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ABSTRACT: Sufficient conditions are given guaranteeing that every solution of

the equation

x′′ + h(t)x′ + ω2x = 0 (h(t) ≥ 0, x ∈ R)

and its derivative tend to zero as t → ∞. The results are applicable in the general

case 0 ≤ 0 ≤ h(t) < ∞, i.e., conditions h(t) ≥const.> 0 and h(t) ≤const.< ∞

are not required in general. In the first main theorem the damping is controlled on

the whole half-line [0,∞). The second main theorem is devoted to the problem of

the intermittent damping, when conditions are supposed only on the union of non-

overlapping intervals.
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1. INTRODUCTION

Consider the second order linear differential equation

x′′ + h(t)x′ + ω2x = 0 (x ∈ R), (1)

where the damping coefficient h : R+ → R+ is a locally integrable function, R+ :=

[0,∞), and the frequency ω > 0 is constant. We are interested in conditions of the

asymptotic stability of the zero solution (of the equilibrium). In the case of (1) this
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means that every solution x exists in R+ and

lim
t→∞

x(t) = lim
t→∞

x′(t) = 0.

R. A. Smith [16] proved the following important theorems.

Theorem A. Suppose that there exists a constant h > 0 such that

h(t) ≥ h > 0 (t ∈ R+). (2)

If ∫ ∞

0

e−H(t)

∫ t

0

eH(s) ds dt

(
H(t) :=

∫ t

0

h

)
, (3)

then the zero solution of (1) is asymptotically stable.

Theorem B. Suppose that there exists a sequence of intervals {In}∞n=1 such that

∞∑

n=1

mn|In|

(
min

{
|In|;

1

1 +Mn

})2

= ∞, (4)

where

mn := inf
t∈In

h(t), Mn := sup
t∈In

h(t), |In| denotes the length of In.

Then the zero solution of (1) is asymptotically stable.

It is easy to see that condition

h(t) ≤ h <∞ (t ∈ R+) (5)

implies (3). This means that Theorem A is a generalization of the classical theorem of

J. J. Levin and J. A. Nohel [12] saying that conditions (2) and (5) together guarantee

asymptotic stability. Since the appearance of this article a lot of papers have been

published devoted to weakening conditions (2) and (5) (see, e.g., the papers [1, 3, 4,

5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20] and the references therein. If (2) ((5))

is supposed, then we speak about large (small) damping; if neither (2) nor (5) are

supposed, then the damping is called general. As is shown by experiences, to handle

the general damping is essentially more difficult.

Smith [16] also proved that condition (3) is necessary for the asymptotic stability,

so to improve Theorem A is possible only by weakening (2) not requiring the condition

uniformly everywhere. For this reason there were introduced the notions of integral

positivity and weak integral positivity (see [3, 19]).

Definition 1. A locally integrable function h : R+ → R+ is called
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a) integrally positive with parameter δ > 0 (in an abbreviated form IP(δ)) if

lim inf
t→∞

∫ t+δ

t

h > 0; (6)

b) weakly integrally positive with parameters δ > 0 and ∆ ≥ 0 (in an abbreviated

form WIP(δ,∆)) if for every sequence {tn}∞n=1

tn + δ ≤ tn+1 ≤ tn + δ +∆ implies

∞∑

n=1

∫ tn+δ

tn

h = ∞. (7)

If (6) is satisfied for all δ > 0 ((7) is satisfied for all δ > 0 and ∆ ≥ 0), then h is called

integrally positive (IP) (weakly integrally positive (WIP)).

Obviously, property IP is stronger than WIP; e.g., a decreasing function h with

limt→∞ h(t) = 0,
∫∞

0
h = ∞ is WIP, but it is not IP.

In [9] we proved that (2) in Theorem A can be replaced with the condition that

there is a δ ∈ (0, π/ω) such that h is IP(δ), and the constant π/ω is sharp in this

assertion. We also proved that if (5) is satisfied, i.e., for small damping, in Theorem

A condition (2) can be replaced with the requirement that h is WIP(δ,∆) with some

δ ∈ (0, π/ω) and ∆ ≥ 0, and the constant π/ω is sharp again. Recently [6] we

constructed a counterexample showing that Theorem A does not remain true if we

replace (2) with requiring weak integral positivity of h. In the first main theorem

of the present paper we can replace condition (2) in Theorem A with one being

somewhere between the integral positivity and weak integral positivity.

