years, superconvergence and ultraconvergence for finite element (FE) solu-

tions have been an active area in numerical analysis and its applications. The main

objective of this field of studies is to improve the existing approximation accuracy by

applying certain postprocessing techniques which are relatively easy to implement.
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Zienkiewicz and J. Zhu [16, 17] developed an effective error estimation technique

of finite element approximations. Their method falls into the category of recovery-

based methods. This a posteriori error estimation technique approximates the error

in energy or an energy norm on a particular partition. There are many ideas which

are closely related to the recovery technique (see [7, 13]). Mathematical proofs for

the derivative patch recovery can be found in Li and Zhang [6]. For instance, there

are proofs for some finite element methods under special assumptions of the partition

and, in Q. Zhu and Zhao [15], for one-dimensional correction to the finite element

solution. Relative references on a posteriori error estimation and adaptivity could be

found in Ainsworth and Oden [1], and in Verfürth [11].

Our aim of this paper is to establish an ultraconvergence result for planar FE

approximations of the elliptic fourth-order problem by using an interpolated FEM

approach. Similar considerations are presented by Q. Lin et al. [7] for second order

elliptic problems (see also [14]).

Supercloseness of a nonstandard nodal interpolant is exploited in this paper. This

is done in order to develop postprocessing schemes to improve the approximation

order of ∆uh from O(h3) to O(h5), especially when polynomials of degree four in each

variable are applied in FEM. An ultraconvergence result for fourth-order eigenvalue

problems is obtained by means of a theorem proving the supercloseness between the

Ritz projection and the corresponding approximate eigenfunction.

By applying the method ultraconvergent results are obtained without using higher

elements. This procedure is based on a higher interpolation of the FE solution on the

original finite elements.

Here follows the general layout of the paper: In Section 2, we present a review of

a model for a fourth-order problem and its finite element procedure. In Section 3,

we construct an auxiliary interpolation operator ih, which verifies certain ”vertices-

edges” conditions. The main body of the paper contains the proofs of superclosed

properties, generated by the operator ih. This is presented in Section 4. Section

5 is devoted to the construction of high interpolation I2h and the proof of a global

ultraconvergence error estimate. In Section 6, we show that the method yields an

ultraconvergent scheme for a fourth-order eigenvalue problem. The paper closes by

some numeric examples illustrating the theory and concluding remarks.

2. SETTING OF THE PROBLEM AND FEM

Let us consider the fourth-order elliptic model problem:

∆2u(x, y) = f(x, y), (x, y) ∈ Ω, (1)
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with boundary conditions

u(x, y) =
∂u

∂ν
(x, y) = 0, (x, y) ∈ Γ, (2)

where Ω ⊂ R2 is a simply connected polyrectangular domain with boundary Γ and ν

is the outher normal vector.

Let Hm(Ω) be the real Sobolev space for a nonnegative integer m and their as-

sociated norms ‖ · ‖m,Ω and seminorms | · |m,Ω. The weak solution of the problem

(1)–(2) is a function u(x, y), belonging to V ≡ H2
0 (Ω),

H2
0 (Ω) =

{
v ∈ H2(Ω) : v|Γ =

∂v

∂ν
|Γ = 0

}

and satisfying

a(u, v) = (f, v) ∀v ∈ V, (3)

where

a(u, v) =

∫

Ω

∆u∆v dx dy

and the notation (·, ·) is adopted for the L2(Ω)−inner product.

Obviously the a−form is symmetric and coercive on V , i.e.

a(u, v) = a(v, u), ρ‖v‖22,Ω ≤ a(v, v), ∀u, v ∈ V,

where ρ is a positive constant. Moreover, it is continuous:

|a(u, v)| ≤ C‖u‖2,Ω‖v‖2,Ω, ∀u, v ∈ V.

Henceforth, C represents generic and positive constant.

Consider a family of regular partitions τh of Ω consisting of rectangular finite ele-

ments T , which fulfill standard assumptions [5] and suppose that this family satisfies

the inverse assumptions ([5], p. 140). Here h is a FE parameter. We denote by Qk

the set of polynomials of degree k at most in each variable.

Let Vh ⊂ V be finite element spaces associated with the partition τh. Assume

that the polynomial space in the construction of Vh contains Qn, n ≥ 3. Our aim

for constructing an ultraconvergent interpolant requires n ≥ 4. In order to avoid

technical difficulties we confine the considerations to the case n = 4.

Then

Vh =
{
v ∈ C1(Ω) ∩ V : v|T ∈ Q4(T ), ∀T ∈ τh

}
.

Let Ph : V → Vh be the elliptic projection operator defined by

a(u− Phu, v) = 0 ∀u ∈ V, ∀v ∈ Vh.
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It is well-known (see [11]) that if the solution u(x, y) of (3) belongs to H5(Ω)∩V ,

then

‖u− Phu‖2,Ω ≤ Ch3‖u‖5,Ω. (4)

We shall construct a nonstandard interpolation operator which improve the opti-

mal estimate (4). Two principal steps are performed for this purpose. The first one

is to prove a local supercloseness in energy norm by means of special interpolation

operator ih and the second one is to prove a global ultraconvergence to I2hPhu, where

the operator I2h verifies certain ultraconvergence properties.

3. CONSTRUCTION OF THE OPERATOR IH

Consider the partition τh =
⋃
T , where for any finite element T its center is denoted

by (xT , yT ) and its element dimensions in x and y-direction are denoted by h1,T , h2,T ,

respectively. The following denotations are also adopted:

hT = max(h1,T ;h2,T ), h = max
T∈τh

hT .

Also, the vertices and edges of any element T are noted by sj and lj, j = 1, . . . , 4,

respectively.

