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1. INTRODUCTION

The law of large numbers and central limit theorem as fundamental limit theorems in

probability theory play a fruitful role in the development of probability theory and its

applications. However, these kinds of limit theorems have always considered additive

probabilities and additive expectations. In fact, the additivity of probabilities and

expectations has been abandoned in some areas because many uncertain phenomena

cannot be well modeled by using additive probabilities and additive expectations.

Since the paper (Artzner et al. [1]) on coherent risk measures, people are more

and more interested in sublinear expectations (or more generally, convex expectations,

see [4, 6, 7, 8]). By Peng [16], we know that a sublinear expectation Ê can be
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represented as the upper expectation of a subset of linear expectations {Eθ : θ ∈ Θ},
i.e., Ê[·] = sup

θ∈Θ
Eθ[·]. In most cases, this subset is often treated as an uncertain model

of probabilities {Pθ : θ ∈ Θ} and the notion of sublinear expectation provides a robust

way to measure a risk loss X . In fact, the nonlinear expectation theory provides many

rich, flexible and elegant tools.

Since the notion of independent identically distributed (IID) random variables

under sublinear expectations initiated by Peng, many limit results such as strong

(weak) law of large numbers, central limit theorem and law of iterated logarithm

under sublinear expectations have been studied. For more details, we can see [2, 3, 9,

10, 11, 12, 13, 14, 15, 18, 19].

In this paper, we study some limit theorems for random variables under sub-

linear expectations. First, a law of large numbers is proved for independent and

non-identical distributed random variables with only finite first order moments. Sec-

ond, a central limit theorem is proved for independent and non-identical distributed

random variables with only finite second order moments. These results generalize the

known results in [10, 12, 13, 14, 15, 19].

2. PRELIMINARIES

In this section, we present some preliminaries in the theory of sublinear expectations.

For more detail, we can see [5, 16, 17, 18, 19].

Let (Ω,F) be a given measurable space and let H be a linear space of real functions

defined on (Ω,F). We suppose that H satisfies c ∈ H for each constant c and |X | ∈ H
if X ∈ H. The space H can be considered as the space of random variables.

Definition 2.1. (see [16, 17, 18, 19]). A sublinear expectation Ê onH is a functional

Ê: H → R satisfying the following properties: for all X,Y ∈ H, we have

(a) Monotonicity: If X ≥ Y , then Ê[X ] ≥ Ê[Y ];

(b) Constant preserving: Ê[c] = c, ∀c ∈ R;

(c) Sub-additivity: Ê[X + Y ] ≤ Ê[X ] + Ê[Y ] whenever Ê[X ] + Ê[Y ] is not of the

form +∞−∞ or −∞+∞;

(d) Positive homogeneity: Ê[λX ] = λÊ[X ], ∀λ ≥ 0.

Here R = [−∞,+∞]. The triple (Ω,H, Ê) is called a sublinear expectation space.

Give a sublinear expectation Ê, let us denote the conjugate expectation ε̂ of Ê by

ε̂[X ] := −Ê[−X ], ∀X ∈ H.

It is obvious that ε̂[X ] ≤ Ê[X ], for all X ∈ H.
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In this paper, we consider the following sublinear expectation space (Ω,H, Ê): if

X1, · · · , Xn ∈ H, then ϕ(X1, · · · , Xn) ∈ H for each ϕ ∈ Cl.Lip(R
n), where Cl.Lip(R

n)

denotes the linear space of functions ϕ satisfying

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y| ∀x, y ∈ R
n,

for some C > 0, m ∈ N depending on ϕ. Let Cb.Lip(R
n) denote the linear space of

bounded functions ϕ satisfying

|ϕ(x) − ϕ(y)| ≤ C|x− y| ∀x, y ∈ R
n,

for some C > 0 depending on ϕ.

Definition 2.2. (lSee [16, 17, 18, 19]). Identical distribution: Let X1 and X2 be two

n-dimensional random vectors defined in sublinear expectation spaces (Ω1,H1, Ê1)

and (Ω2,H2, Ê2), respectively. They are called identically distributed, denoted by

X1
d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl.Lip(R
n),

whenever the sublinear expectations are finite.

Independence: In a sublinear expectation space (Ω,H, Ê), a random vector Y =

(Y1, · · · , Yn), Yi ∈ H is called independent to another random vector X := (X1, · · · ,
Xm), Xi ∈ H under Ê, if for each test function ϕ ∈ Cl.Lip(R

m × R
n), we have

Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ],

whenever ϕ(x) := Ê[|ϕ(x, Y )|] < ∞ for all x and Ê[ϕ(X)] < ∞.

Sequence of IID random variables: A sequence of IID random sequence {Xi}∞i=1 is

called IID random variables, ifXi
d
= X1 andXi+1 is independent to Y := (X1, · · · , Xi)

for each i ≥ 1.

Definition 2.3. (Maximal distribution) (see [16, 17]). A random variable η in a

sublinear expectation space (Ω,H, Ẽ) is called maximal distributed if

Ẽ[ϕ(η)] = sup
µ≤y≤µ

ϕ(y), ∀ϕ ∈ Cl.Lip(R),

where µ := Ẽ[η] and µ := ε̃[η].