Theorem B is the first result about the problem of stability of the linear oscillators

controlled by intermittent damping. This occurs if the system is positively damped

in time intervals In, but the damping is either switched off or unrestricted at other

times (we know only h(t) ≥ 0 at these times). Our technique in the proof of the first

main result is also suitable to deduce a sufficient condition generalizing theorem B,

which will be our second main result. It will also work when mn = 0. To illustrate

the result here we only mention that it makes possible to replace condition (4) with

the following one: suppose that there exists a κ ∈ (0, 1) such that if Hn ⊂ In is the

union of finite intervals and mes(Hn) ≥ κ|In|, then we have

∞∑

n=1

(
min

{
|In|;

1

1 +Mn

})2 ∫

Hn

h = ∞. (8)

2. LEMMAS

By the new state variable y = x′/ω equation (1) can be rewritten into the system

x′ = ωy, y′ = −ωx− h(t)y. (9)
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On the phase plane x, y we also use the polar coordinates r, ϕ defined by

x = r cosϕ, y = r sinϕ (r > 0, −∞ < ϕ <∞).

In these coordinates system (9) has the form

r′ = −h(t)r sin2 ϕ, (10)

ϕ′ = −ω −
1

2
h(t) sin 2ϕ. (11)

The solution with initial values r(t0) = r0, ϕ(t0) = ϕ0 will be denoted by (r(t), ϕ(t)) =

(r(t; t0, r0, ϕ0), ϕ(t; t0, ϕ0)).

From the proof of Theorem A (see [16, 9]) it is clear that (3) is necessary and

sufficient that limt→∞ r(t) = 0 for all non-oscillatory solutions of (1), so we are

searching for conditions guaranteeing the same property for every oscillatory solution.

The first lemma gives a lower and an upper estimate for the polar angle ϕ(t) before

and after a zero of sinϕ(t), respectively. In the estimate there appears a transform

function of h defined by

h̃(t; t∗) := e−H(t)

∫ t

t∗

eH(s) ds (t∗, t ∈ R+), (12)

which plays an important role in what follows.

Lemma 2. If Tl = Tl(t∗) > 0, Tr = Tr(t∗) > 0 are so small that −π ≤ ϕ(t; t∗, 0) ≤

π/4 on the interval [t∗ − Tl, t∗ + Tr], then

ϕ(t; t∗, 0) ≥ −ω
2̃

π
h(t; t∗) ≥ 0 (t∗ − Tl ≤ t ≤ t∗), (13)

ϕ(t; t∗, 0) ≤ −ωh̃(t; t∗) ≤ 0 (t∗ ≤ t ≤ t∗ + Tr). (14)

Proof. For ψ := 2ϕ equation (11) yields the differential equation

ψ′ = −2ω − h(t) sinψ. (15)

Consider the regions

Dr := {(t, ψ) : t∗ ≤ t ≤ t∗ + Tr,−2π ≤ ψ ≤ 0},

Dl :=
{
(t, ψ) : t∗ − Tl ≤ t ≤ t∗, 0 ≤ ψ ≤

π

2

}
.

Obviously, we have the estimates

− 2ω − h(t) sinψ ≤ −2ω − h(t)ψ ((t, ψ) ∈ Dr),

− 2ω − h(t) sinψ ≤ −2ω − h(t)
2

π
ψ ((t, ψ) ∈ Dl).
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The unique solutions of the initial value problems

u′ = −2ω − h(t)u (u(t∗) = 0; (t, u) ∈ Dr),

u′ = −2ω −
2

π
h(t)u (u(t∗) = 0; (t, u) ∈ Dl)

are

ur(t) := −2ω

∫ t

t∗

e−(H(t)−H(s)) ds (t ≥ t∗),

ul(t) := −2ω

∫ t

t∗

e−
2
π
(H(t)−H(s)) ds (t ≤ t∗),

respectively. Applying the basic theorem of differential inequalities (for example, [2,

Theorem 4.1 in Chapter III]) we get (13) and (14).

The second lemma provide us with a lower estimate for the distances of consecutive

zeros of sinϕ(t) for an oscillatory solution with r(t) 6→ 0 as t→ ∞.

Lemma 3. Let α, ε (0 < α < π/ω, 0 < ε < (ω/4)(π/ω − α)) be given. If there

exists a sequence {(un, vn)}∞n=1 such that

ϕ(vn) ≡ −2ε (mod π), ϕ(un)− ϕ(vn) = −π + 4ε,

0 < un − vn ≤ α, ϕ(un) ≤ ϕ(t) ≤ ϕ(vn) (vn ≤ t ≤ un) (n ∈ N),

then limt→∞ r(t) = 0.

Proof. Integrating (11) we get the inequality

−π + 4ε =

∫ un

vn

ϕ′(t) dt =

∫ un

vn

(−ω − h(t) sinϕ(t) cosϕ(t)) dt

≥ −ω(un − vn)−
π

4ε

∫ un

vn

h(t) sin2 ϕ(t) dt.

Therefore, the decrease of r(t) admits the estimate

ln
r(un)

r(vn)
=

∫ un

vn

r′(t)

r(t)
dt = −

∫ un

vn

h(t) sin2 ϕ(t) dt

≤
4ε

π
(−π + 4ε+ ω(un − vn)) ≤

4εω

π

(
−
(π
ω
− α

)
+

4ε

ω

)
< 0,

whence r(t) → 0 as t→ ∞.