Taking in consideration the case n = 4 we introduce the interpolation operator

ih : C1(T ) → Vh(T ) using the so-called ”vertices - edges” conditions: ∀v ∈ C1(T )

and j = 1, . . . , 4

ihv(sj) = v(sj),
∂ihv

∂x
(sj) =

∂v

∂x
(sj),

∂ihv

∂y
(sj) =

∂v

∂y
(sj),

∂2ihv

∂x∂y
(sj) =

∂2v

∂x∂y
(sj),

∫

lj

ihv(x, y) dlj =

∫

lj

v(x, y) dlj ,

∫

lj

∂ihv

∂ν
(x, y) dlj =

∫

lj

∂v

∂ν
(x, y) dlj ,

∫

T

ihv(x, y) dx dy =

∫

T

v(x, y) dx dy.

(5)

It is evident that ihv ≡ v for any v ∈ Vh. Let us remark that

‖ihv − v‖2,Ω ≤ Ch3‖v‖5,Ω.

In one-dimensional case (see [3]) the basis determining the operator ih is {ϕi(t)}5i=1,

t ∈ [−1, 1], where:



ϕ1(t)

ϕ2(t)

ϕ3(t)

ϕ4(t)

ϕ5(t)




=
1

16




−15 4 30 −12 −7

−5 4 6 −4 −1

15 0 −30 0 15

−15 −4 30 12 −7

5 4 −6 −4 1







t4

t3

t2

t

1



.
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Then, for the two-dimensional case the basis is obtained by the products ϕi(x).

ϕs(y), i, s = 1, . . . , 5, i.e. is {ψj(x, y)}25j=1. Moreover,

ihv(x, y)|T =

25∑

j=1

v̂j .ψj

(
x− xT

h1,T
,
y − yT

h2,T

)
,

where

v̂4i−3 = v(si), v̂4i−2 = h1,T
∂v

∂x
(si),

v̂4i−1 = h2,T
∂v

∂y
(si), v̂4i = h1,Th2,T

∂2v

∂x∂y
(si), i = 1, . . . , 4;

v̂2i+15 =
1

h1,T

∫

li

v(x, y) dx, v̂2i+16 =
h2,T

h1,T

∫

li

∂v

∂y
(x, y) dx, i = 1; 3;

v̂2i+15 =
1

h2,T

∫

li

v(x, y) dy, v̂2i+16 =
h1,T

h2,T

∫

li

∂v

∂x
(x, y) dy, i = 2; 4;

v̂25 =
1

h1,Th2,T

∫

T

v(x, y) dx dy.

Remark 1. From (5) it is easy to see that ih satisfies the C1−condition. That is

continuity of the function ihv and continuity of its first derivatives across the interele-

ment boundaries.

4. SUPERCLOSE PROPERTIES OF IH

This section presents important error estimates which are related to the interpolated

finite element method. The difficulties for fourth-order elliptic problems arise from

the availability of the mixed derivatives in the variational bilinear a−form. However,

a(u, v) =

∫

Ω

[
∂2u

∂x2
∂2v

∂x2
+ 2

∂2u

∂x∂y

∂2v

∂x∂y
+
∂2u

∂y2
∂2v

∂y2

]
dx dy.

This presentation is not unique in terms of subject-matter (see for example [10]).

Let us introduce the following error functions for any T ∈ τh:

E(x) =
1

2

[
(x− xT )

2 − h21,T
]
, F (y) =

1

2

[
(y − yT )

2 − h22,T
]
.

We use the identities:

x− xT =
1

90

[
E3(x)

](5)
,

(x− xT )
2 =

1

1260

[
E4(x)

](6)
+
h21,T

7
.

(6)
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Further, we use another pair of identities:

(x − xT )
3 =

1

420

[
E4(x)

](5)
+
h21,T

210

[
E3(x)

](5)
,

(x − xT )
4 =

1

4725

[
E5(x)

](6)
+
h21,T

1890

[
E4(x)

](6)
+
h41,T

21
.

(7)

The following Lemma gives some integral presentations by means of error function

E(x):

Lemma 1. Let v(x, y) be a sufficiently smooth function defined on T , T ∈ τh. Then

(i) If

∫

li

v(x, y) dy =

∫

li

∂v

∂x
(x, y) dy = 0, i = 2; 4, then

∫

T

(x − xT )v(x, y) dx dy =− 1

90

∫

T

E3(x)
∂5v

∂x5
(x, y) dx dy;

∫

T

(x− xT )
3v(x, y) dx dy =− 1

420

∫

T

E4(x)
∂5v

∂x5
(x, y) dx dy

−
h21,T

210

∫

T

E3(x)
∂5v

∂x5
(x, y) dx dy;

(8)

(ii) If

∫

li

v(x, y) dy =

∫

li

∂v

∂x
(x, y) dy =

∫

T

v(x, y) dx dy = 0, i = 2; 4, then

∫

T

(x− xT )
2v(x, y) dx dy =

1

1260

∫

T

E4(x)
∂6v

∂x6
(x, y) dx dy;

∫

T

(x− xT )
4v(x, y) dx dy =

1

4725

∫

T

E5(x)
∂6v

∂x6
(x, y) dx dy

+
h21,T

1890

∫

T

E4(x)
∂6v

∂x6
(x, y) dx dy.

(9)

Proof. The four equalities (8) and (9) are proved by using identities (6) and (7) for

the terms (x − xT )
i, i = 1, . . . , 4. The Green’s formula and the above conditions are

applied.

