
Dynamic Systems and Applications, 27, No. 2 (2018), 353-365 ISSN: 1056-2176

CONTINUITY OF EIGENVALUES IN WEAK TOPOLOGY

FOR REGULAR STURM-LIOUVILLE PROBLEMS

BING XIE1, HONGJIE GUO2, AND JING LI3

1,3Department of Mathematics

Shandong University

Jinan, 250100, P.R. CHINA

2Department of Mathematics

Shandong University

Weihai, 264209, P.R. CHINA

ABSTRACT: This paper is concerned with the eigenvalue problems of Sturm-

Liouville differential expressions with general separated boundary conditions. With

the aid of properties of analytic functions, only under the standard integrability con-

ditions, we obtain the continuity of eigenvalues in the weak topology of L1[a, b] on all

the coefficient functions of the differential expressions.

AMS Subject Classification: 34B24, 34L15

Key Words: Sturm-Liouville problem, weak topology, continuity of eigenvalues

Received: August 29, 2017 ; Accepted: March 23, 2018 ;
Published: April 5, 2018. doi: 10.12732/dsa.v27i2.9

Dynamic Publishers, Inc., Acad. Publishers, Ltd. https://acadsol.eu/dsa

1. INTRODUCTION

Consider the regular Sturm-Liouville eigenvalue problem

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x), x ∈ (a, b), (1)

with the boundary conditions

y(a) cos θ1 − py′(a) sin θ1 = 0, y(b) cos θ2 − py′(b) sin θ2 = 0, (2)

where λ is the spectral parameter, and θ1, θ2 ∈ [0, π). The coefficient functions of

equation (1), p, q, w are real-valued functions satisfying the standard integrability
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conditions
1

p
, q, w ∈ L1[a, b], p(x) > 0, w(x) > 0 a.e. on [a, b], (3)

where L1[a, b] denotes the integrable function space on [a, b].

By the theory of boundary value problem (cf., [4, 8]), it is known that the eigen-

value problem (1) and (2) has only discrete and real (algebraic) simple eigenvalues.

These eigenvalues satisfy (cf., [17, Theorem 13.2])

−∞ < λ1(
1

p
, q, w) < · · · < λn(

1

p
, q, w) < · · · ,

and λn(
1

p
, q, w) → ∞, as n → ∞,

(4)

where λn(1/p, q, w) is the n-th eigenvalue of (1) and (2).

Many papers (cf., [1, 7, 9, 22]) have studied the continuity of the n-th eigenvalue of

(1) and (2) with respect to the boundary condition and coefficient functions 1/p, q, w,

in the norm topology of L1[a, b] (cf., [6, (1.14)]).

Recently, some papers study the strong continuity of the n-th eigenvalues of (1)

and (2) in the weak topology of L1[a, b] (cf., [10, 13, 14]) on coefficient functions of

the differential expressions. In [20, 12], the authors study (1) and (2) in the case

p ≡ w ≡ 1, i.e.,

−y′′ + qy = λy, on [0, 1], q ∈ L1[0, 1],

with the Dirichlet or the Neumann boundary condition. By considering eigenvalues

λn(q) as functionals of potentials q ∈ L1[0, 1], based on the dependence results of so-

lutions and the generalized Prüfer transformation, it has been proved in [12, Theorem

1.3] that λn(q) are continuous when the weak topology for potentials are considered.

Furthermore, [12, Theorem 1.4] obtains λn(q) has continuously Fréchet differentiable

in weak topology of L1[a, b].

Furthermore, in [21], the authors study (1) and (2) in the case p ≡ 1 and q ≡ 0,

i.e.,

−y′′ = λwy, on [0, 1], w ∈ L1[0, 1],

with the Dirichlet condition. And consider the n-th eigenvalue as a functional of

weight functions λn(w). Also using the argument approach, just the same as above

case, the authors prove that λn(w) are continuous in the weak topology for weight

functions w in [21, Theorem 4.1]. In this paper, we will consider the general case

(1) and (2), and study the continuity of the n-th eigenvalue λn(1/p, q, w) in the

weak topology of L1[a, b] on all the coefficient functions jointedly of the differential

expressions. However, when the Prüfer transformation is applied to the general case

(1) and (2), we find the properties of argument are so complicated that we can’t get

the conclusions we need as in [12, Section 4.1, p.2211], [21, (2.9)-(2.12)]. Hence for
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the general case, another method must be used to get the continuity of λn(1/p, q, w)

with respect to 1/p, q, w in the weak topology of L1[a, b].

