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ABSTRACT: In this paper, we consider the impacts of noise on ordinary differential

equations. We first prove that the weak noise can change the value of equilibrium

and the strong noise can destroy the stability of equilibrium. Then we consider the

competition between the nonlinear term and noise term, which shows that noise can

induce singularities (finite time blow up of solutions) and that the nonlinear term

can prevent the singularities. Besides that, some simulations are given in order to

illustrate our results.
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1. INTRODUCTION

The theory of stochastic differential equations (SDEs) has been very well developed
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since the seminal work of the great mathematician Kiyosi Itô in the mid 1940s. Ex-

istence and uniqueness of solutions of SDEs have been extensively studied by many

authors [7, 15] under the conditions that both dirt and diffusion coefficients satisfy

linear growth and global Lipschitz condition. SDEs (as well as stochastic functional

differential equations) with non-Lipschitzian coefficients have received much attention

widely, see, e.g., [5, 6, 9, 10, 14], just mention a few. In the present paper, we aim to

study the impact of noise on the solutions of ODEs, see [12].

Given a probability space (Ω,F , P ) endowed with a complete filtration (Ft)t≥0.

For simplicity, we only consider the case that the image belongs to R. That is, we

consider the following problem

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x ∈ R, (1.1)

where Wt is white noise. In this paper, we focus on the effect of noise.

Firstly, in Section 2, we consider the following special case

dXt = α(β −X2
t )Xtdt+ k(t)XtdWt, X0 = x ∈ R, (1.2)

where α > 0, β > 0 and k(t) is a continuous function. In this case, we can write

the explicit solution of (1.2) and thus we can prove the effect of noise clearly. We

prove that weak noise, αβ >
k2
m

2 (km = lim
t→∞

√

1
t

∫ t

0 k
2(s)ds), can change the value of

equilibrium and strong noise, αβ ≤ k2
m

2 , can destroy the stable of equilibrium, see [2]

for similar results.

Secondly, in Section 3, the competition between nonlinear term and noise term

will be investigated. Consider the following problem

{

dXt = (−k1Xγ
t )dt+ k2X

m
t dWt, t > 0,

X0 = x,

where k1 ≥ 0, k2 ∈ R, m ≥ 1 and γ > 1 satisfying (−1)γ = −1. It turns out that the

noise can induce singularity (finite time blowup) and the nonlinearity can prevent the

solution blowing up, see the reference [3, 4].

Lastly, apart from the analysis proof, we shall give some simulations in Section 4,

which show that our results are right.

2. A SPECIAL CASE

In this section, we are interested in the effect of noise on equilibrium. The effect of

noise on blowup time is also investigated.
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Now, we consider the following equation
{

dXt = α(β −X2
t )Xtdt+ k(t)XtdWt, t > 0,

X0 = x,
(2.1)

where α > 0, β > 0 and k(t) is a continuous function. Let Y (t) = e−
∫

t

0
k(s)dW (s)X(t).

Itô formula implies that

dY (t) = α

(

β − 1

2α
k2(t)− e2

∫
t

0
k(s)dW (s)Y 2(t)

)

Y (t)dt.

Set Z(t) = e−αβt+ 1
2

∫
t

0
k2(s)dsY (t). The above equality gives

Z2(t) =
1

x−2 + 2α
∫ t

0 e
2[(αβ− 1

2t

∫
t

0
k2(s)ds)t+

∫
t

0
k(s)dW (s)]dt

.

Thus we have

X2(t) =
e2[(αβ−

1
2t

∫
t

0
k2(s)ds)t+

∫
t

0
k(s)dW (s)]

x−2 + 2α
∫ t

0 e
2[(αβ− 1

2s

∫
s

0
k2(r)dr)s+

∫
s

0
k(r)dW (r)]ds

. (2.2)

In particular, k(t) ≡ 0, (2.2) becomes

X2(t) =
e2αβt

x−2 + β−1(e2αβt − 1)
,

which yields that

lim
t→∞

X2(t) = β. (2.3)

Theorem 2.1. Let X(t) be the solution of equation (2.1). If αβ >
k2
m

2 , then for any

ε > 0, there exists t0 > 0 such that

P

{

∣

∣

∣

1

t

∫ t

0

X2(s)ds−
(

β − k2m
2α

)

∣

∣

∣
> ε for some t > T

}

< exp

{

− α2ε2T 2

32
∫ T

0
k2(r)dr

}

for all T > t0, where km = lim
t→∞

√

1
t

∫ t

0 k
2(s)ds. In particular, as t→ ∞,

1

t

∫ t

0

X2(s)ds → β − k2m
2α

almost surely. If αβ ≤ k2
m

2 , then the solution X(t) → 0 almost surely as t→ ∞.