Next, other identities related to the two error functions E(x) and F (y) are needed:

(x− xT )
3 =

1

15

[
E3(x)

](3)
+

3h21,T
5

(x− xT ),

(x− xT )
4 =

1

105

[
E4(x)

](4)
+

6h21,T
7

(x− xT )
2 −

3h41,T
35

,

(10)

and correspondingly

(y − yT )
3 =

1

15

[
F 3(y)

](3)
+

3h22,T
5

(y − yT ),

(y − yT )
4 =

1

105

[
F 4(y)

](4)
+

6h22,T
7

(y − yT )
2 −

3h42,T
35

.

(11)
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Lemma 2. Suppose that for sufficiently smooth function v(x, y)

∂i+jv

∂xi∂yj
(sk) = 0, i, j = 0, 1;

∫

lk

v dl =

∫

lk

∂v

∂ν
dl =

∫

T

v dx dy = 0, k = 1, . . . , 4,

then the following six relations for the function (x− xT )
i(y − yT )

j ∂4v

∂x2∂y2
when i, j ∈

{0, . . . , 4} are valid:

(R1) For i, j = 0, 1, 2;

∫

T

(x− xT )
i(y − yT )

j ∂4v

∂x2∂y2
dx dy = 0;

(R2) For j = 0, 1, 2 and, by analogy for i = 0, 1, 2

∫

T

(x− xT )
3(y − yT )

j ∂4v

∂x2∂y2
dx dy = − 1

15

∫

T

E3(x)(y − yT )
j ∂7v

∂x5∂y2
dx dy,

∫

T

(x− xT )
i(y − yT )

3 ∂4v

∂x2∂y2
dx dy = − 1

15

∫

T

F 3(y)(x− xT )
i ∂7v

∂x2∂y5
dx dy;

(R3) For j = 0, 1, 2 and i = 0, 1, 2, respectively

∫

T

(x− xT )
4(y − yT )

j ∂4v

∂x2∂y2
dx dy =

1

105

∫

T

E4(x)(y − yT )
j ∂8v

∂x6∂y2
dx dy,

∫

T

(x− xT )
i(y − yT )

4 ∂4v

∂x2∂y2
dx dy =

1

105

∫

T

F 4(y)(x− xT )
i ∂8v

∂x2∂y6
dx dy;

(R4) For i, j = 3

∫

T

(x− xT )
3(y − yT )

3 ∂4v

∂x2∂y2
dx dy = − 1

15

∫

T

E3(x)(y − yT )
3 ∂7v

∂x5∂y2
dx dy

−
h21,T

25

∫

T

F 3(y)(x − xT )
∂7v

∂x2∂y5
dx dy;

(R5) For (i, j) = (3, 4) and (i, j) = (4, 3), respectively

∫

T

(x− xT )
4(y − yT )

3 ∂4v

∂x2∂y2
dx dy =

1

105

∫

T

E4(x)(y − yT )
3 ∂7v

∂x5∂y2
dx dy

−
2h21,T
35

∫

T

(x− xT )
2F 3(y)

∂7v

∂x2∂y5
dx dy +

h41,T

175

∫

T

F 3(y)
∂7v

∂x2∂y5
dx dy;

∫

T

(x− xT )
3(y − yT )

4 ∂4v

∂x2∂y2
dx dy =

1

105

∫

T

F 4(y)(x − xT )
3 ∂7v

∂x2∂y5
dx dy

−
2h22,T
35

∫

T

(y − yT )
2E3(x)

∂7v

∂x5∂y2
dx dy +

h42,T

175

∫

T

E3(x)
∂7v

∂x5∂y2
dx dy;
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(R6) For i, j = 4

∫

T

(x− xT )
4(y − yT )

4 ∂4v

∂x2∂y2
dx dy =

1

105

∫

T

E4(x)(y − yT )
4 ∂7v

∂x5∂y2
dx dy

+
2h21,T
245

∫

T

(x− xT )
2F 4(y)

∂7v

∂x2∂y5
dx dy −

h41,T

1225

∫

T

F 4(y)
∂8v

∂x2∂y6
dx dy.

Proof. Direct calculations proves the first relation. The next one follows by presen-

tations of (x − xT )
3 and (y − yT )

3 from (10), (11). Then integrating by parts and

using (R1) we obtain (R2).

By way of analogy with the previous case the relation (R3) is connected with the

presentation of (x− xT )
4 and (y − yT )

4 from (10), (11).

In order to prove the cases (R4) and (R5) we transform (x − xT )
3 and (x− xT )

4

by means of (10). Then, after integrating by parts we use the relation (R2).

The last case (R6) follows from the presentation of (x−xT )
4 in (10) and from the

corresponding equality of (R3).

Finally, the last two lemmas make it possible to formulate a superclose property

concerning the interpolation operator ih. This important result will be proved in the

following theorem:

Theorem 1. Let the solution u(x, y) of problem (3) belongs to the space H7(Ω).

Then, for any v ∈ Vh(Ω)

a(ihu− u, v) ≤ Ch5‖u‖7,Ω‖v‖2,Ω. (12)

Proof. Let us denote U = ihu−u. The three ingredients of the a−form a(U, v) have

to be estimated. It should be noted that both terms
∫

Ω

∂2U

∂x2
∂2v

∂x2
dx dy and

∫

Ω

∂2U

∂y2
∂2v

∂y2
dx dy

can be treated in a similar way.

Step 1. Consider

∫

Ω

∂2U

∂y2
∂2v

∂y2
dx dy, ∀v ∈ Vh. So, for (x, y) ∈ T , the second factor

is expanded as follows:

∂2v

∂y2
(x, y) =

4∑

s=0

(x− xT )
s

s!

∂s+2v

∂xs∂y2
(xT , y),

taking into account that v(x, y)|T ∈ Q4(T ), consequently

∫

Ω

∂2U

∂y2
∂2v

∂y2
dx dy =

∑

T∈τh

4∑

s=0

∫

T

(x− xT )
s

s!