Corollary 4. For an arbitrary solution let {τn} be the increasing sequence of all

zeros of sinϕ(t). If lim infn→∞(τn+1 − τn) < π/ω, then limt→∞ r(t) = 0.



304 L. HATVANI

In what follows, let {τn}∞n=1 denote the increasing sequence of all zeros of sinϕ(t)

corresponding to an oscillatory solution of (9). The third lemma says that ϕ(t)

remains far from 0 (mod π) during [tn, sn] ⊂ [τn, τn+1] uniformly with respect to n,

provided that ϕ(tn) ≡ −2ε, ϕ(sn) ≡ −π+2ε (mod π) with a fixed ε > 0 and r(t) 6→ 0

as t→ ∞.

Lemma 5. If for a fixed ε (0 < ε ≤ π/8) there exists a subsequence {nj}∞j=1 of the

natural numbers and a sequence {(pj , qj)} such that

τnj
≤ qj < pj ≤ τnj+1, ϕ(qj) ≡ −2ε, ϕ(pj) ≡ −ε (mod π),

ϕ(qj) < ϕ(t) < ϕ(pj) (qj < t < pj)

for all j, then limt→∞ r(t) = 0.

Proof. Integrating (11) we get

ε =

∫ pj

qj

ϕ′(t) dt =

∫ pj

qj

(−ω − h(t) sinϕ(t) cosϕ(t)) dt

≤ −ω(pj − qj) + cot ε

∫ pj

qj

h(t) sin2 ϕ(t) dt.

On the other hand, from (10) we have

ln
r(pj)

r(qj)
=

∫ pj

qj

r′(t)

r(t)
dt = −

∫ pj

qj

h(t) sin2 ϕ(t) dt

≤ − (ε+ ω(pj − qj))
1

cot ε
< −

ε

cot ε
< 0,

which means that r(t) → 0 as t→ ∞.

3. DAMPING ON THE WHOLE INTERVAL [0,∞)

Theorem 6. Suppose that the following conditions are satisfied:

(i) ∫ ∞

0

h̃(t; 0) dt =

∫ ∞

0

e−H(t)

∫ t

0

eH(s) ds dt = ∞; (16)

(ii) for a fixed α (π/2ω < α < π/ω) and for an arbitrary sequence

{(τn, tn, sn)} the properties

tn ≥ τn +
1

2

(π
ω
− α

)
, sn ≥ tn + α;

0 < τn+1 − sn ≤
1

2

(π
ω
− α

)
(n ∈ N)

(17)

imply that at least one of the following three divergences holds:
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(a)
∑∞

n=1

∫ tn
τn
h(t)h̃(t; τn)

2 dt = ∞;

(b)
∑∞

n=1

∫ sn
tn
h(t) dt = ∞;

(c)
∑∞

n=1

∫ τn+1

sn
h(t)(τn+1 − t)2 dt = ∞.

Then the zero solution of (1) is asymptotically stable.

Proof. Smith [16] proved that (1) has non-oscillatory solutions not tending to zero

as t→ ∞ if and only if
∫∞

0
h̃(t; 0) dt <∞ (a simple proof can be found in [9]). So we

have to prove only that every oscillatory solution tends to zero. Suppose the contrary,

fix an oscillatory solution with r∞ := limt→∞ r(t) > 0, and denote by {τn}∞n=1 the

increasing sequence of all zeros of sinϕ(t) for this solution. Starting from (10) we will

come to a contradiction proving that

r(t0)− r∞ =

∫ ∞

t0

r(t)h(t) sin2 ϕ(t) dt ≥ r∞

∫ ∞

t0

h(t) sin2 ϕ(t) dt

= r∞

∞∑

n=1

∫ τn+1

τn

h(t) sin2 ϕ(t) dt = ∞.

(18)

Let us fix ε := π/4− αω/4 ≤ π/4− (π/2ω)ω/4 = π/8, and define tn, sn so that

tn := min{t ∈ (τn, τn+1) : ϕ(t)− ϕ(τn) = −2ε},

sn ∈ (τn, τn+1), ϕ(sn)− ϕ(τn+1) = 2ε.
(19)

By (11), fore every n ∈ N such tn, sn exist, they are unique and possess the following

properties:

tn − τn ≥
2ε

ω
=

1

2

(π
ω

− α
)
, τn+1 − sn ≤

2ε

ω
=

1

2

(π
ω
− α

)
(n ∈ N). (20)

On the other hand, by Lemma 3 we know that sn − tn ≥ α for all n large enough.

Therefore, without loss of the generality, we can say that the sequence {(τn, tn, sn)}

possess all the properties (17).

Using the notations introduced in (19) we disintegrate the n’th member of the

sum in (18) into three parts:

∫ τn+1

τn

h(t) sin2 ϕ(t) dt =

∫ tn

τn

. . .+

∫ sn

tn

. . .+

∫ τn+1

sn

. . . =: In1 + In2 + In3 .