Remark 2.4. Let η be maximal distributed with µ := Ẽ[η], µ := ε̃[η], the dis-

tribution of η is characterized by the following parabolic partial differential equation

(PDE):

∂tu− g(∂xu) = 0, u(0, x) = ϕ(x),

where u(t, x) := Ẽ[ϕ(x + tη)], (t, x) ∈ [0,∞)× R, g(x) := µx+ − µx−.
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Definition 2.5. (G-normal distribution) (see [16, 17]). A random variable X in

a sublinear expectation space (Ω,H, Ẽ) with σ2 := Ẽ[X2], σ2 := ε̃[X2] is called

G-normal distributed, denoted by X ∼ N (0; [σ2, σ2]), if for each Y ∈ H which is

independent to X such that Y
d
= X , it holds that aX + bY

d
=

√
a2 + b2X, ∀a, b ≥ 0.

Remark 2.6. Let X ∼ N (0; [σ2, σ2]) under Ẽ. For each ϕ ∈ Cl.Lip(R), we define a

function

v(t, x) := Ẽ[ϕ(x +
√
tX)], (t, x) ∈ [0,∞)× R.

Then v is the unique viscosity solution of the following parabolic PDE:

∂tv −G(∂2
xxv) = 0, v(0, x) = ϕ(x),

where G(α) := 1
2 Ẽ[αX2] = 1

2 (σ
2α+ − σ2α−).

Lemma 2.7. (see [3, 5]). Suppose X ∼ N (0; [σ2, σ2]) under Ẽ. Let P be a prob-

ability measure and ϕ be a bounded continuous function on R. If {Bt}t≥0 is a 1-

dimensional Brownian motion under P , then

Ẽ[ϕ(X)] = sup
θ∈Θ

EP

[
ϕ

(∫ 1

0

θsdBs

)]
, ε̃[ϕ(X)] = inf

θ∈Θ
EP

[
ϕ

(∫ 1

0

θsdBs

)]
,

where

Θ := {{θt}t≥0 : θt is Ft-adapted process such that σ ≤ θt ≤ σ} ,
Ft := σ{Bs : 0 ≤ s ≤ t} ∨ N , N is the collection of P -null subsets.

Lemma 2.8. (Hölder’s inequality) (see [17]). Let X,Y be two random variables in

a sublinear expectation space (Ω,H, Ê), then for 1 < p, q < ∞, 1
p
+ 1

q
= 1, we have

Ê[|XY |] ≤ (Ê[|X |p]) 1
p · (Ê[|Y |q]) 1

q .

Lemma 2.9. (Rosenthal’s inequality) (see [18]). Let (X1, · · · , Xn) be a sequence

of random variables in (Ω,H, Ê). Suppose that Xk+1 is independent to (X1, · · · , Xk)

for each k = 1, · · · , n− 1. Denote Sn :=
n∑

k=1

Xk.

(a) Then

Ê

[
max
k≤n

|Sk|p
]
≤ Cp






n∑

k=1

Ê[|Xk|p] +
(

n∑

k=1

Ê[X2
k ]

) p

2






+Cp

{(
n∑

k=1

[
(ε̂[Xk])

− + (Ê[Xk])
+
])p}

, for p ≥ 2. (2.1)
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(b) Furthermore, we assume that Ê[Xk] ≤ 0, k = 1, · · · , n. Then

Ê
[
(S+

n )p
]
≤






22−p
n∑

k=1

Ê [|Xk|p] , for 1 ≤ p ≤ 2,

Cpn
p

2
−1

n∑
k=1

Ê[|Xk|p], for p ≥ 2.
(2.2)

Definition 2.10. A set function V : F → [0, 1] is called a capacity if it satisfies the

following:

(1) V (∅) = 0, V (Ω) = 1;

(2) V (A) ≤ V (B), whenever A ⊂ B and A,B ∈ F .

It is called a sub-additive capacity if it further satisfies V (A∪B) ≤ V (A) +V (B) for

all A,B ∈ F with A
⋃
B ∈ F .

Let (Ω,H, Ê) be a sublinear expectation space, and ε̂ be the conjugate expectation

of Ê. We denote a pair (V, v) of capacities by

V(A) := inf{Ê[ξ] : IA ≤ ξ, ξ ∈ H}, v(A) := 1− V(Ac), ∀A ∈ F ,

where Ac is the complement set of A. Then

V(A) := Ê[IA], v(A) := ε̂[IA], if IA ∈ H,

Ê[f ] ≤ V(A) ≤ Ê[g], ε̂[f ] ≤ v(A) ≤ ε̂[g], if f ≤ IA ≤ g, f, g ∈ H.
(2.3)

Obviously, V is sub-additive. But v is not. However, we have v(A
⋃

B) ≤ v(A)+V(B).

3. MAIN RESULTS

Theorem 3.1. Let a sequence {Xi}∞i=1, which is in a sublinear expectation space

(Ω,H, Ê), satisfy the following conditions:

(i) each Xi+1 is independent to (X1, · · · , Xi), for i = 1, 2, · · · ;
(ii) Ê[Xi] = µi, ε̂[Xi] = µi, where−∞ < µi ≤ µi < ∞;

(iii) there are two constants µ and µ such that

lim
n→∞

1

n

n∑

i=1

|µi − µ| = 0, lim
n→∞

1

n

n∑

i=1

|µi − µ| = 0;

(iv) lim
d→∞

sup
i≥1

Ê
[
(|Xi| − d)+

]
= 0;

(v) sup
i≥1

Ê[|Xi|] < ∞. Then for any continuous function ϕ satisfying |ϕ(x)| ≤
C(1 + |x|), we have

lim
n→∞

Ê

[
ϕ

(
Sn

n

)]
= Ẽ[ϕ(η)], (3.1)
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where Sn =
n∑

i=1

Xi, η is maximal distributed under Ẽ with µ := Ẽ[η], µ := ε̃[η].

Furthermore, if p > 1 and sup
i≥1

Ê[|Xi|p] < ∞, then (3.1) holds for any continuous

function ϕ satisfying |ϕ(x)| ≤ C(1 + |x|p).