∂2U

∂y2
∂s+2v

∂xs∂y2
(xT , y) dx dy. (13)
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The first term (s = 0) in the right-hand side of (13) is cancelled. This fact follows

by definition of U(x, y) and using Green’s formula, i.e.

∫

T

∂2U

∂y2
∂2v

∂y2
(xT , y) dx dy = 0. (14)

In order to transform the other components of (13), it has to be verified that the

functions
∂2U

∂y2
∂s+2v

∂xs∂y2
(xT , y), s = 1, . . . , 4,

fulfill the conditions of Lemma 1. Hence, the relations (8) and (9) will be satisfied for

s = 1; 3 and s = 2; 4 respectively.

Let i = 2; 4 and s = 1, . . . , 4. Integrating by parts reveals that:

∫

li

∂2U

∂y2
∂s+2v

∂xs∂y2
(xT , y) dy =

∂U

∂y
(xT ± h1,T , y)

∂s+2v

∂xs∂y2
(xT , y)

∣∣∣∣
yT+h2,T

yT−h2,T

−
∫

li

∂U

∂y

∂s+3v

∂xs∂y3
(xT , y) dy =−U(xT ± h1,T , y)

∂s+3v

∂xs∂y3
(xT , y)

∣∣∣∣
yT+h2,T

yT−h2,T

+

∫

li

U
∂s+4v

∂xs∂y4
(xT , y) dy = 0. (15)

By analogy, it is easy to get the equality:

∫

li

∂

∂x

[
∂2U

∂y2
∂s+2v

∂xs∂y2
(xT , y)

]
dy =

∫

li

∂3U

∂x∂y2
∂s+2v

∂xs∂y2
(xT , y) dy = 0, (16)

having in mind the definition of U .

For s = 2; 4 and using the Green’s formula we get:

∫

T

∂2U

∂y2
∂s+2v

∂xs∂y2
(xT , y) dx dy =

(∫

l3

−
∫

l1

)
∂U

∂y

∂s+2v

∂xs∂y2
(xT , y) dx

−
∫

T

∂U

∂y

∂s+3v

∂xs∂y3
(xT , y) dx dy =

(∫

l3

−
∫

l1

)
U
∂s+3v

∂xs∂y3
(xT , y) dx

+

∫

T

U
∂s+4v

∂xs∂y4
(xT , y) dx dy =0. (17)

Then, in view of (15) and (16), applying (8) of Lemma 1 for the function
∂2U

∂y2
∂s+2v

∂xs∂y2
(xT , y) with s = 1 and s = 3 respectively, we obtain:

∫

T

(x− xT )
∂2U

∂y2
∂3v

∂x∂y2
(xT , y) dx dy

=
1

90

∫

T

E3(x)
∂7u

∂x5∂y2
∂3v

∂x∂y2
(xT , y) dx dy; (18)
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∫

T

(x− xT )
3

3!

∂2U

∂y2
∂5v

∂x3∂y2
(xT , y) dx dy =

1

420.3!

∫

T

E4(x)
∂7u

∂x5∂y2
∂5v

∂x3∂y2
(xT , y) dx dy

+
h21,T

210.3!

∫

T

E3(x)
∂7u

∂x5∂y2
∂5v

∂x3∂y2
(xT , y) dx dy. (19)

Similarly, we get:

∫

T

(x− xT )
2

2!

∂2U

∂y2
∂4v

∂x2∂y2
(xT , y) dx dy

= − 1

1260.2!

∫

T

E4(x)
∂8u

∂x6∂y2
∂4v

∂x2∂y2
(xT , y)dx dy;

∫

T

(x− xT )
4

4!

∂2U

∂y2
∂6v

∂x4∂y2
(x, y) dx dy = − 1

4725.4!

∫

T

E5(x)
∂8u

∂x6∂y2
∂6v

∂x4∂y2
(x, y) dx dy

−
h21,T

1890.4!

∫

T

E4(x)
∂8u

∂x6∂y2
∂6v

∂x4∂y2
(x, y) dx dy,

having in mind (15)-(17) and applying (9) of Lemma 1 for the same function with

s = 2 and s = 4, respectively.

It is possible to reduce the requirement for high smoothness without loss of accu-

racy. Indeed, using the identity

[
Ek(x)

]′
= kEk−1(x).(x − xT ), k = 4; 5,

the last two equalities may be written in the form

∫

T

(x− xT )
2

2!

∂2U

∂y2
∂4v

∂x2∂y2
(xT , y) dx dy

=
1

315.2!

∫

T

E3(x)(x − xT )
∂7u

∂x5∂y2
∂4v

∂x2∂y2
(xT , y) dx dy; (20)

∫

T

(x− xT )
4

4!

∂2U

∂y2
∂6v

∂x4∂y2
(x, y) dx dy

=
1

945.4!

∫

T

E4(x)(x − xT )
∂7u

∂x5∂y2
∂6v

∂x4∂y2
(x, y) dx dy

+
h21,T

1890.3!

∫

T

E3(x)(x − xT )
∂7u

∂x5∂y2
∂6v

∂x4∂y2
(x, y) dx dy. (21)

The right-hand side of (18), (19) and (20) can be transformed for v ∈ Vh and

T ∈ τh by the identity

∂s+2v

∂xs∂y2
(xT , y) =

4∑

i=s

(xT − x)i−s

(i− s)!

