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1. INTRODUCTION

The portfolio optimization problem was originally introduced and studied in continuous-

time setting in the seminal papers by Merton, [6] and [7], where an investor has to

choose how to invest between stocks and a money market account so that the ex-

pected utility of investment wealth is maximized. The problem is known to have

explicit solutions when the stocks are assumed to follow the Black-Scholes model

with constant returns and constant volatilities and the utility function modeling the
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investors preference is of certain types, for example, Constant Relative Risk Aversion

(CRRA). Based on these pioneering papers, several authors have introduced more

realistic and complicated market models. Typical examples are stochastic volatility

models. In these models, the assumption of constant returns and constant volatilities

of the Black-Scholes model has been relaxed by allowing the returns and the volatili-

ties of underlying assets to evolve stochastically over time. [8] considered a one-factor

stochastic volatility model where the drift and volatility terms of the asset price is

driven by a diffusion process correlated with the geometric Brownian motion. Using a

viscosity solution technique, she was able to derive explicit expressions for the optimal

value function and for the optimal investment strategy under an appropriate assump-

tion of the model parameters. [5] studied the case of the Heston stochastic volatility

model and derived a closed-form solution for the CRRA utility function under the

assumption that the market price of risk is a linear function of the volatility. [2] pro-

vided an explicit solution within a particular one-factor stochastic volatility model.

A recent paper [4] considered the portfolio optimization problem under an extended

Black-Scholes model where the coefficients of the risky asset are driven by two factors,

one of which is fast mean-reverting and the other is slow varying. There, approximate

solutions to the optimal value function and the optimal strategy for general utility

functions were derived by using asymptotic analysis techniques. Specifically, with a

combination of singular and regular perturbations with respect to the small parame-

ters characterizing the two factors, they showed that the optimal value function and

the optimal strategy could be approximated by the Merton formula plus the correc-

tion terms given in terms of derivatives of the Merton formula itself. In this study,

we extend the results of [5] by adding a fast mean reverting factor to the Heston

model and construct approximate solutions by using asymptotic analysis developed

in [4]. We suppose that an investor manages his or her initial wealth by investing in

a financial market consisting of a risky asset and a risk-free asset. The price Bt of

the risk-free asset at time t follows the ordinary differential equation (ODE):

dBt = rBtdt, (1)

where r > 0 is a constant interest rate. The price St at time t of the risky asset is

described by the following stochastic differential equations (SDEs):

dSt = µ(Yt, Zt)Stdt+ f(Yt)
√
ZtStdW

s
t , (2)

dYt =
Zt

ǫ
β(Yt)dt+

√
Zt

ǫ
α(Yt)dW

y
t , (3)

dZt = κ(θ − Zt)dt+ σ
√
ZtdW

z
t , (4)
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whereW s,W y andW z are correlated Brownian motions in a filtered probability space(
Ω,F ,Ft, P

)
with correlation structure given by

d
〈
W s,W y

〉
t
= ρsydt,

d
〈
W s,W z

〉
t
= ρszdt,

d
〈
W y,W z

〉
t
= ρyzdt.

The correlation coefficients ρsy, ρsz and ρyz are constants in (−1, 1) satisfying ρ2sy +

ρ2sz + ρ2yz − 2ρsyρszρyz < 1, so that the covariance matrix of the Brownian motions is

guaranteed to be positive definite. Here, f(Yt)
√
Zt is the volatility of the underlying

asset driven by two diffusion processes Yt and Zt. The process Zt is a Cox-Ingersoll-

Ross (CIR) process, where θ is the long run mean, κ is the rate of mean reversion, and

σ is the the volatility of volatility. The parameters κ, θ and σ are positive constants

and required to satisfy the Feller condition 2κθ ≥ σ2 to ensure that the process Zt is

always positive starting with Z0 > 0. We will specify assumptions on the coefficients

µ(y, z), f(y), α(y) and β(y) of our model later.

We assume the process Yt given in (3) satisfies

Yt
d
= Y

(1)
Zt
ǫ
t
,

where the notation
d
= means equality in distribution and Y

(1)
t is an ergodic diffusion

process with unique invariant distribution denoted by Φ. Then, by its construction

in (3), Yt also has unique invariant distribution Φ and is a fast mean-reverting pro-

cess when the parameter ǫ is small. We denote the average with respect to Φ for a

measurable function g by

〈g〉 =
∫
g(y)Φ(dy). (5)

We observe that in the case that f(y) = 1 and µ(y, z) = µ(z) is independent of y,

our model reduces the Heston stochastic volatility model considered by [5]. Note also

that when β(y) = m−y and α(y) =
√
2ν, with m and ν constant, the model becomes

the generalized Heston model considered in [3] for an option pricing problem. So,

we may call the stochastic dynamic system (2)-(4) the extended Heston stochastic

volatility model.

At time t ∈ [0, T ], the investor allocates the fraction πt of the wealth in the risky

asset and the rest is invested in the risk-free asset. Then, the wealth process Xt

associated with π(·) satisfies the following SDE:

dXt = Xt

(
r + πt

(
µ(Yt, Zt)− r

))
dt+ πtf(Yt)

√
ZtXtdW

s
t , (6)

with initial wealth X0 = x > 0. We assume that all coefficients of the above SDEs are

Ft–progressively measurable and that the SDEs (2)-(4) and (6) have unique strong
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solutions. As demonstrated in [5], existence and uniqueness of the CIR process Zt in

(4) is ensured by the so-called Yamada and Watanabe conditions. Also, the conditions

∫ T

0

|µ(Yt, Zt)|dt+ E

[∫ T

0

|f2(Yt)Zt|dt
]
<∞,

and ∫ T

0

|πt
(
µ(Yt, Zt)− r

)
|dt+ E

[∫ T

0

|π2
t f

2(Yt)Zt|dt
]
<∞

guarantee existence and uniqueness of strong solutions for (2) and (6), respectively.