Proof. Let Yi = (−i)∨ (Xi ∧ i), Tn =
n∑

i=1

Yi. In order to prove Theorem 3.1, we need

the following facts:

(A1) Suppose that the condition (iv) is satisfied, then

1

n

n∑

i=1

Ê[|Xi − Yi|] → 0 as n → ∞.

(A2) Suppose that the conditions (iv) and (v) are satisfied, then

n∑
i=1

Ê[|Yi|α+1]

nα+1
→ 0 as n → ∞, ∀ 0 < α < 1.

(A3) Suppose that the conditions (i) and (v) are satisfied, then

Ê
[
|Tn|2p

]
≤ C2pn

2p, ∀ p ≥ 1.

For (A1), by Stolz theorem, it is sufficient to show that

Ê[|Xn − Yn|] → 0 as n → ∞.

Note that

Ê[|Xn − Yn|] = Ê[(|Xn| − n)+] ≤ sup
i≥1

Ê[(|Xi| − n)+] → 0 as n → ∞.

So (A1) holds.

For (A2), by Stolz theorem, it is sufficient to show that

Ê[|Yn|α+1]

nα+1 − (n− 1)α+1
→ 0 as n → ∞.

Note that
Ê[|Yn|α+1]

nα+1 − (n− 1)α+1
≤ Ê[|Yn|α+1]

(n− 1)α
,

Ê[|Yn|α+1] ≤ Ê[|Xn||Yn|α] ≤ Ê[(|Xn| − d+ d)|Yn|α]
≤ nαÊ[(|Xn| − d)+] + dÊ[|Yn|α]

≤ nαÊ[(|Xn| − d)+] + d
(
Ê[|Xn|]

)α

≤ nα · sup
i≥1

Ê[(|Xi| − d)+] + d

(
sup
i≥1

Ê[|Xi|]
)α

.
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So

Ê[|Yn|α+1]

(n− 1)α
≤

nα · sup
i≥1

Ê[(|Xi| − d)+]

(n− 1)α
+

d

(
sup
i≥1

Ê[|Xi|]
)α

(n− 1)α
→ 0

as n → ∞ and d → ∞.

Thus, (A.2) holds.

For (A3), by the Rosenthal’s inequality (2.1), we have

Ê[|Tn|2p] ≤ C2p

n∑

i=1

Ê[|Yi|2p] + C2p

(
n∑

i=1

Ê[|Yi|2]
)p

+ C2p

(
n∑

i=1

[
(Ê[Yi])

+ + (Ê[−Yi])
+
])2p

≤ C2p

n∑

i=1

Ê[|Xi||Yi|2p−1] + C2p

(
n∑

i=1

Ê[|Xi||Yi|]
)p

+ C2p

(
n∑

i=1

2Ê[|Xi|]
)2p

≤ C2pn
2p−1n · sup

i≥1
Ê[|Xi|] + C2p

(
n · n · sup

i≥1
Ê[|Xi|]

)p

+ C2p2
2p

(
n · sup

i≥1
Ê[|Xi|]

)2p

≤ C2pn
2p.

We first prove that

lim
n→∞

Ê

[
ϕ

(
Tn

n

)]
= Ẽ[ϕ(η)], ∀ϕ ∈ Cb.Lip(R). (3.2)

Now, for a small but fixed h > 0, let V be the unique viscosity solution of the following

equation:

∂tV + g(∂xV ) = 0, (t, x) ∈ [0, 1 + h]× R, V |t=1+h = ϕ(x), (3.3)

where g(x) := µx+ − µx−. According to the definition of maximal distribution, we

have

V (t, x) = Ẽ[ϕ(x+ (1 + h− t)η)], V (h, 0) = Ẽ[ϕ(η)], V (1 + h, x) = ϕ(x). (3.4)

Since (3.3) is a uniformly parabolic PDE, by the interior regularity of V , we have

‖V ‖
C

1+α

2
,1+α([0,1]×R)

< ∞, for some α ∈ (0, 1).
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Let δ = 1
n
, T0 = 0, then

V (1, δTn)− V (0, 0) =
n−1∑

i=0

{V ((i+ 1)δ, δTi+1)− V (iδ, δTi)}

=
n−1∑

i=0

{[V ((i+ 1)δ, δTi+1)− V (iδ, δTi+1)]

+ [V (iδ, δTi+1)− V (iδ, δTi)]}

=

n−1∑

i=0

{Iiδ + J i
δ},

with, by Taylor’s expansion,

J i
δ = ∂tV (iδ, δTi)δ + ∂xV (iδ, δTi)Yi+1δ

= (∂tV (iδ, δTi)δ + ∂xV (iδ, δTi)Xi+1δ) + (∂xV (iδ, δTi)(Yi+1 −Xi+1)δ)

= J i
δ,1 + J i

δ,2,

Iiδ =

∫ 1

0

[∂tV ((i + β)δ, δTi+1)− ∂tV (iδ, δTi+1)] dβδ + [∂tV (iδ, δTi+1)− ∂tV (iδ, δTi)] δ

+

∫ 1

0

[∂xV (iδ, δTi + βδYi+1)− ∂xV (iδ, δTi)] dβYi+1δ.