∂i+2v

∂xi∂y2
(x, y), s = 1, 2, 3; (x, y) ∈ T.
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From (14), (18)–(21), using the inverse inequality [5], we obtain

∫

T

∂2U

∂y2
∂2v

∂y2
dx dy ≤ Ch5‖u‖7,T‖v‖2,T ,

consequently, ∫

Ω

∂2U

∂y2
∂2v

∂y2
dx dy ≤ Ch5‖u‖7,Ω‖v‖2,Ω, (22)

and by analogy ∫

Ω

∂2U

∂x2
∂2v

∂x2
dx dy ≤ Ch5‖u‖7,Ω‖v‖2,Ω. (23)

Step 2. Here we consider the mixed term of the a−form. Let’s consider that the

following equalities hold:

∑

T∈τh

∫

T

∂2U

∂x∂y

∂2v

∂x∂y
dx dy =

∑

T∈τh

(∫

l3

−
∫

l1

)
∂2U

∂x∂y

∂v

∂x
dx

−
∑

T∈τh

∫

T

∂3U

∂x∂y2
∂v

∂x
dx dy = −

∑

T∈τh

(∫

l2

−
∫

l4

)
∂3U

∂x∂y2
v dx

+
∑

T∈τh

∫

T

∂4U

∂x2∂y2
v dx dy =

∑

T∈τh

∫

T

∂4U

∂x2∂y2
v dx dy,

(24)

because the functions
∂2U

∂x∂y

∂v

∂y
and

∂3U

∂x∂y2
v are continuous on the edges, parallel to

the x and y−axes, respectively. For the line integrals we integrate over the common

side of each pair of two adjacent elements with the same integrands, but in opposite

direction. For integrals over any parts of Γ the function v vanishes.

Consider the following presentation for any v ∈ Vh:

v(x, y) =

4∑

i,j=0

1

i!j!
(x− xT )

i(y − yT )
j ∂

i+jv

∂xi∂yj
(xT , yT ) ∀(x, y) ∈ T.

Combining this equality with (24) we get:

∫

T

∂4U

∂x2∂y2
v dx dy =

4∑

i,j=0

∫

T

(x − xT )
i(y − yT )

j

i!j!

∂4U

∂x2∂y2
∂i+jv

∂xi∂yj
(xT , yT ) dx dy. (25)

We shall estimate each term in (25) using the relations of Lemma 2.

First, from (R1) for i, j = 0, 1, 2 it follows that

∫

T

(x− xT )
i(y − yT )

j

i!j!

∂4U

∂x2∂y2
∂i+jv

∂xi∂yj
(xT , yT ) dx dy = 0. (26)

Next, the relation (R2) for i; j = 0, 1, 2 respectively gives

∫

T

(x− xT )
3(y − yT )

j

3!j!

∂4U

∂x2∂y2
∂3+jv

∂x3∂yj
(xT , yT ) dx dy
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=
1

15.3!j!

∫

T

E3(x)(y − yT )
j ∂7u

∂x5∂y2
∂3+jv

∂x3∂yj
(xT , yT ) dx dy;

(27)
∫

T

(x− xT )
i(y − yT )

3

i!3!

∂4U

∂x2∂y2
∂i+3v

∂xi∂y3
(xT , yT ) dx dy

=
1

15.i!3!

∫

T

(x − xT )
iF 3(y)

∂7u

∂x2∂y5
∂i+3v

∂xi∂y3
(xT , yT ) dx dy.

By analogy with (27), using (R3) for i; j = 0, 1, 2, we obtain the next two equalities:

∫

T

(x− xT )
4(y − yT )

j

4!j!

∂4U

∂x2∂y2
∂4+jv

∂x4∂yj
(xT , yT ) dx dy

= − 1

105.4!j!

∫

T

E4(x)(y − yT )
j ∂8u

∂x6∂y2
∂4+jv

∂x4∂yj
(xT , yT ) dx dy

=
1

105.3!j!

∫

T

E3(x)(x − xT )(y − yT )
j ∂7u

∂x5∂y2
∂4+jv

∂x4∂yj
(xT , yT ) dx dy;

(28)
∫

T

(x− xT )
i(y − yT )

4

i!4!

∂4U

∂x2∂y2
∂i+4v

∂xi∂y4
(xT , yT ) dx dy

= − 1

105.i!4!

∫

T

(x− xT )
iF 4(y)

∂8u

∂x2∂y6
∂i+4v

∂xi∂y4
(xT , yT ) dx dy

=
1

105.i!3!

∫

T

(x− xT )
i(y − yT )F

3(y)
∂7u

∂x2∂y5
∂i+4v

∂xi∂y4
(xT , yT ) dx dy.

From (R4) it follows that

∫

T

(x− xT )
3(y − yT )

3

3!3!

∂4U

∂x2∂y2
∂6v

∂x3∂y3
(xT , yT ) dx dy

=
1

15.3!.3!

∫

T

E3(x)(y − yT )
3 ∂7u

∂x5∂y2
∂6v

∂x3∂y3
(xT , yT ) dx dy. (29)

+
h21,T

25.3!3!

∫

T

(x − xT )F
3(y)

∂7u

∂x2∂y5
∂6v

∂x3∂y3
(xT , yT ) dx dy.

Introducing the equalities for sufficiently smooth function U

∫

T

E4(x)
∂6U

∂x6
dx dy = −4

∫

T

(x− xT )E
3(x)

∂5U

∂x5
dx dy,

∫

T

F 4(y)
∂6U

∂y6
dx dy = −4

∫

T

(y − yT )F
3(y)

∂5U

∂y5
dx dy,

from the relation (R4) we get

∫

T

(x− xT )
4(y − yT )

3

4!3!

∂4U

∂x2∂y2
∂7v

∂x4∂y3
(xT , yT ) dx dy
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=
1

105.3!.3!

∫

T

E3(x)(x − xT )(y − yT )
3 ∂7u

∂x5∂y2
∂7v

∂x4∂y3
(xT , yT ) dx dy. (30)

+
2h21,T
35.4!3!