The control function π(·) is said to be admissible if it is Ft–progressively measurable,

satisfies

E

[∫ T

0

π2
t f

2(Yt)ZtX
2
t dt

]
<∞,

and is such that the above assumption for all processes is satisfied. We denote the set

of all admissible strategies by A.

As in [5], we assume an unbounded market price of risk in our model. More

specifically, assuming that µ(Yt, Zt) − r = µ0(Yt)Zt, the market price of risk ζt is of

the form

ζt =
µ(Yt, Zt)− r

f(Yt)
√
Zt

=
µ0(Yt)

f(Yt)

√
Zt := λ(Yt)

√
Zt, (7)

where λ(y) is a function that is bounded and bounded away from zero. The particular

form of f(y) does not play an important role in our asymptotic results derived later.

So, we just assume that it is bounded away from zero, that is, there exists a constant

l such that |f(y)| ≥ l > 0.

The main contribution of the present work is that we can treat the portfolio

optimization within the above extended Heston model for the hyperbolic absolute risk

aversion (HARA) utility functions that include the CRRA and the constant absolute

risk aversion (CARA) types. As our market model can be viewed as a fast mean-

reverting correction to the Heston model, the optimization problem will be solved

by using a singular perturbation method. The resulting asymptotic approximations

to the optimal value function and the optimal strategy are obtained in closed-form,

which is our main result extending the study of [5].

The remaining structure of this paper is as follows. In Section 2, we formulate

our portfolio optimization problem and derive the associated HJB equation. In Sec-

tion 3, we employ asymptotic analysis method to obtain an explicit approximation

to the optimal value function for the HARA utility functions. In Section 4, we use

the asymptotic approximation for the optimal value function derived in Section 3 to

compute the first order correction to the optimal investment strategy, which consists

of the leading order and the first order correction terms. And we show that the lead-

ing order term of the optimal strategy can recover the optimal value function up to
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the first order correction. Section 5 concludes and suggests future research plans.

In Appendix, we review some background results on the Heston model and give the

proofs to all theorems.

2. MODEL FORMULATION

In our market model, the investor is assumed to have a utility function U(x) of the

HARA type, which includes power, exponential and logarithm utility functions. For

a fixed parameter ǫ, we denote by Xǫ,π
t , t ∈ [0, T ] the solution of (6) corresponding to

the strategy π(·).
The objective of the investor is to maximize the expected utility from terminal

wealth

sup
π∈A

E [U(Xπ
T )] ,

where U(x) is the HARA utility function defined by

U(x; p, q, η) =
1− p

pq

(
qx

1− p
+ η

)p

(8)

with q > 0, p < 1, p 6= 1 and qx
1−p + η > 0. To this end, we employ stochastic dynamic

programming approach (cf.[1]). We begin by defining the value function corresponding

to the strategy π(·) by

V ǫ,π(t, x, y, z) = E
[
U(Xπ

T )
∣∣Xπ

t = x, Yt = y, Zt = z
]

(9)

for all (t, x, y, z) ∈ [0, T ]×R
3. Here, E[X|A] is the conditional expectation of a random

variable X given an event A. Then, we define the optimal value function V ǫ(t, x, y, z)

by

V ǫ(t, x, y, z) = sup
π∈A

E
[
U(Xπ

T )
∣∣Xπ

t = x, Yt = y, Zt = z
]
.

Therefore, the associated Hamilton-Jacobi-Bellman (HJB) equation for V ǫ is given

by

V ǫ
t +

z

ǫ
L0V

ǫ + rxV ǫ
x + κ(θ − z)V ǫ

z +
1

2
σ2zV ǫ

zz

+
1√
ǫ
ρyzσα(y)zV

ǫ
yz + sup

π

[
1

2
π2f2(y)zx2V ǫ

xx

+πzx

(
µ0(y)V

ǫ
x + ρszσf(y)V

ǫ
xz +

1√
ǫ
ρsyα(y)f(y)V

ǫ
xy

)]
= 0, (10)

for t ∈ [0, T ), x ∈ R
+, y ∈ R and z ∈ R

+, with the terminal condition

V ǫ(T, x, y, z) = U(x). (11)
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Here, L0 is the infinitesimal operator of the process Y (1) defined by

L0 =
1

2
α2(y)

∂2

∂y2
+ β(y)

∂

∂y
. (12)

As π appears in (10) as a quadratic expression, the maximizer, known as the optimal

strategy, is given in the following feedback form:

π∗(t, x, y, z) = −
λ(y)V ǫ

x + ρszσV
ǫ
xz +

1√
ǫ
ρsyα(y)V

ǫ
xy

f(y)xV ǫ
xx

. (13)

Substituting this optimal strategy into (10) yields

V ǫ
t +

z

ǫ
L0V

ǫ + rxV ǫ
x + κ(θ − z)V ǫ

z +
1

2
σ2zV ǫ

zz +
1√
ǫ
ρyzσα(y)zV

ǫ
yz

−
z
(
λ(y)V ǫ

x + ρszσV
ǫ
xz +

1√
ǫ
ρsyα(y)V

ǫ
xy

)2

2V ǫ
xx

= 0. (14)

Assumption 1. We assume that the optimal value function V ǫ(t, x, y, z) is strictly

increasing, strictly concave in x for each t ∈ [0, T ), y ∈ R and z ∈ R
+, and is suffi-

ciently smooth on the domain [0, T ] × R
+ × R × R

+. We also assume that it is the

unique solution for the HJB equation (10) with terminal condition (11).

We note that for small ǫ the fully nonlinear PDE (14) is a singular perturba-

tion around the portfolio optimization problem under the Heston model with an

unbounded market price of risk considered in [5]. Hence, it is difficult to obtain the

optimal value function either analytically or numerically in general setting. Instead,

we will employ an asymptotic analysis as developed in [4] to construct an approximate

solution as shown in the following section.