Now we estimate these three integrals from below. Applying Lemma 2 we obtain

In1 =

∫ tn

τn

h(t) sin2 ϕ(t) dt ≥
4

π2

∫ tn

τn

h(t)ϕ2(t) dt

≥
4ω2

π2

∫ tn

τn

h(t)h̃(t; τn)
2 dt.
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For the second integral, Lemma 5 yields the inequalities

ϕ(τn)− ε > ϕ(t) > ϕ(τn+1) + ε (tn ≤ t ≤ sn),

from which we obtain

In2 =

∫ sn

tn

h(t) sin2 ϕ(t) dt ≥ sin2 ε

∫ sn

tn

h(t) dt

≥
ω2

4π2

(π
ω
− α

)2 ∫ sn

tn

h.

Finally, from Lemma 2 we get

sin2 ϕ(t) ≥

(
2

π

)2

ϕ2(t) ≥
4ω2

π2

(
2̃

π
h(t; τn+1)

)2

=
4ω2

π2

(∫ τn+1

t

e
2
π
(H(s)−H(t)) ds

)2

≥
4ω2

π2
(τn+1 − t)2

and the third estimate

In3 ≥
4ω2

π2

∫ τn+1

sn

h(t)(τn+1 − t)2 dt.

Summing up we have

∫ τn+1

τn

h(t) sin2 ϕ(t) dt ≥ c1

(∫ tn

τn

h(t)h̃(t; τn)
2 dt

+

∫ sn

tn

h(t) dt+

∫ τn+1

sn

h(t)(τn+1 − t)2 dt

)
;

c1 :=
ω2

4π2
min

{
1;
(π
ω
− α

)}
.

The second condition of the theorem implies (18), that is a contradiction.

Earlier theorems concentrated only on divergence (b). The following question

arises in connection with condition (ii) in Theorem 6: is it possible that (a) or (c) are

satisfied but (b) is not? The answer is affirmative.

Example 7. We consider the damping coefficient

h(t) :=

{
1 if 3iπ − π ≤ t < 3iπ + π,

0 if 3iπ + π ≤ t < 3iπ + 2π (i ∈ N)
(21)

and equation (1) with h defined in (21) and with ω = 1. We show that for an

appropriate sequence {(τn, tn, sn)} and for all α divergence (a) is satisfied but (b)

is not ; moreover, for every α and for every sequence {(τn, tn, sn)} at least one of
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divergences (a), (b), and (c) is satisfied, i.e., the zero solution of (1) with (21) is

asymptotically stable.

In fact, if τn = 3nπ, tn = 3nπ+ π, sn = 3nπ+2π, then for arbitrary α conditions

(17) are satisfied, divergence (a) is also satisfied, but (b) is not. On the other hand,

let α ∈ (π/2, π) arbitrarily fixed and {τn, tn, sn} be arbitrary. We show that at least

one of the divergences (a) and (b) is satisfied. If tn ∈ [3iπ, 3iπ + π + (π − α)/4] for

some i ∈ N, then

∫ tn

τn

h(t)(h̃(t; τn))
2 dt ≥

∫ tn

tn−(π−α)/2

h(t)(h̃(t; τn))
2 dt

≥

∫ (π−α)/4

0

(1 − e−u)2 du =: c2 > 0.

(22)

If tn ≥ (3i + 1)π + (π − α)/4, then sn ≥ (3i + 1)π

+(π − α)/4 + α = (3i+ 2)π − 3(π − α)/4, therefore

sn+1 ≥ (3i+ 2)π −
3

4
(π − α) +

(
1

2
(π − α) + α

)
= (3i+ 3)π

−
5

4
(π − α) ≥ (3i+ 3)π −

5

4

(
π −

π

2

)
= (3i+ 2)π +

3

8
π,

hence ∫ sn+1

tn+1

h(t) dt ≥ min

{
3

8
π;α

}
=

3

8
π =: c3. (23)

This means that

∞∑

m=1

max

{∫ t2m

τ2m

h(t)(h̃(t; τ2m)2 dt;

∫ s2m+1

t2m+1

h(t) dt

}
= ∞,

which implies that either

∞∑

m=1

∫ t2m

τ2m

h(t)(h̃(t; τ2m)2 dt = ∞,

or
∞∑

m=1

∫ s2m+1

t2m+1

h(t) dt = ∞,

so one of divergences (a) and (b) is satisfied.

It can be verified that the same assertions are true for equation (1) with the

unbounded damping coefficient

h(t) :=

{
i if 3iπ − π ≤ t < 3iπ + π,

0 if 3iπ + π ≤ t < 3iπ + 2π (i ∈ N);
(24)

only constants c2 and c3 have to be modified in (22) and (23), respectively. Besides,

one has to take into account that (16) is satisfied if the function (t, s) 7→ exp[−(H(t)−
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H(s))] of two variables is identically zero on triangles {(t, s) ∈ R
2 : (3i + 1)π ≤ t <

(3i+ 2)π, (3i+ 1)π < s < t} (i ∈ N).