∫

T

(x− xT )
2F 3(y)

∂7u

∂x2∂y5
∂7v

∂x4∂y3
(xT , yT ) dx dy

−
h41,T

175.4!3!

∫

T

F 3(y)
∂7u

∂x2∂y5
∂7v

∂x4∂y3
(xT , yT ) dx dy.

Similarly,

∫

T

(x− xT )
3(y − yT )

4

3!4!

∂4U

∂x2∂y2
∂7v

∂x3∂y4
(xT , yT ) dx dy

=
1

105.3!.3!

∫

T

(x − xT )
3(y − yT )F

3(y)
∂7u

∂x2∂y5
∂7v

∂x3∂y4
(xT , yT ) dx dy. (31)

+
2h22,T
35.3!4!

∫

T

E3(x)(y − yT )
2 ∂7u

∂x5∂y2
∂7v

∂x3∂y4
(xT , yT ) dx dy

−
h42,T

175.3!4!

∫

T

E3(x)
∂7u

∂x5∂y2
∂7v

∂x3∂y4
(xT , yT ) dx dy.

By analogy ∫

T

(x− xT )
4(y − yT )

4

4!4!

∂4U

∂x2∂y2
∂8v

∂x4∂y4
dx dy

=
1

105.4!.3!

∫

T

E3(x)(x − xT )(y − yT )
4 ∂7u

∂x5∂y2
∂8v

∂x4∂y4
dx dy. (32)

+
2h21,T
245.4!4!

∫

T

(x− xT )
2(y − yT )F

3(y)
∂7u

∂x2∂y5
∂8v

∂x4∂y4
dx dy

−
h41,T

1225.4!4!

∫

T

(y − yT )F
3(y)

∂7u

∂x2∂y5
∂8v

∂x4∂y4
dx dy.

In the right-hand sides of (27)-(31) we apply the equality

∂i+jv

∂xi∂yj
(xT , yT ) =

4∑

i0=i,j0=j

(x− xT )
i0−i(y − yT )

j0−j

(i0 − i)!(j0 − j)!

∂i0+j0v

∂xi0∂yj0
(x, y),

for corresponding values of i and j.

Thus, from (26)–(32) and using the inverse inequality, we obtain

∫

T

∂2U

∂x∂y

∂2v

∂x∂y
dx dy ≤ Ch5T ‖u‖7,T‖v‖2,T ,

and consequently,

∫

Ω

∂2U

∂x∂y

∂2v

∂x∂y
dx dy ≤ Ch5‖u‖7,Ω‖v‖2,Ω. (33)

Accordingly, the three terms of a−form are estimated. Hence (22), (23) and (33)

prove the theorem.
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As a consequence of this theorem the following ultraconvergence result holds:

Theorem 2. Let the conditions of Theorem 1 be fulfilled. Then

‖ihu− Phu‖2,Ω ≤ Ch5‖u‖7,Ω. (34)

Proof. It follows that (α = const):

α‖ihu− Phu‖22,Ω ≤ a(ihu− Phu, ihu− Phu) (V -ellipticity)

= a(ihu− u, ihu− Phu) (elliptic projector)

≤ C‖ihu− u‖2,Ω‖ihu− Phu‖2,Ω (continuity)

≤ Ch5‖u‖7,Ω‖ihu− Phu‖2,Ω (from Theorem 1).

5. HIGH INTERPOLATION OPERATOR I2H – CONSTRUCTION

AND ESTIMATIONS

First, let us consider the one-dimensional case. We keep the same notation for one-

dimensional FE partition, namely τh = {[pi−1, pi], i = 1, . . . , n}. Without loss of

generality one can suppose that n is an even natural number. Then the elements of

τh are combined by pairs of adjacent elements. A new FE partition is defined by

τ̃2h =
{
[p2k−2, p2k−1] ∪ [p2k−1, p2k], k = 1, . . . ,

n

2

}
.

The interpolation operator I2h is characterized by the following conditions for

every finite element belonging to τ̃2h and every smooth function v:

I2hv(pj) = v(pj), j = 2k − 2, 2k − 1, 2k;

[I2hv]
′ (pj) = v′(pj), j = 2k − 2, 2k − 1, 2k;

∫ pj+1

pj

I2hv(x) dx =

∫ pj+1

pj

v(x) dx, j = 2k − 2, 2k − 1.

For instance, it is possible to obtain the following basic functions defined on a
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reference element, i.e. for t ∈ [−1, 0] ∪ [0, 1]:

ψ1;7(t) =
1

16
t2(1− t)2(±72t3 + 95t2 ∓ 14t− 33),

ψ2;8(t) =
1

16
t2(1− t)2(8t3 ± 9t2 − 2t∓ 33),

ψ3;6(t) =
1

16
t2(1− t)2(1 + t)2(35∓ 64t),

ψ4(t) = (1− t)2(1 + t)2(1− 7t2),

ψ5(t) = t(1− t)2(1 + t)2(1− 2t)(1 + 2t).

By affine transformation

t =
x− p2k−1

h
,

where

h =

{
p2k − p2k−1, x ∈ [p2k−1, p2k],

p2k−1 − p2k−2, x ∈ [p2k−2, p2k−1],

it is not difficult to obtain the basic functions ψj(x), j = 1, . . . , 8 for any element

[p2k−2, p2k−1] ∪ [p2k−1, p2k] ∈ τ̃2h.

The set of degrees of freedom is v(pj), hv
′(pj), j = 2k − 2, 2k − 1, 2k and

1
h

∫ pj+1

pj
v(x) dx, j = 2k − 2, 2k − 1.