3. ASYMPTOTIC ANALYSIS

We now perform asymptotic analysis as developed in [4] to obtain an approximation

to the value function satisfying (14) with terminal condition (11). We begin by

expanding the optimal value function in powers of
√
ǫ:

V ǫ = V (0) +
√
ǫV (1) + ǫV (2) + · · · . (15)

Substituting the expansion (15) into (14) and grouping terms in successive powers of

ǫ, at the terms in ǫ−1 we have

zL0V
(0) − 1

2
ρ2syα

2(y)z

(
V

(0)
xy

)2

V
(0)
xx

= 0. (16)
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Since all terms of the operator L0 in (12) take derivatives in y, we choose V (0) to be

independent of y so that the equation (16) is satisfied. It follows from this choice that

V
(0)
y = 0, and then the expansion of (14) up to the order

√
ǫ is given by

V
(0)
t +

√
ǫV

(1)
t + zL0

( 1√
ǫ
V (1) + V (2) +

√
ǫV (3)

)

+rx
(
V (0)
x +

√
ǫV (1)

x

)
+ κ(θ − z)

(
V (0)
z +

√
ǫV (1)

z

)

+
1

2
σ2z

(
V (0)
zz +

√
ǫV (1)

zz

)
+ ρyzσα(y)z

(
V (1)
yz +

√
ǫV (2)

yz

)

−z
(
λ(y)

(
V (0)
x +

√
ǫV (1)

x

)
+ ρszσ

(
V (0)
xz +

√
ǫV (1)

xz

)

+ρsyα(y)
(
V (1)
xy +

√
ǫV (2)

xy

))2
1

2V
(0)
xx

(
1−

√
ǫ
V

(1)
xx

V
(0)
xx

)
+ . . . = 0, (17)

Hence, we see from (17) that the only one term in ǫ−
1
2 leads to

L0V
(1) = 0. (18)

By the definition of L0, V
(1) must be independent of y (otherwise, V (1) would grow

as much as ey
2/2 as y → ∞). Using the fact that V (0) and V (1) are independent of y,

the constant terms in (17) lead to

V
(0)
t + zL0V

(2) + rxV (0)
x + κ(θ − z)V (0)

z +
1

2
σ2zV (0)

zz

−
z
(
λ(y)V

(0)
x + ρszσV

(0)
xz

)2

2V
(0)
xx

= 0. (19)

Viewing (19) as a Poisson equation for V (2) in y, the centering condition on the source

term is given by
〈
V

(0)
t + rxV (0)

x + κ(θ − z)V (0)
z +

1

2
σ2zV (0)

zz

−
z
(
λ(y)V

(0)
x + ρszσV

(0)
xz

)2

2V
(0)
xx

〉
= 0, (20)

where
〈
·
〉
is the averaging operator defined in (5). Then it follows that

V
(0)
t + rxV (0)

x + κ(θ − z)V (0)
z +

1

2
σ2zV (0)

zz − 1

2
λ̃2z

(
V

(0)
x

)2

V
(0)
xx

−ρszσλ̄z
V

(0)
x V 0

zx

V
(0)
xx

− 1

2
ρ2szσ

2z

(
V

(0)
zx

)2

V
(0)
xx

= 0, (21)
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where we used the fact that V (0) is independent of y and the notation λ̄ = 〈λ〉 and

λ̃ =
√〈

λ2
〉
. From (15), the terminal condition for (21) is given as

V (0)(T, x, z) = U(x). (22)

Observe that when λ(y) = λ, a constant, the nonlinear PDE (21) is the HJB

equation corresponding to the Heston model studied by [5], where its solution is

reviewed in Appendix A. There, explicit solutions for the HARA utility functions

(including the power and the exponential utility functions) are derived. We recall

that [5] derived explicit solutions for only the power utility function.

The following theorem contains the explicit formula of V (0) that satisfies the PDE

(21) with terminal condition (22) for the HARA utility function, where its proof is

given in a similar way as in Appendix A.

Theorem 2. For the HARA utility function U(x) given in (8), the PDE (21) with

the terminal condition (22) has an explicit solution

V (0)(t, x, z) =
1− p

pq

( q

1− p
xer(T−t) + η

)p
eA(t)+B(t)z, (23)

where the functions A(t) and B(t) are given as in the following cases:

• Case 1: ∆ > 0.

A(t) =
κθ

σ2
(
1 + Γρ2sz

)
((

κ− Γρszσλ̄+
√
∆
)
(T − t)

−2 ln

(
1− ge(T−t)

√
∆

1− g

))
, (24)

B(t) =
κ− Γρszσλ̄+

√
∆

σ2
(
1 + Γρ2sz

)
(

1− e
√
∆(T−t)

1− ge
√
∆(T−t)

)
. (25)

• Case 2: ∆ = 0 and TK + 1 > 0.

A(t) =
κθ

σ2 (1 + Γρ2sz)

(
2K(T − t)

−2 ln (1 +K(T − t))
)
, (26)

B(t) =
2K2

σ2
(
1 + Γρ2sz

)
(

T − t

1 +K(T − t)

)
. (27)

Here, we define ∆, g,K and Γ by

∆ = κ2 − Γ(2κρszσλ̄+ σ2λ̃2) + Γ2ρ2szσ
2
(
λ̄2 − λ̃2

)
,
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g =
κ− Γρszσλ̄+

√
∆

κ− Γρszσλ̄−
√
∆
,

K =
1

2

(
κ− Γρszσλ̄

)
,

Γ =
p

1− p
. (28)

Remark 3. [(1).]

1. We can easily see from (23) that V (0) satisfies

V (0)
z (t, x, z) = B(t)V (0)(t, x, z) (29)

for all (t, x, z) ∈ [0, T ] × R
+ × R

+. This relation leads to the possibility to

explicitly derive the first order correction term V (1) in terms of V (0), which is

the main result of this paper.