Proof. The proof of this lemma is similar to [13, Lemma 2.1]. We only give the

outline of the proof. From (2.2), it is easy to see that

1

t

∫ t

0

X2(s)ds =
1

2α
log z(t)− 1

2α
log z(0), (2.4)
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where z(t) = x−2 + 2α
∫ t

0 e
2[α(β− k2

2α )s+
∫

s

0
k(r)dW (r)]ds. Define

ẑ(t) = 2

∫ t

0

e2[α(β−
1

2αt

∫
t

0
k2(s)ds)s]ds.

Then it is easy to show that for any sufficiently small ε > 0, there exists t∗0 > 0 such

that for t > t∗0,

k2m − 1

8
αε ≤ 1

t

∫ t

0

k2(s)ds ≤ k2m +
1

8
αε (2.5)

and
∫ t∗0

0

e2αβs−
∫

s

0
k2(r)dr)ds ≤M exp

(

2αβt− k2mt+
1

8
αεt

)

, (2.6)

where M is a constant satisfying

log

(

1

2αβ − k2m + 1
8

+M

)

≤ 1

8
αεt. (2.7)

On the other hand, there exists t̂ > t∗0 such that for t > t̂,

exp

(

2αβt∗0 − k2mt
∗
0 −

1

8
αεt∗0

)

≤ 1

2
exp

(

2αβt− k2mt−
1

8
αεt

)

, (2.8)

and

log

(

1

2(αβ − 1
2k

2
m + 1

16αε)

)

≥ −1

8
αεt. (2.9)

Therefore, for t > t∗0, it follows from (2.5) and (2.6) that

ẑ(t) = 2

∫ t

0

e2[α(β−
1

2αt

∫
t

0
k2(s)ds)s]ds

= 2

∫ t∗0

0

e2[α(β−
1

2αt

∫
t

0
k2(s)ds)s]ds+ 2

∫ t

t∗0

e2[α(β−
1

2αt

∫
t

0
k2(s)ds)s]ds

≤ 2

∫ t∗0

0

e2[α(β−
1

2αt

∫
t

0
k2(s)ds)s]ds+ 2

∫ t

t∗0

e2[α(β−
k2
m

2α )s+ 1
8αεs]ds

= 2

∫ t∗0

0

e2[α(β−
1

2αt

∫
t

0
k2(s)ds)s]ds+

1

αβ − k2
m

2 + 1
8αε

×
[

exp

(

2αβt− k2mt+
1

8
αεt

)

− exp

(

2αβt∗0 − k2mt
∗
0 +

1

8
αεt∗0

)]

≤
(

1

αβ − k2
m

2 + 1
8αε

+M

)

exp

(

2αβt− k2mt+
1

8
αεt

)

. (2.10)

Similarly, by (2.5) and (2.8), we have

ẑ(t) = 2

∫ t

0

e2[α(β−
1

2αt

∫
t

0
k2(s)ds)s]ds
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≥ 2

∫ t

t∗0

e2[α(β−
1

2αt

∫
t

0
k2(s)ds)s]ds

≥ 2

∫ t∗0

0

e2[α(β−
k2
m

2α )s− 1
8αεs]ds

=
1

αβ − k2
m

2 + 1
8αε

×
[

exp

(

2αβt− k2mt+
1

8
αεt

)

− exp

(

2αβt∗0 − k2mt
∗
0 +

1

8
αεt∗0

)]

≥ 1

2(αβ − k2
m

2 + 1
8αε)

exp

(

2αβt− k2mt+
1

8
αεt

)

. (2.11)

Then taking logarithm to (2.10) and (2.11), it is easy to see from (2.7) and (2.9) that
(

2αβ − k2m − 1

4
αε

)

t ≤ log ẑ(t) ≤
(

2αβ − k2m +
1

4
αε

)

t. (2.12)

Recall that

1
√

∫ t

0
k2(r)dr

∫ s

0

k(r)dWr , 0 ≤ s ≤ t

is a time changed Brownian motion χ
(∫

s

0
k2(r)dr

∫
t

0
k2(r)dr

)

. Here χ(u) is a standard Brownian

motion with of time u. Therefore,

Y (s) =

∫ s

0

k(r)dWr =

√

∫ t

0

k2(r)drχ

(

∫ s

0
k2(r)dr

∫ t

0 k
2(r)dr

)

.

Let C1 = log(2α) and C2 = log(x−2 + 2α). For any ε > 0, take t0 ≥ t̂ such that

|C1 − log(x−2)|
αt0

< ε,
|C2 − log(x−2)|

αt0
< ε.