For 2−dimensional case the basic functions are defined as a product of two one-

dimensional basic functions, i.e. ψi,j(x, y) = ψi(x)ψj(y), i, j = 1, . . . , 8. Conse-

quently, the degrees of freedom are: (i) the values of v, ∂v
∂x
, ∂v
∂y

and ∂2v
∂x∂y

on the

vertices of the four subrectangles Ts ∈ τh, s = 1, . . . , 4 such that
⋃4

s=1 Ts ∈ τ̃2h; (ii)

the integral values of v and ∂v
∂ν

on the edges lj of Ts ∈ τh, s = 1, . . . , 4; (iii) the

integral values of v on the four subrectangles Ts, s = 1, . . . , 4 multiplied or divided

by the corresponding sizes characterizing the mesh of τh.

In this way the operator I2h is defined on the mesh τ̃2h of size 2h, obtained as a

result of arranging in groups of adjacent elements Ts ∈ τh, s = 1, . . . , 4. Let Ṽ2h ⊂ V

be finite element spaces associated with τ̃2h. Then Ṽ2h consists of polynomials of

degree 7 at most in each variable.

By constructing I2h, the following properties are valid:

I2h ◦ ih = I2h, (35)

‖I2hv‖r,Ω ≤ C‖v‖r,Ω ∀v ∈ Vh, r = 0, 1, 2, (36)

because the interpolation operator I2h : Vh → Ṽ2h is bounded.
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Finally, having in mind that the interpolation polynomial I2hv is of degree seven,

it follows

‖I2hv − v‖2,Ω ≤ Ch6‖v‖7,Ω. (37)

The next theorem contains the main estimation:

Theorem 3. Let u ∈ H7(Ω). The following estimate holds:

‖I2h ◦ Phu− u‖2,Ω ≤ Ch5‖u‖7,Ω. (38)

Proof. Applying (35), brings to

I2h ◦ Phu− u = I2h ◦ (Phu− ihu) + (I2hu− u) .

From (36) we have

‖I2h ◦ Phu− u‖2,Ω ≤ ‖Phu− ihu‖2,Ω + ‖I2hu− u‖2,Ω.

Using (34) and (37), we complete the proof.

6. ULTRACONVERGENCE FOR BIHARMONIC EIGENVALUE

PROBLEM

Here we present a direct application of the result obtained in the previous section.

Consider the following fourth-order elliptic eigenvalue problem: find λ ∈ R, u(x, y) ∈
V, u 6= 0, such that

a(u, v) = λ(u, v), ∀v ∈ V. (39)

Introduce an approximate eigenvalue problem, which corresponds to (39): find

λh ∈ R, uh(x, y) ∈ Vh, uh 6= 0, such that

a(uh, v) = λh(uh, v), ∀v ∈ Vh. (40)

The assumption here is that the FE space Vh uses polynomials of degree four. A

more general case is discussed in [2]. That being the case, it is well known (see [4, 8])

that the rate of convergence of FE approximation to the eigenvalues and eigenfunc-

tions is given by the following estimates:

|λ− λh| ≤ C(λ)h6‖u‖25,Ω, (41)

‖u− uh‖2,Ω ≤ C(λ)h3‖u‖5,Ω. (42)

The solutions of (39) and (40) are related to the Rayleigh quotient

λ =
a(u, u)

(u, u)
and λh =

a(uh, uh)

(uh, uh)
.
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First, let us estimate the difference uh − Phu in H2−norm of higher order of

accuracy as compared to the estimates (4) and (42). This special feature of both

functions is called to satisfy a superclose property (cf. [12]).

An important result related to the ultraconvergence patch-recovery for approxi-

mate eigenpairs is presented by the following lemma:

Lemma 3. Let the eigenfunction u(x, y) ∈ H5(Ω)∩V and let uh be the corresponding

FE approximation obtained by (40). Then

‖uh − Phu‖2,Ω ≤ Ch6‖u‖5,Ω. (43)

Proof. What is obtained from the ellipticity on the FE space is (ρ1 = const):

ρ1‖uh − Phu‖22,Ω ≤ a(uh − Phu, uh − Phu).

Let us denote uh−Phu = zh ∈ Vh. Using the orthogonal property of Ph, it follows

that

ρ1‖zh‖22,Ω ≤ λh(uh, zh)− a(Phu, zh)

= (λh − λ)(uh, zh) + λ(uh, zh)− a(u, zh)

= (λh − λ)(uh, zh) + λ(uh − u, zh) + λ(u, zh)− a(u, zh)

= (λh − λ)(uh, zh) + λ(uh − u, zh)

≤ |λ− λh|‖uh‖0,Ω‖zh‖2,Ω + λ‖uh − u‖−1,Ω‖zh‖1,Ω.

Note that in the last step we use the duality in negative norms. The estimate (43)

follows from (41) and the inequality [9]

‖uh − u‖−1,Ω ≤ Ch6‖u‖5,Ω.

In order to prove our main result concerning the ultraconvergence patch-recovery

to the approximate eigenpairs we need the following lemma:

Lemma 4. Let (λ, u) be any eigenpair obtained by (39). Then for every w ∈ V and

w 6= 0, the following inequality holds:

∣∣∣∣
a(w,w)

(w,w)
− λ

∣∣∣∣ ≤ C
‖w − u‖22,Ω

(w,w)
. (44)
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Proof. Denote w−u = ϕ ∈ V ≡ H2
0 (Ω), consequently w = u+ϕ. Hence the estimate

(44) is equivalent to

|a(u+ ϕ, u+ ϕ)− λ(u + ϕ, u+ ϕ)| ≤ C‖ϕ‖22,Ω ∀v ∈ V.