2. From (23), we observe that the ratio
V (0)
x

V
(0)
xx

does not depend on z, and so we

denote

R(t, x) = −V
(0)
x (t, x, z)

V
(0)
xx (t, x, z)

. (30)

Before continuing our asymptotic analysis, we define the differential operators Dj

by

Dj = Rj(t, x)
∂j

∂xj
, j = 1, 2, . . . , (31)

and the linear operator Lt,x,z(λ1, λ2) by

Lt,x,z(λ1, λ2) =
∂

∂t
+ rx

∂

∂x
+ κ(θ − z)

∂

∂z
+

1

2
σ2z

∂2

∂z2

+
(
λ21 + ρszσλ2B(t)

)
zD1

+
1

2

(
λ21 + 2ρszσλ2B(t) + ρ2szσ

2B2(t)
)
zD2

+ρszσ (λ2 + ρszσB(t)) zD1
∂

∂z
. (32)

Then, by using of (29) direct computation shows that the equation (21) can be written

as

Lt,x,z

(
λ̃, λ̄

)
V (0) = 0. (33)

Similarly, we can rewrite (19) as

zL0V
(2) + Lt,x,z

(
λ(y), λ(y)

)
V (0) = 0. (34)

Then it follows from (33) and (34) that

L0V
(2) = −1

z

(
Lt,x,z

(
λ(y), λ(y)

)
− Lt,x,z

(
λ̃, λ̄

))
V (0). (35)
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Hence, up to a constant in y, we choose

V (2) = −1

z
L−1
0

(
Lt,x,z

(
λ(y), λ(y)

)
− Lt,x,z

(
λ̃, λ̄

))
V (0), (36)

where L−1
0 is the inverse operator of L0.

Now, we proceed asymptotic analysis to derive the first order term V (1). By using

(29), the terms in
√
ǫ of the expanded PDE (17) lead to

zL0V
(3) + V

(1)
t + rxV (0)

x + κ(θ − z)V (1)
z +

1

2
σ2zV (1)

zz

+ρyzσα(y)zV
(2)
yz +

z

2V
(0)
xx

[
(λ(y) + ρszσB(t))

2
(
V (0)
x

)2 V (1)
xx

V
(0)
xx

−2 (λ(y) + ρszσB(t))V (0)
x

(
λ(y)V (1)

x + ρszσV
(1)
xz

+ρsyα(y)V
(2)
xy

)]
= 0. (37)

Then using (30) and (31), we can write (37) as

zL0V
(3) + Lt,x,z

(
λ(y), λ(y)

)
V (1) + zLx,y,zV

(2) = 0, (38)

where the operator Lx,y,z is defined by

Lx,y,z = ρyzσα(y)
∂2

∂y∂z
+ ρsyα(y)

(
λ(y) + ρszσB(t)

)
R

∂2

∂x∂y
. (39)

Viewing (38) as a Poisson equation for V (3) in y, the centering condition requires that

〈
Lt,x,z(λ(y), λ(y))V

(1) + zLx,y,zV
(2)
〉
= 0.

Since V (1) does not depend on y, the equation above can written as

Lt,x,z

(
λ̃, λ̄

)
V (1) = −z

〈
Lx,y,zV

(2)
〉
. (40)

Substituting V (2), given by (36) , into this equation yields

Lt,x,z(λ̃, λ̄)V
(1) = AV (0), (41)

where A := z
〈
Lx,y,z

1
zL

−1
0

(
Lt,x,z(λ(y), λ(y))− Lt,x,z(λ̃, λ̄)

)〉
.

Now, we explicitly compute the source term of (41). To do this, we introduce two

functions φ and ψ that satisfy the following Poisson equations

L0φ(y) =
1

2

(
λ2(y)− λ̃2

)
, (42)

L0ψ(y) = λ(y)− λ̄. (43)
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By observing from (23) that D1V
(0) = ΓV (0), where Γ is defined in (28), we have

AV (0) = z
〈
Lx,y,z

1

z
L−1
0

(
1

2

(
λ2(y)− λ̃2

)

+ρszσB(t)
(
λ(y)− λ̄

))
zD1V

(0)
〉

= zΓ
〈
Lx,y,zφ(y)V

(0)
〉
+ ρszσB(t)zΓ

〈
Lx,y,zψ(y)V

(0)
〉

= z
(
ρsyΓ

2F3 + σΓ (ρyzF1 + ρsyρszΓ(F1 + F4))B(t)

+ρszσ
2Γ
(
ρyz + ρsyρszΓ

)
F2B

2(t)
)
V (0), (44)

where the constants Fi are defined by

F1 =
〈
αφ′
〉
, (45)

F2 =
〈
αψ′〉, (46)

F3 =
〈
αλφ′

〉
, (47)

F4 =
〈
αλψ′〉. (48)

From the expansion (15), the PDE (41) has the terminal condition

V (1)(T, x, z) = 0. (49)

Up to now, we have shown that the first order term V (1) satisfies the linear

PDE (41) with the terminal condition (49). In the following theorem, we derive

an explicit expression for V (1) in terms of V (0) for the first time, which is the main

result of this study.