For any T ≥ t0, define

ΩT =







ω ∈ Ω : − αεT

4

√

∫ T

0 k2(r)dr
< χ(u) <

αεT

4

√

∫ T

0 k2(r)dr
, for all 0 ≤ u ≤ 1







.

Then from the well-known Doob’s inequality (see [11, 13])

P (ΩT ) > 1− exp

(

− α2ε2

32
∫ T

0 k2(r)dr
T 2

)

and for each ω ∈ Ω, and t ≥ T , and s ≤ t, one can prove |Y (s)| ≤ αεt
4 , see [13]. It

follows that for ω ∈ ΩT , and t ≥ T ,

2αẑ(t)e−
1
4αεt ≤ z(t) ≤ 2(x−2 + 2α)ẑ(t)e−

1
4αεt,
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together with (2.12), implies that
(

2αβ − k2m − 1

2
αε

)

t+ C1 ≤ log z(t) ≤
(

2αβ − k2m +
1

2
αε

)

t+ C2.

It follows from (2.4) that for ω ∈ Ω and t ≥ T ,

β − k2m
2α

− ε

2
+
C1 − log(x−2)

αt
≤ 1

t

∫ t

0

X2(s)ds ≤ β − k2m
2α

+
ε

2
+
C2 − log(x−2)

αt0
.

By the definition of t0, we have for ω ∈ Ω and t ≥ T ,

β − k2m
2α

− ε ≤ 1

t

∫ t

0

X2(s)ds ≤ β − k2m
2α

+ ε,

which is the desired result when αβ >
k2
m

2 . If αβ =
k2
m

2 , we let β̂ = β+ ǫ and then we

get αβ̂ >
k2
m

2

β̂ − k2m
2α

− ε ≤ 1

t

∫ t

0

X2(s)ds ≤ β̂ − k2m
2α

+ ε.

Letting ǫ→ 0, we arrive that X(t) → 0 almost surely as t→ ∞.

When αβ <
k2
m

2 , it follows from the following property of Brownian motion ([8])

lim sup
t→∞

Bt√
2t log log t

= 1 a.s.

that X(t) → 0 almost surely as t→ ∞. The proof of Theorem 2.1 is complete.

Remark 2.1. From Theorem 2.1, it follows that the weak noise can change the

value of equilibrium and the strong noise can destroy the stability of equilibrium.

3. COMPETITION BETWEEN NONLINEAR TERM AND NOISE

TERM

In this section, we consider the role of competition between nonlinear term and noise

term. Before that, we first list out what type of noise can make the solution of (1.1)

keep positive.

dXt = f(Xt)dt+ σ(Xt)dWt, X0 = x. (3.1)

Using the test function (see [1])

ψk(r) =



























0, (−∞, 0],

2k2r3

3 , [0, 1
2k ],

r − 1
2k − 2k2

3 (r − 1
k
)3, [ 1

2k ,
1
k
],

r − 1
2k , [ 1

k
,∞),

and Itô formula, it is not hard to get the following Proposition.
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Proposition 3.1. Assume that the function f(r) is continuous on R and such

that f(r) ≥ 0 for r ≤ 0 and σ(r) satisfies the local Lipschitz condition, i.e., there

exists constant m > 1 such that |σ(x)| ≤ lσ|x|m, where lσ is the local Lipschitz

constant. Then the solution of (3.1) with nonnegative initial datum remains positive,

i.e., Xt ≥ 0, a.s., t ≥ 0.

Consider the following problem

{

dXt = (−k1Xγ
t )dt+ k2X

m
t dWt, t > 0,

X0 = x,
(3.2)

where k1 ≥ 0, k2 ∈ R, m ≥ 1 and γ > 1 satisfying (−1)γ = −1. When k1 ≥ 0

and (−1)γ = −1, the existence of local solution of (3.2) can be obtained by Picard

iteration, see [5, 9, 10]. When (−1)γ = 1 and k1 < 0, the solution of (3.2) will blow

up in finite time, see [3, 4, 7].

Theorem 3.1. Assume that m > 1+γ
2 , x is a nonnegative constant satisfying

k22
2
x2m >

2m− (1 + γ)

2m

(

1 + γ

mk22

)

1+γ

2m−(1+γ)

(2k1)
2m

2m−(1+γ) . (3.3)

Then the solution of (3.2) will blow up in finite time in L2(Ω), that is, there exists a

constant T ∗ > 0 such that

lim
t→T∗−0

(

E|Xt|2
)

1
2 = ∞. (3.4)

Proof. It follows from Proposition 3.1 that the solution Xt ≥ 0 holds almost surely.