It is worth noticing that earlier theorems controlling the damping on the whole

interval [0,∞) cannot be applied to guarantee asymptotic stability for equation (1)

with (21) or (24).

In the first corollary we replace divergence (a) with a more explicit one.

Corollary 8. Suppose that the following conditions are satisfied:

(i) (16) holds.

(ii′) For a fixed α (π/2ω < α < π/ω) and for an arbitrary sequence {(τn, tn, sn)}

introduce the notation Kn := sup[τn,τn+1] h. Assume that the properties

1

2

(π
ω
− α

)
≤ tn − τn ≤ c4Kn + c5; sn − tn ≥ α;

c6
c7 +Kn

≤ τn+1 − sn ≤
1

2

(π
ω

− α
)

(n ∈ N)
(25)

with some positive constants c4, . . . , c7 imply that at least one of the following

three divergences holds:

(a)
∑∞

n=1

(
1

K2
n

∫ tn
τn
h(t)

(
1− e−Kn(t−τn)

)2
dt

)
= ∞;

(b)
∑∞

n=1

∫ sn
tn
h(t) dt = ∞;

(c)
∑∞

n=1

∫ τn+1

sn
h(t)(τn+1 − t)2 dt = ∞.

Then the zero solution of (1) is asymptotically stable.

Proof. By the definitions of h̃ and Kn we have the inequality

h̃(t; τn) =

∫ t

τn

e−(H(t)−H(s)) ds ≥

∫ t

τn

e−Kn(t−s) ds

=
1

Kn
(1 − e−Kn(t−τn)) (t ∈ [τn, tn]),

so the divergence (a) in Corollary 8 implies that in Theorem 6.

Considering again tn, sn defined by (19), integrating (11) and applying the Schwarz

Inequality we obtain

ω(tn − τn)− 2ε ≤

(∫ tn

τn

h

) 1
2
(∫ tn

τn

h(t) sin2 ϕ(t) dt

) 1
2

.

Taking into account equation (11) and the definition of Kn we get the inequality

ω(tn − τn)−

(
ln
r(τ1)

r∞

) 1
2

K
1
2
n (tn − τn)

1
2 − 2ε ≤ 0,
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from which there follows the existence of constants c4, c5 independent of n (depending

only on the solution) such that

tn − τn ≤ c4Kn + c5 (n ∈ N).

On the other hand, integration of (11) yields

−2ε =

∫ τn+1

sn

ϕ′ ≥ −ω −Kn(τn+1 − sn),

whence
c6

c7 +Kn
≤ τn+1 − sn (n ∈ N)

with constants c6, c7 independent of n.

Several earlier results in the literature follow from Theorem 6 and Corollary 8.

For example, if h has the property IP (α) for some α ∈ (0, π/ω) (especially, if (2) is

satisfied), then divergence (b) holds, so Smith’s Theorem A and Theorem 3.1 in [9]

are corollaries of Theorem 6. To deduce further corollaries we need an elementary

lemma.

Lemma 9. If κ > 1, M > 0, then

1

M

(
1− e−M(t−τ)

)
≥

1

κ
(t− τ)

(
τ < t < τ +

lnκ

M

)
.

Proof. The function on the left-hand side is concave and its derivative at t = τ

equals 1. The estimate is true to the right from τ as far as that the derivative of the

function becomes smaller than 1/κ.

The following corollary is about the case of small damping (see [9, Theorem 4.1]).

Corollary 10. Suppose that

(i′) h is bounded on [0,∞);

(ii′′) for every sequence {τn}∞n=1 of the properties

lim infn→∞(τn+1 − τn) ≥ π/ω, τn+1 − τn ≤ 2π/ω (n ∈ N) the divergence

∞∑

n=1

∫ τn+1

τn

h(t) (min{t− τn; τn+1 − t})2 dt = ∞ (26)

holds,

then the zero solution of (1) is asymptotically stable.
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Proof. It is easy to see that if h is bounded, then (16) holds. Suppose (5) and let us

given a sequence {(τn, tn, sn)} satisfying (25). Then there exists a constant ∆ such

that tn − τn ≤ ∆ (n ∈ N). Using Lemma 9 with κ := eh∆, we can estimate further

the left-hand side of divergence (a) in Corollary 8:

∞∑

n=1

(
1

K2
n

∫ tn

τn

h(t)
(
1− e−Kn(t−τn)

)2
dt

)

≥
1

κ2

∞∑

n=1

∫ tn

τn

h(t)(t− τn)
2 dt,

(27)

provided that tn− τn ≤ lnκ/Kn for all n. But lnκ/Kn = h∆/Kn ≥ ∆, and tn− τn ≤

∆ for all n, therefore (27) is true. Consequently, at least one of divergences (a), (b),

(c) in Corollary 8 holds if

∞∑

n=1

∫ τn+1

τn

h(t) (min{1; t− τn; τn+1 − t})2 dt = ∞. (28)