Therefore,

Ê

[
n−1∑

i=0

J i
δ,1

]
−

n−1∑

i=0

(
Ê[|J i

δ,2|] + Ê[|Iiδ|]
)

≤ Ê[V (1, δTn)]− V (0, 0) ≤ Ê

[
n−1∑

i=0

J i
δ,1

]
+

n−1∑

i=0

(
Ê[|J i

δ,2|] + Ê[|Iiδ |]
)
. (3.5)

We first consider Ê

[
n−1∑
i=0

J i
δ,1

]
. From (3.3) and the condition (i), it follows that

Ê[J i
δ,1] = Ê [∂tV (iδ, δTi)δ + ∂xV (iδ, δTi)Xi+1δ]

= Ê
{
∂tV (iδ, δTi)δ + δ

[
(∂xV (iδ, δTi))

+µi+1 − (∂xV (iδ, δTi))
−µi+1

]}

≤ Ê
{
∂tV (iδ, δTi)δ + δ

[
(∂xV (iδ, δTi))

+µ− (∂xV (iδ, δTi))
−µ
]}

+ δÊ
[
(∂xV (iδ, δTi))

+(µi+1 − µ)− (∂xV (iδ, δTi))
−(µi+1 − µ)

]

= δÊ
[
(∂xV (iδ, δTi))

+(µi+1 − µ)− (∂xV (iδ, δTi))
−(µi+1 − µ)

]

≤ δÊ [|∂xV (iδ, δTi)|]
(
|µi+1 − µ|+ |µi+1 − µ|

)
.
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Since ∂xV is uniformly α
2 -hölder continuous in t and α-hölder continuous in x on

[0, 1]× R, we have

Ê[|∂xV (iδ, δTi)|] ≤ Ê[|∂xV (iδ, δTi)− ∂xV (0, 0)|] + |∂xV (0, 0)|
≤ C(1 + |iδ|α2 + Ê[|δTi|α]).

Since

Ê[|δTi|α] ≤ Ê[|δTi|] + 1 ≤ sup
i≥1

Ê[|Xi|] + 1,

we claim that there is a constant C1 > 0, such that

Ê[|∂xV (iδ, δTi)|] ≤ C1. (3.6)

Then we obtain

Ê

[
n−1∑

i=0

J i
δ,1

]
≤

n−1∑

i=0

Ê[J i
δ,1] ≤ C1

1

n

n−1∑

i=0

(
|µi+1 − µ|+ |µi+1 − µ|

)
.

In a similar manner as above, we also have

Ê

[
n−1∑

i=0

J i
δ,1

]
≥ −C1

1

n

n−1∑

i=0

(
|µi+1 − µ̄|+ |µi+1 − µ|

)
.

Thus, from the condition (iii), we can obtain

lim
n→∞

Ê

[
n−1∑

i=0

J i
δ,1

]
= 0. (3.7)

Next, we consider
n−1∑
i=0

Ê
[
|J i

δ,2|
]
. According to the condition (i) and (3.6), we have

Ê
[
|J i

δ,2|
]
= Ê[|∂xV (iδ, δTi)(Yi+1 −Xi+1)δ|]
≤ δÊ[|∂xV (iδ, δTi)|]Ê[|Xi+1 − Yi+1|]
≤ δC1Ê[|Xi+1 − Yi+1|].

Then, we obtain
n−1∑

i=0

Ê
[
|J i

δ,2|
]
≤ C1

1

n

n−1∑

i=0

Ê[|Xi+1 − Yi+1|].

By (A1), it follows that

lim
n→∞

n−1∑

i=0

Ê
[
|J i

δ,2|
]
= 0. (3.8)

Finally, we consider
n−1∑
i=0

Ê
[
|Iiδ|
]
. For Iiδ, since both ∂tV and ∂xV are uniformly α

2 -

hölder continuous in t and α-hölder continuous in x on [0, 1]× R, then we have

Ê[|Iiδ|] ≤ Cδ
α

2
+1 + Cδα+1

(
Ê[|Yi+1|α] + Ê[|Yi+1|α+1]

)
.
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It follows that

n−1∑

i=0

Ê
[
|Iiδ|
]
≤ C

(
1

n

)α

2

+ C

(
1

n

)α+1 n−1∑

i=0

(
Ê[|Yi+1|α] + Ê[|Yi+1|α+1]

)
.

For
n−1∑
i=0

Ê[|Yi+1|α]
/
nα+1, we have

n−1∑
i=0

Ê[|Yi+1|α]

nα+1
≤

n−1∑
i=0

Ê[|Xi+1|α]

nα+1
≤

(
sup
i≥1

Ê[|Xi|]
)α

nα
→ 0 as n → ∞.

By (A2), we can obtain

n−1∑

i=0

Ê[|Yi+1|α+1]
/
nα+1 → 0 as n → ∞.

Therefore,

lim
n→∞

n−1∑

i=0

Ê
[
|Iiδ|
]
= 0. (3.9)

From (3.5), (3.7), (3.8) and (3.9), we have

lim
n→∞

Ê[V (1, δTn)] = V (0, 0). (3.10)

Additionally, it is obvious that if ϕ ∈ Cb.Lip(R), i.e., |ϕ(x) − ϕ(y)| ≤ C|x − y|, then
for each t, s ∈ [0, 1 + h] and x ∈ R,

|V (t, x)− V (s, x)| ≤ CẼ[|η|]|t− s| ≤ C|t− s|. (3.11)

In particular,

|V (0, 0)− V (h, 0)| ≤ Ch. (3.12)

Combining (3.4), (3.11), with (3.12), we have

∣∣∣Ê[ϕ(δTn)]− Ẽ[ϕ(η)]
∣∣∣ =

∣∣∣Ê[V (1 + h, δTn)]− V (h, 0)
∣∣∣

≤
∣∣∣Ê[V (1 + h, δTn)]− Ê[V (1, δTn)]

∣∣∣+
∣∣∣Ê[V (1, δTn)]− V (0, 0)

∣∣∣+ |V (0, 0)− V (h, 0)|

≤ 2Ch+
∣∣∣Ê[V (1, δTn)]− V (0, 0)

∣∣∣ .