By Itô formula, we have

X2
t = x2 − 2k1

∫ t

0

Xγ+1
s ds+ 2k2

∫ t

0

Xm+1
s dWs + k22

∫ t

0

X2m
s ds.

Taking expectation on both sides of the above equality and letting ξ(t) = E[X2
t ], we

have

ξ(t) = x2 − 2k1E

∫ t

0

Xγ+1
s ds+ k22E

∫ t

0

X2m
s ds, (3.5)

or, in the differential form










dξ(t)

dt
= −2k1E[X

γ+1
t ] + k22E[X

2m
t ],

ξ(0) = x2.

By Jensen’s inequality, we have

E[Xγ+1
s ] ≤

[

EX2m
s

]

1+γ
2m , E[X2m

t ] ≥
(

E[X2
t ]
)m

(3.6)
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and ε-Young’s inequality yields

2k1
(

E[X2m
s ]
)

1+γ
2m ≤ k22

2
EX2m

s + k̃1, (3.7)

where k̃1 = 2m−(1+γ)
2m

(

1+γ

mk2
2

)

1+γ

2m−(1+γ)

(2k1)
2m

2m−(1+γ) . Submitting (3.6) and (3.7) into

(3.5), we get










dξ(t)

dt
≥ k22

2
ξm(t)− k̃1,

ξ(0) = x2.

(3.8)

This implies that, for
k2
2

2 ξ
m(0)− k̃1 > 0, we have

k2
2

2 ξ
m(t)− k̃1 > 0 and ξ(t) > ξ0, for

t > 0. An integration of equation (3.8) gives that

T ≤
∫ ξ(T )

ξ(0)

2dr

k22r
m − 2k̃1

≤
∫ ∞

ξ(0)

2dr

k22r
m − 2k̃1

< ∞,

which implies that η(t) must blow up at a time T ∗ ≤
∫∞

ξ(0)
2dr

k2
2r

m−2k̃1
. This completes

the proof.

Next, we consider the case that 1 < m < 1+γ
2 .

Theorem 3.2. Assume that 1 < m < 1+γ
2 and x is a nonnegative constant. Then

(3.2) has a global solution.

Proof. It follows from [5, 10, 16] that (3.2) has a local solution on [0, T ]. By Propo-

sition 3.1, this local solution is positive. Now, we prove the solution does not blow

up in finite time. Similar to the proof of Theorem 3.1, we have










dξ(t)

dt
= −2k1E[X

γ+1
t ] + k22E[X

2m
t ],

ξ(0) = x2,

(3.9)

where ξ(t) = E[X2
t ]. By Hölder inequality and ε-Young’s inequality, we have

E[X2m
t ] ≤

(

E[X1+γ
t ]

)

2(m−1)
γ−1 (

E[X2
t ]
)

1+γ−2m
γ−1

≤ k1E[X
1+γ
t ] + k̂1E[X

2
t ], (3.10)

where

k̂1 =
1 + γ − 2m

γ − 1

(

k1(γ − 1)

2(m− 1)

)

2(m−1)
1+γ−2m

(k22)
γ−1

1+γ−2m .
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Submitting (3.10) into (3.9), we get

dξ(t)

dt
≤ −k1E[Xγ+1

t ] + k̂1ξ(t)

≤ k̂1ξ(t),

which yields that

ξ(t) ≤ ξ(0)ek̂1t. (3.11)

Suppose ζ is the lifetime of X(t). Define

τR = inf{t > 0, X2(t) ≥ R}, R > 0,

It is clear that τR tends to the lifetime ζ as R → +∞. (3.11) implies that

E[X2(t ∧ τR)] ≤ E[X2(0)]ek̂1t.

Letting R→ +∞ in above inequality, by Fatou lemma, we get

E[X2(t ∧ ζ)] ≤ E[X2(0)]ek̂1t. (3.12)

Now if P (ζ < +∞) > 0, then for a large T > 0, P (ζ ≤ T ) > 0. Taking t = T in

(3.12), we get

E[1ζ≤TX
2(ζ)] ≤ E[X2(0)]ek̂1t. (3.13)

Since X2(ζ) = ∞ on a positive measure subset ζ ≤ T , the left hand side of (3.13)

is infinite, while the right hand side is finite, which is impossible. Therefore P (ζ =

+∞) = 1.