Theorem 4. The linear PDE (41) with terminal condition (49) has a solution of

the form

V (1)(t, x, z) = (κθg1(t) + g2(t)z)V
(0)(t, x, z), (50)

where V (0) is given in Theorem 2, and g1(t) and g2(t) are defined in the following

cases:

• Case 1: ∆ > 0.

g1(t) = −
(
c0J0(t) + c1J1(t) + c2J2(t)

)
, (51)

g2(t) = −
(
c0I0(t) + c1I1(t) + c2I2(t)

)
, (52)

I0(t) =
−1 +

(
1− 2g

√
∆(T − t)− g2

)
e
√
∆(T−t) + g2e2

√
∆(T−t)

√
∆
(
1− ge

√
∆(T−t)

)2 , (53)

I1(t) =
−1 +

(
1− (1 + g)

√
∆(T − t)− g

)
e
√
∆(T−t) + ge2

√
∆(T−t)

√
∆
(
1− ge

√
∆(T−t)

)2 , (54)
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I2(t) =
−1− 2

√
∆(T − t)e

√
∆(T−t) + e2

√
∆(T−t)

√
∆
(
1− ge

√
∆(T−t)

)2 , (55)

J0(t) = −1 + g +
√
∆(T − t)−

(
1 + g −

√
∆g(T − t)

)
e
√
∆(T−t)

∆
(
1− ge

√
∆(T−t)

) , (56)

J1(t) = −2 +
√
∆(T − t)−

(
2−

√
∆(T − t)

)
e
√
∆(T−t)

∆
(
1− ge

√
∆(T−t)

) , (57)

J2(t) = −1 + g +
√
∆g(T − t)−

(
1 + g − (2− g)

√
∆g(T − t)

)
e
√
∆(T−t)

∆g
(
1− ge

√
∆(T−t)

)

+
(1− g)2

∆g2
ln

(
1− ge

√
∆(T−t)

1− g

)
, (58)

c0 = ρsyΓ
2F3, (59)

c1 = σΓ
(
ρyzF1 + ρsyρszΓ(F1 + F4)

)(κ− Γρszσλ̄+
√
∆

σ2
(
1 + Γρ2sz

)
)
, (60)

c2 = ρszσ
2Γ
(
ρyz + ρsyρszΓ

)
F2

(
κ− Γρszσλ̄+

√
∆

σ2
(
1 + Γρ2sz

)
)2

. (61)

• Case 2: ∆ = 0 and TK + 1 > 0.

g1(t) = −
(
c̄0J̄0(t) + c̄1J̄1(t) + c̄2J̄2(t)

)
, (62)

g2(t) = −
(
c̄0Ī0(t) + c̄1Ī1(t) + c̄2Ī2(t)

)
, (63)

Ī0(t) =
1

(
1 +K(T − t)

)2
(
(T − t) +K(T − t)2 +

K2

3
(T − t)3

)
, (64)

Ī1(t) =
1

(
1 +K(T − t)

)2
(1
2
(T − t)2 +

K

3
(T − t)3

)
, (65)

Ī2(t) =
(T − t)3

3
(
1 +K(T − t)

)2 , (66)

J̄0(t) =
(T − t)2(3 +K(T − t))

6
(
1 +K(T − t)

) , (67)

J̄1(t) =
(T − t)3

6
(
1 +K(T − t)

) , (68)

J̄2(t) =
−6(T − t)− 3K(T − t)2 +K2(T − t)3

6K3
(
1 +K(T − t)

) +
1

K4
ln
(
1 +K(T − t)

)
,

(69)

c̄0 = ρsyΓ
2F3, (70)
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c̄1 = σΓ
(
ρyzF1 + ρsyρszΓ(F1 + F4)

) (κ− Γρszσλ̄
)2

2σ2
(
1 + Γρ2sz

) , (71)

c̄2 = ρszσ
2Γ
(
ρyz + ρsyρszΓ

)
F2

((
κ− Γρszσλ̄

)2

2σ2
(
1 + Γρ2sz

)
)2

. (72)

Here, F1, F2, F3 and F4 are given by (45),(46),(47) and (48), respectively. ∆, g,K

and Γ are defined as in Theorem 2.

Proof. See Appendix B.

4. OPTIMAL STRATEGY

Since we have derived the first two terms V (0) and V (1) for the optimal value function

in the previous section, we can proceed to derive an asymptotic approximation to the

optimal strategy π∗ given by (13). Like the case of the optimal value function, we

look for the optimal strategy π∗ of the form

π∗ = π∗(0) +
√
ǫπ∗(1) + ǫπ∗(2) + · · · , (73)

and only the expressions for π∗(0) and π∗(1) will be derived.

Substituting the expansion (15) for V ǫ into (13) gives

π∗ = −
[
λ(y)

(
V (0)
x +

√
ǫV (1)

x

)
+ ρszσ

(
V (0)
xz +

√
ǫV (1)

xz

)

+
√
ǫρsyα(y)V

(2)
xy

]
1

f(y)xV
(0)
xx

(
1−

√
ǫ
V

(1)
xx

V
(0)
xx

)
+ · · ·

= (λ(y) + ρszσB(t))
R(t, x)

f(y)x

+

√
ǫ

f(y)xV
(0)
x

[
(λ(y) + ρszσB(t))D2V

(1) + λ(y)D1V
(1)

+ρszσD1V
(1)
z − ρsyα(y)

(
φ′(y)

+ρszσB(t)ψ′(y)
)
D2

1V
(0)

]
+ · · · . (74)

Here, we have used the fact that V
(0)
z = B(t)V (0). Using the explicit expressions

of V (0) and V (1) given respectively in Theorem 2 and Theorem 4 and the fact that

D2V
(0) = −D1V

(0), we have the following asymptotic result for the optimal strategy.
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Theorem 5. The first order correction of the optimal strategy π∗(t, x, y, z) is

π̃∗ = π∗(0) +
√
ǫπ∗(1),

where

π∗(0) =
1

qf(y)
(λ(y) + ρszσB(t))

(
q

1− p
+
ηer(t−T )

x

)
, (75)

π∗(1) =
1

qf(y)
(ρszσg2(t)− Γρsyα(y) (φ

′(y) + ρszσB(t)ψ′(y)))

(
q

1− p
+
ηer(t−T )

x

)
.

Now, we claim that the leading order term of the optimal strategy can recover the

optimal value function up to the first order correction as given in following theorem.