From (3.10), we obtain

lim sup
n→∞

∣∣∣Ê[ϕ(δTn)]− Ẽ[ϕ(η)]
∣∣∣ ≤ 2Ch.

So (3.2) is proved.
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By the Lipschitz continuity of ϕ and (A1), we have

∣∣∣∣Ê
[
ϕ

(
Sn

n

)]
− Ê

[
ϕ

(
Tn

n

)]∣∣∣∣ ≤ C
1

n

n∑

i=1

Ê [|Xi − Yi|] → 0 as n → ∞.

Thus

lim
n→∞

Ê

[
ϕ

(
Sn

n

)]
= Ẽ[ϕ(η)], ∀ϕ ∈ Cb.Lip(R).

If ϕ is a bounded and uniformly continuous function, we can find a sequence

{ϕk}∞k=1 ∈ Cb.Lip(R) such that ϕk → ϕ uniformly on R. By

∣∣∣∣Ê
[
ϕ

(
Sn

n

)]
− Ẽ [ϕ(η)]

∣∣∣∣ ≤
∣∣∣∣Ê
[
ϕ

(
Sn

n

)]
− Ê

[
ϕk

(
Sn

n

)]∣∣∣∣

+
∣∣∣Ẽ[ϕ(η)]− Ẽ[ϕk(η)]

∣∣∣ +
∣∣∣∣Ê
[
ϕk

(
Sn

n

)]
− Ẽ [ϕk(η)]

∣∣∣∣ ,

we can easily check that (3.1) holds.

Finally, suppose that p ≥ 1, sup
i≥1

Ê[|Xi|p] < ∞, the conditions (i)-(iv) are satisfied,

and ϕ is a continuous function satisfying |ϕ(x)| ≤ C(1+ |x|p). Give a number N > 1.

Define ϕ1(x) = ϕ((−N)∨ (x∧N)) and ϕ2(x) = ϕ(x)−ϕ1(x). Then ϕ1 is a bounded

and uniformly continuous function and

|ϕ2(x)| ≤ 4C|x|pI{|x|>N} ≤ 8C(|x|p −N/2)+.

Define M := N/2, then |ϕ2(x)| ≤ 8C(|x|p −M)+. So

∣∣∣∣Ê
[
ϕ

(
Sn

n

)]
− Ẽ[ϕ(η)]

∣∣∣∣ ≤
∣∣∣∣Ê
[
ϕ1

(
Sn

n

)]
− Ẽ[ϕ1(η)]

∣∣∣∣

+ 8CẼ[(|η|p −M)+] + 8CÊ

[(∣∣∣∣
Sn

n

∣∣∣∣
p

−M

)+
]
.

Since

8CẼ[(|η|p −M)+] ≤ 8C
Ẽ[|η|2p]

M
→ 0 as M → ∞,

then it is sufficient to show that

lim
M→∞

lim sup
n→∞

Ê

[(∣∣∣∣
Sn

n

∣∣∣∣
p

−M

)+
]
= 0. (3.13)

Let Ŷi = Xi − Yi, Ŝn =
n∑

i=1

(Ŷi − Ê[Ŷi]), then

S+
n ≤ T+

n + Ŝ+
n +

n∑

i=1

Ê[|Ŷi|],
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(∣∣∣∣
S+
n

n

∣∣∣∣
p

−M

)+

≤
(
3p−1

∣∣∣∣
T+
n

n

∣∣∣∣
p

−M

)+

+ 3p−1

∣∣∣∣∣
Ŝ+
n

n

∣∣∣∣∣

p

+ 3p−1

(
n∑

i=1

Ê[|Ŷi|]
n

)p

.

By (A1), we have

n∑

i=1

Ê[|Ŷi|]
n

=
1

n

n∑

i=1

Ê[|Xi − Yi|] → 0 as n → ∞.

And by (A3), we have

Ê

[(
3p−1

∣∣∣∣
T+
n

n

∣∣∣∣
p

−M

)+
]
≤ M−132p−2Ê

[∣∣∣∣
Tn

n

∣∣∣∣
2p
]
≤ M−132p−2C2p → 0

as M → ∞.

For Ê[|Ŝ+
n /n|p], applying the Rosenthal’s inequality (2.2), we can obtain the following

result: When p = 1,

Ê

[∣∣∣∣∣
Ŝ+
n

n

∣∣∣∣∣

]
≤ 4

1

n

n∑

i=1

Ê[|Ŷi|] ≤ 4
1

n

n∑

i=1

Ê[(|Xi| − i)+] ≤ 4
1

n

n∑

i=1

sup
k≥1

Ê[(|Xk| − i)+],

so

Ê

[∣∣∣∣∣
Ŝ+
n

n

∣∣∣∣∣

]
→ 0 as n → ∞.

When 1 < p ≤ 2,

Ê[|Ŝ+
n |p] ≤ 22−p

n∑

i=1

Ê[|Ŷi − Ê[Ŷi]|p] ≤ 22−p

n∑

i=1

(
2pÊ[|Ŷi|p]

)

≤ 4

n∑

i=1

Ê[|Xi|p] ≤ 4n · sup
i≥1

Ê[|Xi|p],

so

Ê

[∣∣∣∣∣
Ŝ+
n

n

∣∣∣∣∣

p]
→ 0 as n → ∞.