We show that (ii′′) implies (28) for every sequence {τn} of the property lim infn→∞(τn+1−

τn) ≥ π/ω. If τn+1 − τn > 2π/ω for some n, then we add the points τnj := τn + jπ/ω

(j = 1, 2, . . .) until τn+1 − τnj becomes smaller than 2π/ω. If {τ ′m}∞m=1 denote the

modified sequence, then

∞∑

n=1

∫ τn+1

τn

h(t) (min{1; t− τn; τn+1 − t})2 dt

≥
∞∑

m=1

∫ τ ′

m+1

τ ′

m

h(t)
(
min{1; t− τ ′m; τ ′m+1 − t}

)2
dt

≥ min

{
1;
ω2

π2

} ∞∑

m=1

∫ τ ′

m+1

τ ′

m

h(t)
(
min{t− τ ′m; τ ′m+1 − t}

)2
dt

= ∞

because of (i′′).

4. INTERMITTENT DAMPING

The importance of Theorem B can be illustrated by Example 7: condition (4) is obvi-

ously satisfied for both damping coefficients (21) and (24), so Theorem B guarantees

asymptotic stability in both cases. At the same time, earlier theorems in the literature

cannot be applied, even the application of Theorem 6 is not trivial. (Actually, if we

modify definitions (21) and (24) requiring that h(t) = 0 for rational t’s, then Theorem

B cannot be applied either, but Theorem 6 can.) This example shows that it is also

important to generalize and to further develop the idea appearing in Theorem B.
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Theorem 11. Suppose that there exists a sequence of non-overlapping intervals

{In}
∞
n=1 such that |In| ≤ π/2ω (n ∈ N), and for every sequence {ξn ∈ In}

∞∑

n=1

∫

In

h(t)

(
min

{
|t− ξn|;

1

1 +Mn

})2

dt = ∞ (29)

is satisfied, where Mn := supt∈In h(t), and In denotes the closure of In.

Then the zero solution of (1) is asymptotically stable.

Proof. Suppose that the assertion of the theorem is not true, i.e., there exists a

solution x such that r∞ > 0. We will come to a contradiction similarly to (18)

proving that

r(t0)− r∞ =

∫ ∞

t0

r(t)h(t) sin2 ϕ(t) dt ≥ r∞

∞∑

n=1

∫

In

h(t) sin2 ϕ(t) dt

= ∞.

(30)

There are two cases:

Case A: x is oscillatory. Let {τm}∞m=1 be the increasing sequence of all zeros of

sinϕ(t). We choose α = π/2ω and the corresponding ε = π/8, and consider the

sequence {τm, tm, sm} defined by (19) to these numbers. As in the proof of Theorem

6, using Lemmas 2, 3, and 5, we can obtain the estimates

sin2 ϕ(t) ≥





(4ω2/π2)h̃(t; τm)2 if τm ≤ t ≤ tm,

1/16 if tm ≤ t ≤ sm,

(4ε2/π2)(τm+1 − t)2 if sm ≤ t ≤ τm+1.

We consider In = (an, bn) for a fixed n and suppose that a) τj ∈ In for some j ∈ N.

By Lemma 3 tj−1 6∈ In and sj 6∈ In, consequently,

∫ bn

an

h(t) sin2 ϕ(t) dt =

∫ max{an;sj−1}

an

. . .+

∫ τj

max{an;sj−1}

. . .

+

∫ min{bn;τj+1/(1+Mn)}

τj

. . .+

∫ bn

min{bn;τj+1/(1+Mn)}

. . . .
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We apply Lemmas 5, 9 and obtain

∫ bn

an

h(t) sin2 ϕ(t) dt ≥
4ε2

π2

∫ max{an;sj−1}

an

h

+
4ω2

π2

∫ τj

max{an;sj−1}

h(t)(τj − t)2 dt

+
4ω2

9π2

∫ min{bn;τj+1/(1+Mn)}

τj

h(t)(t− τj)
2 dt

+
4ω2

9π2

∫ bn

min{bn;τj+1/(1+Mn)}

h(t)

(
1

1 +Mn

)2

dt

≥ c8

∫ bn

an

h(t)

(
min

{
|t− τj |;

1

1 +Mn

})2

dt,

where

c8 := min

{
1

16
;
4ω2

9π2

}
.

b) If τj ≤ an < tj , then we know that sj > bn. Using h̃(t; τj) ≥ h̃(t; an) and

repeating the computation in a) with an instead of τj we get

∫ bn

an

h(t) sin2 ϕ(t) dt ≥ c8

∫ bn

an

h(t)

(
min

{
t− an;

1

1 +Mn

})2

dt.

c) If τj < tj ≤ an, then we know that τj+1 ≥ bn and

∫ bn

an

h(t) sin2 ϕ(t) dt ≥
4ε2

π2

∫ min{bn;sj}

an

h

+
4ω2

π2

∫ bn

min{bn;sj}

h(t)(bn − t)2 dt

≥ c8

∫ bn

an

h(t)

(
min

{
bn − t;

1

1 +Mn

})2

dt.