Theorem 6. The suboptimal strategy π∗(0) given by (75) recovers the approximation

up to the first order,

V (0) +
√
ǫV (1),

of the optimal value function V (ǫ)(t, x, y, z) given in Section 3. More specifically, if

we denote V ǫ,π∗(0)

the value function corresponding to the strategy π∗(0) and assume

that it has expansion

V ǫ,π∗(0)

= V π∗(0),(0) +
√
ǫV π∗(0),(1) + ǫV π∗(0),(2) + · · · ,

then it follows that

V π∗(0),(0) = V (0), and V π∗(0),(1) = V (1),

where V (0) and V (1) are defined in Theorem 2 and Theorem 4, respectively.

Proof. See Appendix C.

5. CONCLUSION

In this paper, we studied the optimization problem under an extended Heston model

in which a fast mean-reverting volatility factor is added on top of the CIR process that

drives the volatility in the pure Heston stochastic volatility model. Using asymptotic

analysis, we were able to derive explicit approximations for the optimal value function

and the optimal investment strategy up to the first order correction term for the

HARA utility functions. This study extends the results of [5] in the sense that the

Heston model is brought into a multi-scale model. It also extends the results of [4]

as the Black-Scholes model is replaced by the Heston model in the case of the HARA

utility functions.



HESTON’S STOCHASTIC VOLATILITY MODEL 345

The accuracy of our asymptotic approximation will be treated in a future work,

which is in preparation. Another research plan is to consider the same problem under

a more general model in which one additional slow varying factor of volatility is

incorporated to the current market model.

A. A PORTFOLIO PROBLEM UNDER HESTON MODEL

In order to continue our asymptotic analysis in Section 3, we recall some basic results

of the portfolio problem under the Heston stochastic volatility model, which is the

case that f(y) = 1 and µ(y, z) = µ(z) is independent of y in our model (2)-(4),

and was studied by [5] for the case of power utility functions. Here, we consider the

HARA utility functions U(x) defined in (8), which also cover the case of power and

exponential utility functions.

In this case, the optimal strategy, denoted by π∗
H(t, x, z), is given by

π∗
H(t, x, z) = −λV

H
x + ρszσV

H
xz

xV H
xx

, (76)

where V H(t, x, z) is the corresponding optimal value function satisfying the following

PDE

V H
t + rxV H

x + κ(θ − z)V H
z +

1

2
σ2zV H

zz −
z
(
λV H

x + ρszσV
H
xz

)2

2V H
xx

= 0, (77)

V H(T, x, z) = U(x). (78)

We suppose that the solution V H to the nonlinear PDE problem (77)-(78) is of the

form

V H(t, x, z) =
1− p

pq

( q

1− p
xa(t) + η

)p
h(t, z),

with terminal conditions a(T ) = 1 and h(T, z) = 1. Substituting this solution into

(77) yields

1− p

pq

( q

1− p
xa(t) + η

)p
(
ht + κ(θ − z)hz +

1

2
σ2zhzz +

p

1− p

z(λh+ ρszσhz)
2

2h

)

+
( q

1− p
xa(t) + η

)p−1(
at + ra(t)

)
xh = 0. (79)

We can split this equation into two equations

at + ra(t) = 0, (80)

ht + κ(θ − z)hz +
1

2
σ2zhzz +

p

1− p

z(λh+ ρszσhz)
2

2h
= 0. (81)
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Taking into account the terminal condition a(T ) = 1, the solution of (80) is given by

a(t) = er(T−t).

We assume that the PDE (81) with terminal condition h(T, z) = 1 has a solution of

the form

h(t, z) = eA(t)+zB(t), (82)

where A(T ) = 0 and B(T ) = 0. Plugging (82) into (81) leads to

At +Btz + κ(θ − z)B(t) +
1

2
σ2zB2(t) +

p

1− p

z
(
λ+ ρszσB(t)

)2

2
= 0.

This equation is separable, and we can split it into the following ODEs

At + κθB(t) = 0, (83)

A(T ) = 0, (84)

Bt +
σ2

2

(
1 +

p

1− p
ρ2sz

)
B2(t) +

( p

1− p
ρszσλ− κ

)
B(t) +

pλ2

2(1− p)
= 0, (85)

B(T ) = 0. (86)

Note that σ2

2

(
1 + p

1−pρ
2
sz

)
> 0 since p < 1. Then, the equations (85)-(86) can be

solved explicitly as follows. Let

∆H = κ2 − p

1− p
(2κρszσλ+ σ2λ2),

gH =
κ− p

1−pρszσλ+
√
∆H

κ− p
1−pρszσλ−

√
∆H

,

KH =
1

2

(
κ− p

1− p
ρszσλ

)
.

Then, we have

• Case 1: ∆H > 0

(
or, λ < κ

σ

(
− ρsz +

√
ρ2sz +

1−p
p

))
.

A(t) =
κθ

σ2
(
1 + p

1−pρ
2
sz

)
((

κ− p

1− p
ρszσλ+

√
∆H

)
(T − t)

−2 ln

(
1− gHe

(T−t)
√
∆H

1− gH

))
,

B(t) =
κ− p

1−pρszσλ+
√
∆H

σ2
(
1 + p

1−pρ
2
sz

)
(

1− e
√
∆H(T−t)

1− gHe
√
∆H(T−t)

)
.
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• Case 2: ∆H = 0

(
or, λ = κ

σ

(
− ρsz +

√
ρ2sz +

1−p
p

))
and TKH + 1 > 0.

A(t) =
κθ

σ2
(
1 + p

1−pρ
2
sz

)
((
κ− p

1− p
ρszσλ

)
(T − t)

−2 ln
(
1 +

1

2

(
κ− p

1− p
ρszσλ

)
(T − t)

))
,

B(t) =

(
κ− p

1−pρszσλ
)2

2σ2
(
1 + p

1−pρ
2
sz

)
(

T − t

1 + 1
2

(
κ− p

1−pρszσλ
)
(T − t)

)
.

Therefore, the optimal value is given by

V H(t, x, z) =
1− p

pq

(
q

1− p
xa(t) + η

)p

eA(t)+zB(t),

where the functions A(t) and B(t) are defined as above cases. Then, from (76) the

optimal strategy π∗
H is given by

π∗
H =

(
λ+ ρszσB(t)

)(
q

1−pxe
r(T−t) + η

)

qxer(T−t)
.