When p > 2,

Ê[|Ŝ+
n |p] ≤ Cpn

p

2
−1

n∑

i=1

Ê[|Ŷi − Ê[Ŷi]|p] ≤ Cpn
p

2
−1

n∑

i=1

(
2pÊ[|Ŷi|p]

)

≤ 2pCpn
p

2
−1

n∑

i=1

Ê[|Xi|p] ≤ 2pCp

(
sup
i≥1

Ê[|Xi|p]
)
n

p

2 ,

so

Ê

[∣∣∣∣∣
Ŝ+
n

n

∣∣∣∣∣

p]
→ 0 as n → ∞.
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Thus, it follows that

lim
M→∞

lim sup
n→∞

Ê

[(∣∣∣∣
S+
n

n

∣∣∣∣
p

−M

)+
]
= 0.

Similarly,

lim
M→∞

lim sup
n→∞

Ê

[(∣∣∣∣
S−
n

n

∣∣∣∣
p

−M

)+
]
= 0.

So (3.13) is proved and the proof is completed.

Theorem 3.2. Under the conditions of Theorem 3.1, then for any ε > 0,

lim
n→∞

v

(
Sn

n
∈
(
µ− ε, µ+ ε

))
= 1, (3.14)

The proof is similar to the proof of Theorem 3.3 in [10] and so it is omitted.

Theorem 3.3. Let {Xi}∞i=1 be a sequence of random variables in a sublinear expec-

tation space (Ω,H, Ê), satisfy the following conditions:

(i) each Xi+1 is independent to (X1, · · · , Xi), for i = 1, 2, · · · ;
(ii) Ê[Xi] = ε̂[Xi] = 0, Ê[X2

i ] = σ2
i , ε̂[X

2
i ] = σ2

i , where 0 ≤ σi ≤ σi < ∞;

(iii) there are two positive constants σ and σ such that

lim
n→∞

1

n

n∑

i=1

|σ2
i − σ2| = 0, lim

n→∞

1

n

n∑

i=1

|σ2
i − σ2| = 0;

(iv) lim
c→∞

sup
i≥1

Ê[(X2
i − c)+] = 0;

(v) sup
i≥1

Ê[X2
i ] < ∞. Then for any continuous function ϕ satisfying |ϕ(x)| ≤

C(1 + x2), we have

lim
n→∞

Ê

[
ϕ

(
Sn√
n

)]
= Ẽ[ϕ(ξ)], (3.15)

where Sn =
n∑

i=1

Xi, ξ ∼ N (0; [σ2, σ2]) under Ẽ. Furthermore, if p > 2 and sup
i≥1

Ê[|Xi|p]
< ∞, then (3.15) holds for any continuous function ϕ satisfying |ϕ(x)| ≤ C(1+ |x|p).

Proof. Let Yi = (−
√
i) ∨ (Xi ∧

√
i), Tn =

n∑
i=1

Yi. In order to prove Theorem 3.3, we

need the following facts:

(B1) Suppose that the condition (iv) is satisfied, then

n∑
i=1

Ê[|Xi − Yi|]
√
n

→ 0 as n → ∞.
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(B2) Suppose that the conditions (iv) and (v) are satisfied, then

n∑
i=1

Ê[|Yi|α+2]

n
α

2
+1

→ 0 as n → ∞, ∀0 < α < 1.

(B3) Suppose that the conditions (i), (ii), (iv) and (v) are satisfied, then

Ê[|Tn|p] ≤ Cpn
p

2 , ∀p ≥ 2.

For (B1), note that

√
nÊ[|Xn − Yn|] ≤ Ê[(X2

n − n)+] ≤ sup
i≥1

Ê[(X2
i − n)+].

So (B1) holds.

For (B2), note that

Ê[|Yn|α+2] ≤ Ê[X2
n|Yn|α] ≤ Ê[(X2

n − c+ c)|Yn|α]
≤ n

α

2 Ê[(X2
n − c)+] + cÊ[|Yn|α]

≤ n
α

2 Ê[(X2
n − c)+] + c

(
Ê[X2

n]
)α

2

≤ n
α

2 · sup
i≥1

Ê[(X2
i − c)+] + c

(
sup
i≥1

Ê[X2
i ]

)α

2

for any c > 1. By Stolz theorem, (B2) is true.

For (B3), by the Rosenthal’s inequality (2.1) and (B1), we have

Ê[|Tn|p] ≤ Cp

n∑

i=1

Ê[|Yi|p] + Cp

(
n∑

i=1

Ê[Y 2
i ]

) p

2

+ Cp

(
n∑

i=1

[
(Ê[Yi])

+ + (Ê[−Yi])
+
])p

≤ Cpn
p

2
−1

n∑

i=1

Ê[X2
i ] + Cp

(
n∑

i=1

Ê[X2
i ]

) p

2

+ Cp

(
n∑

i=1

2Ê[|Xi − Yi|]
)p

≤ Cpn
p

2
−1 · n · sup

i≥1
Ê[X2

i ] + Cp

(
n · sup

i≥1
Ê[X2

i ]

) p

2

+ Cp

(
n∑

i=1

2Ê[|Xi − Yi|]
)p

≤ Cpn
p

2 .

So (B3) is true.

First, we show that

lim
n→∞

Ê

[
ϕ

(
Tn√
n

)]
= Ẽ[ϕ(ξ)], ∀ϕ ∈ Cb.Lip(R). (3.16)
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Now, for a small but fixed h > 0, let V be the unique viscosity solution of the following

equation:

∂tV +G(∂2
xxV ) = 0, (t, x) ∈ [0, 1 + h]× R, V |t=1+h = ϕ(x), (3.17)

where G(α) := 1
2 (σ

2α+−σ2α−). According to the definition of G-normal distribution,

we have

V (t, x) =Ẽ
[
ϕ
(
x+

√
1 + h− tξ

)]
,

V (h, 0) =Ẽ[ϕ(ξ)],

V (1 + h, x) =ϕ(x).