Case B: x is non-oscillatory. In this case solution x is monotonous for large t’s,

and x(t) → x∞, y(t) → y∞ as t → ∞. By (10) y∞ = 0. But r∞ > 0, therefore

x∞ 6= 0 and ϕ(t) → 0 (mod π). Equation (11) implies that x(t)y(t) < 0; for the sake

of definiteness we suppose that sinϕ(t) < 0 for t ∈ [t∗,∞). Then there is an integer

m such that

ϕ(t) = mπ + χ(t) (−π < χ(t) ≤ 0, lim
t→∞

χ(t) = 0),

χ′(t) ≤ −ω − h(t)χ(t) (t∗ ≤ t <∞).

The solution of the problem

u′ = −ω − h(t)u, u(t∗) < 0
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admits the estimate

u(t) = e−(H(t)−H(t∗))u(t∗)− ω

∫ t

t∗

e−(H(t)−H(s)) ds

≤ −ωh̃(t; t∗) (t∗ ≤ t <∞).

By the basic theorem of differential inequalities (for example, [2, Theorem 4.1 in

Chapter III]) we get

χ(t) ≤ −ωh̃(t; t∗) (t∗ ≤ t <∞). (31)

If n is so large that an ≥ t∗ and χ(t) > −π/4 for t ≥ an, then the application of (31)

and Lemma 9 yields

∫ bn

an

h(t) sin2 ϕ(t) dt =

∫ bn

an

h(t) sin2 χ(t) dt

≥
4ω2

π2

∫ bn

an

h(t)h̃(t; an)
2 dt

≥
4ω2

π2

∫ bn

an

h(t)

(
1

Mn

(
1− e−Mn(t−an)

))2

dt

≥
4ω2

9π2

(∫ min{bn;an+1/Mn}

an

h(t)(t − an)
2 dt

+

∫ bn

min{bn;an+1/Mn}

h(t)
1

M2
n

dt

)

≥ c8

∫ bn

an

h(t)

(
min{t− an;

1

1 +Mn
}

)2

dt.

Summing up, for the solution x we have obtained the common estimate

∫ bn

an

h(t) sin2 ϕ(t) dt

≥ c8 min
ξ∈In

∫ bn

an

h(t)

(
min{|t− ξ|;

1

1 +Mn

)2

dt.

(32)

By condition (29) estimate (32) implies (30), which is a contradiction.

A sharpened form of Smith’s second theorem follows from Theorem 11.

Corollary 12. Suppose that there exists a sequence {In}∞n=1 of non-overlapping

intervals and a number κ ∈ (0, 1) such that

∞∑

n=1

(
min

{
|In|;

1

1 +Mn

})2 ∫

Hn

h = ∞ (33)
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is satisfied with arbitrary sequence {Hn ⊂ In}, where Hn is a finite union of intervals

and for the measure of Hn there holds mes(Hn) ≥ κ|In|.

Then the zero solution of (1) is asymptotically stable.

Proof. Without loss of the generality we can suppose that |In| ≤ 2ζ (n ∈ N) with an

arbitrary constant ζ. This means that if (33) holds for a sequence {In} and κ, then it

also holds for another sequence {Jm}∞m=1 with the same κ, but |Jm| ≤ 2ζ (m ∈ N). In

fact, to prove this assertion let us observe at first the obvious fact that for arbitrary

{αn, βn, γn} (0 < αn < 1, βn, γn > 0) and δ > 0 the two divergences

∞∑

n=1

min{αn;βn}γn = ∞,

∞∑

n=1

min{αn;βn; δ}γn = ∞

are equivalent.

If |In| > 2ζ, then we divide the interval In into subintervals

In = ∪ln
j=1Inj , ζ ≤ |Inj | ≤ 2ζ, I◦nj ∩ I

◦
nm = ∅ (j 6= m)

(K◦ denotes the inside of interval K) and write the estimate

(
min

{
|In|;

1

1 +Mn
; ζ

})2 ∫

Hn

h =

(
min

{
1

1 +Mn
; ζ

})2

×

×
ln∑

j=1

∫

Hn∩Inj

h ≤
ln∑

j=1

(
min

{
1

1 +Mnj
; |Inj |

})2 ∫

Hnj

h,

where the finite union Hnj of intervals consists of the intersections of elements of Hn

with Inj , supplied with further subintervals of Inj , if necessary, so that mes(Hnj) ≥

κ|Inj | hold. We obtain {Jm} if we exchange all In of the properties |In| > 2ζ with

{Inj}
ln
j=1.