Remark 3.1. Combining Theorems 3.1 and 3.2, we find the competition between

the nonlinear term and noise term. The value m = (1 + γ)/2 is a threshold for

equation (3.2). For example, considering the equation (3.2) with γ = 3, we have the

following results. When 1 ≤ m < 2, equation (3.2) has a global solution; when m > 2,

the solution of equation (3.2) will blow up in finite time; when m = 2, it follows from

the proofs of Theorems 3.1 and 3.2 that the solution of equation (3.2) will blow up in

finite time if k22 > 2k1 and equation (3.2) has a global solution if k22 ≤ 2k1.

4. SIMULATIONS

In this section, we give some simulations to illustrate the results of Theorems 2.1, 3.1

and 3.2. Firstly, taking the initial date x = 0.1, α = 1, β = 2 and k(t) =
√
2, we have
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Figure 1: The case that αβ > k2m/2
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Figure 4: The case that k1 < 0 and

(−1)γ = 1

αβ >
k2
m

2 . It follows Theorem 2.1 that 1
t

∫ t

0
X2

sds → β − k2
m

2α , see Fig 1. Under the

same initial data, taking α = 1, β = 0.5, k(t) =
√
2, and α = 1, β = 2 and k(t) = 2,

we have αβ <
k2
m

2 and αβ =
k2
m

2 , respectively. It follows from Theorem 2.1 that the

solution goes to 0 as times goes to infinity, see Figs 2 and 3.

In order to verify the results of Theorems 3.1 and 3.2, we take the initial data

x = 2 holds for Figs 4-8. It is easy to verify that the condition (3.3) holds for x = 2,

k1 = k2 = 1 or k1 = 1, k2 = 2. First we note that if k1 < 0 and γ > 1, then the

solution of (3.2) will blow up in finite time in L2(Ω), see Fig 4. Theorem 3.1 shows

that if m > 1+γ
2 , the solution of (3.2 ) will blow up in finite time in L2(Ω), see Fig

5. Theorem 3.2 shows that if m < 1+γ
2 , the solution of (3.2 ) exist globally, see Fig

6. When m = 1+γ
2 , from Remark 3.1, the solution of equation (3.2) will blow up in

finite time if k22 > 2k1 (see Fig 7) and equation (3.2) has a global solution if k22 ≤ 2k1,

see Fig 8.
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Figure 5: The case that m > 1+γ
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Figure 6: The case that m < 1+γ
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Figure 7: The case that m = 1+γ
2 and

k22 > 2k1
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Figure 8: The case that m = 1+γ
2 and

k22 < 2k1
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Communications on Stochastic Analysis, 3 (2009), 211-222.

[4] P-L. Chow and R. Khasminskii, Almost sure explosion of solutions to stochastic

differential equations, Stochastic Process. Appl., 124 (2014), 639-645.

[5] S. Z. Fang and T. S. Zhang, A study of a class of stochastic differential equations

with non-Lipschizian coefficients, Probab. Theory Related Fields, 132, (2005)

356-390.

[6] M. Hofmanova and J. Seidler, On weak solutions of stochastic differential equa-

tions, Stoch. Anal. Appl., 30 (2012), 100-121.

[7] I. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Pro-

cesses, North-Holland, Amsterdam, 1981.

[8] J. Lamperti, Stochastic Processes, Springer-Verlag, 1977, ISBN 978-1-4684-9358-

0.

[9] G. Q. Lan, Pathwise uniqueness and non-explosion of stochastic differential equa-

tions with non-Lipschitzian coefficients, Acta Math. Sinica (Chin. Ser.), 52

(2009), 109-114.

[10] G. Q. Lan and J. L. Wu, New sufficient conditions of existence, moment estima-

tions and non confluence for SDEs with non-Lipschitzian coefficients, Stochastic

Process. Appl., 124 (2014), 4030-4049.

[11] H.P. McKean, Stochastic Integrals, New York, Academic Press, ISBN: 978-1-

4832-59239.

[12] M. Niu and B. Xie, Impacts of Gaussian noises on the blow-up times of nonlinear

stochastic partial differential equation, Nonlinear Anal. Real World Appl., 13

(2012), 1346-1352.

[13] B. Øksendal, G. V̊age, and H. Zhao, Two properties of stochastic KPP equation:

ergodicity and pathwise property, Nonlniarity, 14 (2001), 639-662.

[14] J. Shao, F.-Y. Wang, and C. Yuan, Harnack inequalities for stochastic (func-

tional) differential equations with non- Lipschitzian coefficients, Electron. J.

Probab., 17, No. 18 (2012).

[15] D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes,

Springer-Verlag, 1979.

[16] B. Xie, Some effects of the noise intensity upon non-linear stochastic heat equa-

tions on [0, 1], Stochastic Process. Appl., 126 (2016), 1184-1205.