(3.18)

Since (3.17) is a uniformly parabolic PDE, by the interior regularity of V , we have

‖V ‖
C

1+α

2
,2+α([0,1]×R)

< ∞, for some α ∈ (0, 1).

Let δ = 1
n
, T0 = 0, then

V (1,
√
δTn)− V (0, 0) =

n−1∑

i=0

{
V ((i+ 1)δ,

√
δTi+1)− V (iδ,

√
δTi)

}

=

n−1∑

i=0

{ [
V ((i+ 1)δ,

√
δTi+1)− V (iδ,

√
δTi+1)

]

+
[
V (iδ,

√
δTi+1)− V (iδ,

√
δTi)

]}

=
n−1∑

i=0

{
Iiδ + J i

δ

}
,

with, by Taylor’s expansion,

J i
δ = ∂tV (iδ,

√
δTi)δ +

1

2
∂2
xxV (iδ,

√
δTi)Y

2
i+1δ + ∂xV (iδ,

√
δTi)Yi+1

√
δ

=

(
∂tV (iδ,

√
δTi)δ +

1

2
∂2
xxV (iδ,

√
δTi)X

2
i+1δ + ∂xV (iδ,

√
δTi)Xi+1

√
δ

)

+

(
1

2
∂2
xxV (iδ,

√
δTi)(Y

2
i+1 −X2

i+1)δ + ∂xV (iδ,
√
δTi)(Yi+1 −Xi+1)

√
δ

)

= J i
δ,1 + J i

δ,2,

Iiδ =

∫ 1

0

[
∂tV ((i+ β)δ,

√
δTi+1)− ∂tV (iδ,

√
δTi+1)

]
dβδ

+
[
∂tV (iδ,

√
δTi+1)− ∂tV (iδ,

√
δTi)

]
δ

+

∫ 1

0

∫ 1

0

[
∂2
xxV (iδ,

√
δTi + γβYi+1

√
δ)− ∂2

xxV (iδ,
√
δTi)

]
γdβdγY 2

i+1δ.
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Therefore,

Ê

[
n−1∑

i=0

J i
δ,1

]
−

n−1∑

i=0

(
Ê[|J i

δ,2|] + Ê[|Iiδ|]
)
≤ Ê[V (1,

√
δTn)]− V (0, 0)

≤Ê

[
n−1∑

i=0

J i
δ,1

]
+

n−1∑

i=0

(
Ê[|J i

δ,2|] + Ê[|Iiδ|]
)
. (3.19)

For Iiδ, since both ∂tV and ∂2
xxV are uniformly α

2 -hölder continuous in t and α-hölder

continuous in x on [0, 1]× R, then we have

|Iiδ| ≤ Cδ1+
α

2 (1 + |Yi+1|α + |Yi+1|2+α).

From (B2), we have

n−1∑

i=0

Ê
[
|Iiδ|
]
≤ C

(
1

n

)1+α

2
n−1∑

i=0

(
1 + Ê[|Yi+1|α] + Ê[|Yi+1|2+α]

)
→ 0 as n → ∞.

Thus

lim
n→∞

n−1∑

i=0

Ê
[
|Iiδ|
]
= 0. (3.20)

For J i
δ,1, from the conditions (i) and (ii) we have

Ê
[
∂xV (iδ,

√
δTi)Xi+1

√
δ
]
= Ê

[
−∂xV (iδ,

√
δTi)Xi+1

√
δ
]
= 0.

We then combine the above equality with (3.17) as well as the condition (i), it follows

that

Ê[J i
δ,1] = Ê

[
∂tV (iδ,

√
δTi)δ +

1

2
∂2
xxV (iδ,

√
δTi)X

2
i+1δ

]

= Ê
{
∂tV (iδ,

√
δTi)δ +

δ

2

[
(∂2

xxV (iδ,
√
δTi))

+σ2
i+1 − (∂2

xxV (iδ,
√
δTi))

−σ2
i+1

]}

≤ Ê
{
∂tV (iδ,

√
δTi)δ +

δ

2

[
(∂2

xxV (iδ,
√
δTi))

+σ2 − (∂2
xxV (iδ,

√
δTi))

−σ2
]}

+
δ

2
Ê
[
(∂2

xxV (iδ,
√
δTi))

+(σ2
i+1 − σ2)− (∂2

xxV (iδ,
√
δTi))

−(σ2
i+1 − σ2)

]

=
δ

2
Ê
[
(∂2

xxV (iδ,
√
δTi))

+(σ2
i+1 − σ2)− (∂2

xxV (iδ,
√
δTi))

−(σ2
i+1 − σ2)

]

≤ δ

2
Ê
[∣∣∣∂2

xxV (iδ,
√
δTi)

∣∣∣
] (∣∣σ2

i+1 − σ2
∣∣+
∣∣σ2

i+1 − σ2
∣∣) .

Since ∂2
xxV is uniformly α-hölder continuous in x and α

2 -hölder continuous in t on

[0, 1]× R, it follows that

Ê
[∣∣∣∂2

xxV
(
iδ,

√
δTi

)∣∣∣
]
≤
∣∣∂2

xxV (0, 0)
∣∣+ Ê

[∣∣∣∂2
xxV

(
iδ,

√
δTi

)
− ∂2

xxV (0, 0)
∣∣∣
]
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≤ C
(
1 + |iδ|α2 + Ê

[∣∣∣
√
δTi

∣∣∣
α])

≤ C

(
1 + |iδ|α2 +

(
Ê

[∣∣∣
√
δTi

∣∣∣
2
])α

2

)
≤ C

by Hölder’s inequality and (B3). So we have

Ê
[
J i
δ,1

]
≤ Cδ

(∣∣σ2
i+1 − σ2

∣∣+
∣∣σ2

i+1 − σ2
∣∣) .