Observe that as p → −∞ and η = 1, the HARA utility function U(x) in (8)

converges to an exponential (CARA) utility function

Uexp(x) = −1

q
e−qx, q > 0.

In this case, we suppose the solution for (77) is of the form

V H(t, x, z) = −1

q
e−qxa(t)h(t, z).

Then, direct substitution leads to

at + ra = 0,

ht + κ(θ − z)hz +
1

2
σ2zhzz −

z(λh+ ρszσhz)
2

2h
= 0. (87)

Observe that (87) is the limit of (81) as p → −∞. Therefore, all formulas above

for HARA utility functions are also valid for the exponential utility functions when

letting p→ −∞.
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B. PROOF OF THEOREM 6

Now, we try to find the solution V (1) of the PDE (41) with the terminal condition (49)

of the form

V (1)(t, x, z) =
(
κθg1(t) + g2(t)z

)
V (0)(t, x, z) (88)

with g1(T ) = 0 and g2(T ) = 0. Substituting (88) into (41) and using (29) and (33)

yields

κθg′1 + zg′2 + κ(θ − z)g2(t) + σ2zB(t)g2(t) + ρszσΓ
(
λ̄+ ρszσB(t)

)
zg2(t) =

z

(
ρsyΓ

2F3+σΓ
(
ρyzF1+ρsyρszΓ(F1+F4)

)
B(t)+ρszσ

2Γ
(
ρyz+ρsyρszΓ

)
F2B

2(t)

)
,

(89)

where B(t) is defined as in Theorem 2.

Therefore, (89) is separable in z and we can split it into two ODEs

g′1(t) = −g2(t), (90)

g′2(t) + a(t)g2(t) = b(t), (91)

where

a(t) = σ2(1 + ρ2szΓ)B(t) + (ρszσλ̄Γ− κ), (92)

b(t) = ρsyΓ
2F3 + σΓ

(
ρyzF1 + ρsyρszΓ(F1 + F4)

)
B(t)

+ρszσ
2Γ
(
ρyz + ρsyρszΓ

)
F2B

2(t). (93)

Note that the ODE (91) with terminal condition g2(T ) = 0 is a Riccati equation with

constant coefficients, which can be solved explicitly using the integral factor method.

Let w(t) be the integral factor defined by

w(t) = e−
∫

T

t
a(s)ds,

which leads to

g2(t) = −
∫ T

t

w(s)

w(t)
b(s)ds. (94)

Therefore, we study in two cases as follows:

• Case 1: ∆ > 0.

By making use of (92), (83) and (24), direct computation gives

w(s)

w(t)
= e

√
∆(s−t)+2 ln 1−ge

√
∆(T−s)

1−ge

√
∆(T−t) .
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By writing b(t) in (93) as

b(t) = c0 + c1

(
1− e

√
∆(T−t)

1− ge
√
∆(T−t)

)
+ c2

(
1− e

√
∆(T−t)

1− ge
√
∆(T−t)

)2

,

with c0, c1 and c2 given by (59), (60) and (61) respectively, it follows from (94) and

(90) that

g2(t) = −
(
c0I0(t) + c1I1(t) + c2I2(t)

)
, (95)

g1(t) = −
(
c0J0(t) + c1J1(t) + c2J2(t)

)
, (96)

where the functions I0(t), I1(t), I2(t), J0(t), J1(t) and J2(t) are defined by

I0(t) =

∫ T

t

e
√
∆(s−t)

(
1− ge

√
∆(T−s)

1− ge
√
∆(T−t)

)2

ds,

I1(t) =

∫ T

t

e
√
∆(s−t)

(
1− ge

√
∆(T−s)

)(
1− e

√
∆(T−s)

)
(
1− ge

√
∆(T−t)

)2 ds,

I2(t) =

∫ T

t

e
√
∆(s−t)

(
1− e

√
∆(T−s)

1− ge
√
∆(T−t)

)2

ds,

Ji(t) =

∫ T

t

Ii(s)ds, i = 0, 1, 2.

By direct computation, we can easily see that I0(t), I1(t), I2(t), J0(t), J1(t) and J2(t)

are explicitly given by (53), (54), (55), (56), (57) and (58) respectively. Therefore,

g2(t) and g1(t) are given by (52) and (51), respectively.

• Case 2: ∆ = 0 and TK + 1 > 0.

Similar to Case 1, a series of straightforward calculations leads to

w(s)

w(t)
= e

2 ln
1+ 1

2
(κ−ρszσλ̄Γ)(T−s)

1+ 1
2
(κ−ρszσλ̄Γ)(T−t) .

Then (94) is equivalent to

g2(t) = −
∫ T

t

(
1 +K(T − s)

1 +K(T − t)

)2

b(s)ds, (97)

where K = 1
2

(
κ− Γρszσλ̄

)
. We can write b(t) in (93) as

b(t) = c̄0 + c̄1
T − t

1 +K(T − t)
+ c̄2

(
T − t

1 +K(T − t)

)2

,
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where the constants c̄0, c̄1 and c̄2 are defined by (70),(71) and (72), respectively. Then,

it follows from (97) and (90) that

g2(t) = −
(
c̄0Ī0(t) + c̄1Ī1(t) + c̄2Ī2(t)

)
, (98)

g1(t) = −
(
c̄0J̄0(t) + c̄1J̄1(t) + c̄2J̄2(t)

)
, (99)

where the functions Ī0, Ī1, Ī2(t), J̄0(t), J̄1(t) and J̄2 are defined by

Ī0(t) =

∫ T

t

(
1 +K(T − s)

1 +K(T − t)

)2

ds,

Ī1(t) =

∫ T

t

(
1 +K(T − s)

)
(T − s)

(
1 +K(T − t)

)2 ds,

Ī2(t) =

∫ T

t

(
T − s

1 +K(T − t)

)2

ds,

J̄i(t) =

∫ T

t

Īi(s)ds, i = 0, 1, 2.