We transform the left-hand side of this inequality:

|a(u, u) + 2a(u, ϕ) + a(ϕ, ϕ)− λ(u, u)− 2λ(u, ϕ)− λ(ϕ, ϕ)|

= |a(u, u) + a(ϕ, ϕ) − λ(u, u)− λ(ϕ, ϕ)|.

Giving an account of a(u, u) = λ(u, u), it follows from the continuity that

|a(u+ ϕ, u + ϕ)− λ(u+ ϕ, u + ϕ)| = |a(ϕ, ϕ)− λ(ϕ, ϕ)|

≤ C1‖ϕ‖22,Ω + λ‖ϕ‖20,Ω

≤ C‖ϕ‖22,Ω,

which proves the lemma.

The main result of this section is contained in the next theorem:

Theorem 4. Let (λ, u) be an exact eigenpair and (λh, uh) be its FE approximation.

Assume that the conditions of Theorem 3 and Lemma 3 are fulfilled such that the

ultraconvergence estimations (38) and (43) hold. Then

‖I2huh − u‖2,Ω ≤ Ch5‖u‖7,Ω, (45)

∣∣∣∣
a(I2huh, I2huh)

(I2huh, I2huh)
− λ

∣∣∣∣ ≤ Ch10‖u‖7,Ω. (46)

Proof. The estimate (45) can be proved by Theorem 3 and Lemma 3:

‖I2huh − u‖2,Ω ≤ ‖I2huh − I2hPhu‖2,Ω + ‖I2hPhu− u‖2,Ω

≤ ‖I2h‖‖uh − Phu‖2,Ω + ‖I2hPhu− u‖2,Ω.

The interpolation operator I2h : Vh → Ṽ2h is compact. So

‖I2h‖ = sup
vh∈Vh

‖I2hvh‖2,Ω
‖vh‖2,Ω

≤ const.

Therefore

‖I2huh − u‖2,Ω ≤ C1h
6‖u‖5,Ω + C2h

5‖u‖7,Ω.
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In order to prove the inequality (46) Lemma 4 and (45) should be used:

∣∣∣∣
a(I2huh, I2huh)

(I2huh, I2huh)
− λ

∣∣∣∣ ≤C
‖I2huh − u‖22,Ω
‖I2huh‖20,Ω

≤Ch10‖u‖27,Ω.

7. NUMERICAL RESULTS

Consider a simple model problem of a thin bar of length l which is simply supported at

its endpoints. The flexural rigidity and the density of the rod are units. Accordingly,

we solve the following differential system:

uIV = λu, x ∈ (0, l),

u(0) = u′(0) = 0,

u(l) = u′(l) = 0.

The exact eigenvalues λj , j = 1, 2, . . . satisfy the equation (kj =
4
√
λj):

cos kj l coshkj l = 1,

and the exact eigenfunction are

uj(x) = C [(sinh kj l − sinkj l)(coshkjx− cos kjx)

−(coshkj l − cos kj l)(sinh kjx− sin kjx)] .

When l = 1, the first three exact eigenvalues are:

λ1 = 500.563901740433, λ2 = 3803.53708049787, λ3 = 14617.6301311223.

Though one-dimensional case is under consideration here, it still presents a rele-

vant illustration of rectangular FE theory.

In Table 1 and Table 2 the efficiency of patch-recovery technique is illustrated. Ne

denotes the number of elements in partition τh.

Let us introduce

λ̃h,j =
a(I2huh,j, I2huh,j)

(I2huh,j, I2huh,j)
.

Table 3 and Table 4 confirm the estimation obtained in Theorem 4 for eigenvalues.
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Table 1: The error ‖uj − uh,j‖2,Ω

Ne j = 1 j = 2 j = 3

8 0.88 0.16 1.1× 10−2

16 0.19 1.9× 10−2 1.3× 10−3

32 2× 10−2 2.5× 10−3 1.7× 10−4

Table 2: The error ‖uj − I2huh,j‖2,Ω

Ne j = 1 j = 2 j = 3

8 6.8× 10−2 1.9× 10−3 3.6× 10−5

16 2.6× 10−2 7.1× 10−3 2.3× 10−5

32 9.5× 10−3 2.9× 10−4 9.1× 10−6

Table 3: The error |λj − λh,j |

Ne j = 1 j = 2 j = 3

8 0.78 2.5× 10−2 1.2× 10−4

16 3.8× 10−2 3.9× 10−4 1.8× 10−6

32 4.1× 10−4 6.4× 10−6 2.9× 10−8

Table 4: The error |λj − λ̃h,j |

Ne j = 1 j = 2 j = 3

4 2.7 1.8× 10−2 2.4× 10−6

8 4.2× 10−3 2.4× 10−6 3.1× 10−9

16 7× 10−4 4.1× 10−9 4.4× 10−10

8. CONCLUDING REMARKS

The ultraconvergence results for the approximation of some planar fourth-order ellip-

tic problems enable us to conclude that:

• We present an ultraconvergent patch-recovery method applied to biharmonic

problems and using rectangular finite elements. This method requires some

sort of elaboration but in return gives an effective and simple algorithm;

• The interpolated finite elements described in the paper are in higher preference

as compared to the standard rectangular elements. They gain two order higher

convergence and even four order when they are applied to eigenvalue problem;

• In order to concentrate on the local recovery procedures, it is assumed that the

exact solutions of the problems considered here are sufficiently smooth. In other

words, the discussion of the singularity and boundary behaviour is omitted;

• Application of the patch-recovery method to eigenvalue problems is related to

the supercloseness between the elliptic (Ritz) projection and the approximate

eigenfunction (see Lemma 3);

• This paper employs a kind of analysis that can be applied to more general fourth-

order elliptic operator. It is also open to generalizations to higher dimension

tensor product spaces, especially for brick elements in three dimensions. These

will be addressed in a separate paper.
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