It has remained to prove that if (33) is satisfied for some {In} (|In| ≤ π/2ω) with

some κ, then condition (29) is also satisfied for the same {In}. In fact, defining

γn :=
1− κ

2
min

{
|In|;

1

1 +Mn

}

we can write

∫ bn

an

h(t)

(
min

{
|t− ξn|;

1

1 +Mn

})2

dt

≥ γ2n

∫ ξn−γn

min{an;ξn−γn}

h+ γ2n

∫ bn

min{ξn+γn;bn}

h

=
(1 − κ)2

4

(
min

{
|In|;

1

1 +Mn

})2 ∫

Hn

h
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and

mes(Hn) ≥ |In| − 2γn ≥ |In| − (1− κ)|In| = κ|In|,

which concludes the proof.

Example 13. Consider an arbitrary sequence of non-overlapping intervals {In}∞n=1

and a function h : [0,∞) → [0,∞) such that

|In| =
1

nα
, h(t) = nβ (t ∈ In) (α ∈ R, β ∈ R; n ∈ N). (34)

We are looking for conditions on α, β guaranteeing asymptotic stability. We apply

condition (33) with κ = 1/2.

Case a) 1/nα ≤ 1/(1 + nβ):

Jn :=

(
min

{
1

nα
;

1

1 + nβ

})2 ∫

Hn

nβ dt ≥

(
1

nα

)2
1

2nα
nβ =

1

2
nβ−3α.

To get divergence (33) we demand −(β − 3α) ≤ 1, that is

(α, β) ∈ Qa := {(α, β) ∈ R
2 : 0 < α <

1

2
, 3α− 1 ≤ β < α}.

Case b) 1/nα > 1/(1 + nβ) and β ≥ 0:

Jn ≥

(
1

1 + nβ

)2
1

2nα
nβ ≥

(
1

2nβ

)2
1

2nα
nβ =

1

8
n−(β+α).

Now we require α+ β ≤ 1, i.e.,

(α, β) ∈ Qb := Qb1 ∪Qb2,

Qb1 := {(α, β) ∈ R
2 : α ≥ 0, α ≤ β ≤ −α+ 1},

Qb2 := {(α, β) ∈ R
2 : α ≤ 0, 0 ≤ β ≤ −α+ 1}.

Case c) 1/nα > 1/(1 + nβ) and β < 0:

Jn ≥

(
1

1 + nβ

)2
1

2nα
nβ ≥

1

22
1

2nα
nβ =

1

8
nβ−α.

In order to obtain (33) we assume −(β − α) ≤ 1, i.e.,

(α, β) ∈ Qc := {(α, β) ∈ R
2 : α ≤ 0, α− 1 ≤ β < 0}.

If Q := Qa ∪Qb ∪Qc, then

Q ={(α, β) ∈ R
2 : α ≤ 0, α− 1 ≤ β ≤ −α+ 1}

∪ {(α, β) ∈ R
2 : 0 ≤ α ≤

1

2
, 3α− 1 ≤ β ≤ −α+ 1}.

By Corollary 12 we have proved the following assertion: Let h and {In} be defined by

(34). If (α, β) ∈ Q (see Figure 1), then the zero solution is asymptotically stable.
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Figure 1: The domain of asymptotic stability in Example 13

Remark 14. P. Pucci and J. Serrin [13] have established a theory for global asymp-

totic stability for very general nonlinear second order systems of many degrees of

freedom. Their study was based on a variational inequality and Lyapunov’s second

method. Later on [14] they apply their theory to the problem of intermittent damp-

ing. The specializations of their main results to the damped linear oscillator (see

Corollaries 3 and 4) and our Theorem 11 and Corollary 12 are independent. Beyond

the generality, the advantage of their corollaries in comparison with our results is that

they can use the integral mean of the coefficient h instead of its supremum on inter-

val In. However, we do not demand the positivity of the infimum of the coefficient.

Corollaries 3 and 4 in [14] can be applied to Example 13 only in the case β = 0. If

we modify definition (34) so that h(t) = 0 for rational t’s, then neither Pucci’s and

Serrin’s results nor Smith’s Theorem B can be applied to Example 13, although the

assertion and its proof remains valid by Corollary 12.

Remark 15. The condition κ < 1 in Corollary 12 is sharp. In fact, if h is bounded on

[0,∞) and
∫∞

0
h = ∞, then condition (33) is satisfied with κ = 1 and In = [n− 1, n).

If Corollary 12 were true with κ = 1, then the zero solution would be asymptotically

stable, but this assertion is false [9, 11, 14].
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Remark 16. If In = (an, bn), and one wants to rid Theorem 11 of the condition

|In| = bn − an ≤ π/2ω (n ∈ N), then one has to involve an = ξn,0 < ξn,1 < . . . <

ξn,pn
< ξn,pn+1 = bn into condition (17) instead of ξn in the form |t− ξn,j | so that

ξn,j+1 − ξn,j ≥ α (n = 1, 2, . . . ; j = 1, . . . , pn−1)

with some constant α ∈ [π/2ω, π/ω). The proof follows the line of the proof of

Theorem 11; we leave the details to the reader.
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