By the condition (iii), it follows that

Ê

[
n−1∑

i=0

J i
δ,1

]
≤

n−1∑

i=0

Ê
[
J i
δ,1

]
≤ C

1

n

n−1∑

i=0

(∣∣σ2
i+1 − σ2

∣∣+
∣∣σ2

i+1 − σ2
∣∣)→ 0 as n → ∞.

Similarly,

Ê

[
n−1∑

i=0

J i
δ,1

]
≥ −C

1

n

n−1∑

i=0

(∣∣σ2
i+1 − σ2

∣∣+
∣∣σ2

i+1 − σ2
∣∣)→ 0 as n → ∞.

Thus

lim
n→∞

Ê

[
n−1∑

i=0

J i
δ,1

]
= 0. (3.21)

For J i
δ,2, in a similar manner as above, we have

Ê
[∣∣∣∂xV (iδ,

√
δTi)

∣∣∣
]
≤ C.

By the conditions (i), (iv), (B1) and Stolz theorem,

n−1∑

i=0

Ê
[
|J i

δ,2|
]
≤

n−1∑

i=0

{
1

2
Ê
[∣∣∣∂2

xxV (iδ,
√
δTi)

∣∣∣
]
Ê
[∣∣X2

i+1 − Y 2
i+1

∣∣] δ

+Ê
[∣∣∣∂xV (iδ,

√
δTi)

∣∣∣
]
Ê [|Xi+1 − Yi+1|]

√
δ
}

≤C
1

n

n−1∑

i=0

Ê
[(
X2

i+1 − (i+ 1)
)+]

+ C
1√
n

n−1∑

i=0

Ê [|Xi+1 − Yi+1|]

≤C
1

n

n−1∑

i=0

sup
k≥1

Ê
[(
X2

k − (i+ 1)
)+]

+ C
1√
n

n∑

i=1

Ê[|Xi − Yi|] → 0

as n → ∞.

Then combining (3.19), (3.20) and (3.21), it follows that

lim
n→∞

Ê
[
V
(
1,
√
δTn

)]
= V (0, 0). (3.22)

Additionally, it is obvious that if ϕ ∈ Cb.Lip(R), i.e., |ϕ(x) − ϕ(y)| ≤ C|x − y|, then
for each t, s ∈ [0, 1 + h] and x ∈ R,

|V (t, x)− V (s, x)| ≤ CẼ[|ξ|]
√

|t− s| ≤ C
√
|t− s|. (3.23)
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In particular,

|V (0, 0)− V (h, 0)| ≤ C
√
h. (3.24)

Combining (3.18), (3.23), with (3.24), we have
∣∣∣Ê
[
ϕ
(√

δTn

)]
− Ẽ[ϕ(ξ)]

∣∣∣ =
∣∣∣Ê
[
V
(
1 + h,

√
δTn

)]
− V (h, 0)

∣∣∣

≤
∣∣∣Ê
[
V
(
1 + h,

√
δTn

)]
− Ê

[
V
(
1,
√
δTn

)]∣∣∣

+
∣∣∣Ê
[
V
(
1,
√
δTn

)]
− V (0, 0)

∣∣∣+ |V (0, 0)− V (h, 0)|

≤ 2C
√
h+

∣∣∣Ê
[
V
(
1,
√
δTn

)]
− V (0, 0)

∣∣∣ .

From (3.22), we obtain

lim sup
n→∞

∣∣∣Ê
[
ϕ
(√

δTn

)]
− Ẽ[ϕ(ξ)]

∣∣∣ ≤ 2C
√
h.

So (3.16) is proved.

By the Lipschitz continuity of ϕ and (B1), we have

∣∣∣∣Ê
[
ϕ

(
Sn√
n

)]
− Ê

[
ϕ

(
Tn√
n

)]∣∣∣∣ ≤ C
1√
n

n∑

i=1

Ê [|Xi − Yi|] → 0 as n → ∞.

Thus

lim
n→∞

Ê

[
ϕ

(
Sn√
n

)]
= Ẽ[ϕ(ξ)], ∀ϕ ∈ Cb.Lip(R).

The rest of the proof is very similar to that of Theorem 3.5 in [19] and so it is

omitted.

Theorem 3.4. Under the conditions of Theorem 3.3, then if y is a point at which

ṽ is continuous, we have

lim
n→∞

v

(
Sn√
n
≤ y

)
= ṽ(y), (3.25)

and if y is a point at which Ṽ is continuous, we have

lim
n→∞

V

(
Sn√
n
≤ y

)
= Ṽ(y), (3.26)

where ṽ(y) = inf
θ∈Θ

EP

[
I{∫ 1

0
θsdBs≤y}

]
, Ṽ(y) = sup

θ∈Θ
EP

[
I{∫ 1

0
θsdBs≤y}

]
,

{Bt}t≥0 is a 1− dimensional Brownian motion under probability measure P,

Θ := {{θt}t≥0 : θt is Ft-adapted process such that σ ≤ θt ≤ σ} ,
Ft := σ{Bs : 0 ≤ s ≤ t} ∨ N , N is the collection of P -null subsets.

The proof is similar to the proof of Theorem 3.1 in [12] and so it is omitted.
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