Again, direct computation shows that Ī0(t), Ī1(t), Ī2(t), J̄0(t), J̄1(t) and J̄2(t) are ex-

plicitly given by (64),(65),(66),(67),(68) and (69), respectively. Therefore,it follows

that g2(t) and g1(t) are given by (63) and (62), respectively.

C. PROOF OF THEOREM ??

To simplify the symbol, we denote Ṽ = V ǫ,π∗(0)

and write its expansion as

Ṽ = Ṽ (0) +
√
ǫṼ (1) + ǫṼ (2) + · · · . (100)

Then, Ṽ satisfies the following linear PDE

Ṽt + rxṼx +
z

ǫ
L0Ṽ + κ(θ − z)Ṽz +

1

2
σ2zṼzz

+
1√
ǫ
ρyzσα(y)zṼyz +

1

2

(
π∗(0))2f2(y)zx2Ṽxx

+π∗(0)zx
(
λ(y)Ṽx + ρszσf(y)Ṽxz +

1√
ǫ
ρsyf(y)α(y)Ṽxy

)
= 0, (101)

with the terminal condition

Ṽ (T, x, y, z) = U(x). (102)

Note that PDE (101) is (10) in which π∗(0) is chosen as the strategy. This holds since,

by definition, Ṽ is the value function associated with the strategy π∗(0). Using (75),
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we can rewrite (101) as

z

ǫ
L0Ṽ + Lt,x,z

(
λ(y), λ(y)

)
Ṽ +

z√
ǫ
Lx,y,zṼ = 0, (103)

where the operators Lt,x,z

(
λ1, λ2

)
and Lx,y,z are defined by (32) and (39), respectively.

Substituting the expansion (100) in (103) and collecting successive powers of
√
ǫ, the

terms in ǫ−1 lead to

L0Ṽ
(0) = 0. (104)

Then we choose Ṽ (0) to be independent of y. The terms in ǫ−
1
2 give

L0Ṽ
(1) = 0, (105)

due to the y–independence of Ṽ (0). Similarly, Ṽ (1) is independent of y. At the

constant terms in ǫ, we have

L0Ṽ
(2) + Lt,x,z

(
λ(y), λ(y)

)
Ṽ (0) = 0. (106)

This is a Poisson equation for Ṽ (2) in y, whose centering condition requires that

〈
Lt,x,z

(
λ(y), λ(y)

)
Ṽ (0)

〉
= 0.

Since Ṽ (0) does not depend on y, it follows that

Lt,x,z

(
λ̃, λ̄

)
Ṽ (0) = 0. (107)

Expanding the terminal condition (102), we obtain

Ṽ (0)(T, x, z) = U(x).

Then we have Ṽ (0) = V (0).

The terms in
√
ǫ give

zL0Ṽ
(3) + Lt,x,z

(
λ(y), λ(y)

)
Ṽ (1) + zLx,y,zṼ

(2) = 0. (108)

Viewing (108) as a Poisson equation for Ṽ (3) in y, the centering condition is given by

〈
Lt,x,z

(
λ(y), λ(y)

)
Ṽ (1) + zLx,y,zṼ

(2)
〉
= 0.

Since Ṽ (1) is independent of y, it follows that

Lt,x,z

(
λ̃, λ̄

)
Ṽ (1) = −z

〈
Lx,y,zṼ

(2)
〉
. (109)

From (106) and (107), we have

L0Ṽ
(2) = −1

z

(
Lt,x,z

(
λ(y), λ(y)

)
− Lt,x,z

(
λ̃, λ̄

))
Ṽ (0)
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= −1

z

(
Lt,x,z

(
λ(y), λ(y)

)
− Lt,x,z

(
λ̃, λ̄

))
V (0).

This is the Poisson equation (35), so we can choose Ṽ (2)(t, x, y, z) = V (2)(t, x, y, z) +

c(t, x, z), for some function c independent of y. When applying Lx,y,z on V (2), c does

not play a role and then the equation (109) is exactly the equation (40), which implies

that Ṽ (1) = V (1). This completes the proof.

ACKNOWLEDGMENTS

The research of J.-H. Yoon was supported by a National Research Foundation of

Korea grant funded by the Korean government (NRF-2016R1C1B2014017), and the

National Research Foundation of Korea(NRF) Grant funded by the Korean Govern-

ment (MSIP) (NRF-2017R1A5A1015722).

REFERENCES

[1] B. Øksendal, Stochastic Differential Equations: An Introduction with Applica-

tions, Universitext. Springer, Berlin (2003).

[2] G. Chacko, L.M. Viceira, Dynamic consumption and portfolio choice with stochas-

tic volatility in incomplete markets, Rev. Finan. Stud., 18 (2005), 1369-1402.

[3] J.-P. Fouque, M.J. Lorig, A fast mean-reverting correction to Heston’s stochastic

volatility model, SIAM J. Financial Math., 2 (2011), 221-254.

[4] J.-P. Fouque, R. Sircar, T. Zariphopoulou, Portfolio optimization and stochastic

volatility asymptotics, Math. Finance, 27 (2017), 704-745.

[5] H. Kraft, Optimal portfolios and Heston’s stochastic volatility model: an explicit

solution for power utility, Quant. Finance 5 (2005), 303-313.

[6] R.C. Merton, Lifetime portfolio selection under uncertainty: The continuous-

time case, Rev. Econ. Stat., 51 (1969), 247-257.

[7] R.C. Merton, Optimum consumption and portfolio rules in a continuous-time

model, J. Econ. Theory, 3 (1971), 373-413.

[8] T. Zariphopoulou, A solution approach to valuation with unhedgeable risks, Fi-

nance Stochastics, 5 (2001), 61-82.