In the present paper, using the properties of analytic functions, we will prove that

eigenvalues of (1) and (2) are continuous with respect to all the coefficient functions,

1/p, q, w, in the weak topology of L1[a, b]. The paper is organized as follows. In

§2, we will first study the properties of the zero points of analytic functions when

a family of analytic functions converges to an analytic function, see Lemma 2.2.

Then in Lemma 2.5, under the condition that the eigenvalues are bounded below,

we get the continuity of eigenvalues in the weak topology of L1[a, b] about all the

coefficients functions of the differential equation (1). In §3, the main result will be

given. Firstly, the lower bound of the first eigenvalue will be given in Lemma 3.1 and

Lemma 3.3. Then, in Theorem 3.5, only under the standard integrability conditions

(3), we will obtain the continuity of eigenvalues in the weak topology of L1[a, b] on

all the coefficient functions of the differential expressions (1).

2. THE PROPERTIES OF ANALYTIC FUNCTIONS AND

PRELIMINARIES

Some symbols and lemmas will be given in this section. The main work of this

section is using the properties about the zero points of analytic functions to prove the

eigenvalues’ continuity with respect to the coefficient functions of problem (1) and

(2), see Lemma 2.5.

In Lemma 2.2, we give the properties about the zero points of analytic functions.

In the proof of this lemma, Montels Theorem will be used.

Proposition 2.1. (Montels Theorem, see [15, p.225, Theorem 3.3]) Suppose F is a

family of holomorphic functions on Ω that is uniformly bounded on compact subsets

of Ω, where Ω is an open subset of C. Then,

(i) F is equicontinuous on every compact subset of Ω.

(ii) every sequence in F has a subsequence that converges uniformly on every

compact subset of Ω (the limit need not be in F).

Here, see [15, p.225], the family F is called to be uniformly bounded on compact

subsets of Ω if for each compact set K ⊂ Ω there exists B > 0, such that |f(z)| ≤ B

for all z ∈ K and f ∈ F . Also, the family F is called to be equicontinuous on a

compact set K if for every ε > 0 there exists δ > 0 such that whenever z1, z2 ∈ K

and |z1 − z2| < δ, then |f(z1)− f(z2)| < ε for all f ∈ F .

Lemma 2.2. Let F (λ) 6≡ 0, Fn(λ), n = 1, 2, · · · , be analytic functions on C.

Suppose {|Fn(λ)|, n = 1, 2, · · · } is uniformly bounded on compact subsets of C and
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Fn(λ) → F (λ) on λ ∈ C.

Denote Σn and Σ be the zero point sets of Fn and F , respectively. Set

Σ∞ = {λ : ∃λn ∈ Σn, s.t.λn → λ, n → +∞}.

We have the next two conclusions.

(i) Σ = Σ∞.

(ii) If λ0 ∈ Σ and there exist λn,1, λn,2 ∈ Σn, n = 1, 2, · · · , such that λn,j → λ0

as n → ∞ for j = 1, 2, then F ′(λ0) = 0.

Proof. Using the classical analysis approach, Proposition 2.1 can lead to Fn(λ) →

F (λ) uniformly on every compact subset of C.

(i) By the definition, for λ0 ∈ Σ∞, there exists {λn ∈ Σn, n = 1, 2, · · · } such

that λn → λ0 as n → ∞. By Proposition 2.1 (i), we know {Fn(λ), n = 1, 2, · · · } is

equicontinuous on every compact subset of C, hence

|Fn(λn)− Fn(λ0)| → 0, as n → ∞.

As a result, Fn(λn) = 0 yields that Fn(λ0) → 0, and hence F (λ0) = 0, i.e., λ0 ∈ Σ.

Conversely, for λ0 ∈ Σ, if λ0 6∈ Σ∞, then by the Zero Isolation Theorem of analytic

functions, there exists ε0 > 0 such that

B(λ0, ε0) ∩ Σ = {λ0} and d(λ0,Σn) ≥ 2ε0 (5)

as n ≥ N for some N > 0, where B(λ0, ε0) := {λ ∈ C : |λ − λ0| ≤ ε0} and

d(λ0,Σn) := infλn∈Σn
|λ0 − λn|. From the inequality in (5), we have

Fn(λ) 6= 0, for any λ ∈ B(λ0, ε0), n ≥ N.

Therefore, F−1
n (λ) := 1/Fn(λ) is analytic on B(λ0, ε0) for any n > N . By the Cauchy

integral formula,

F−1
n (λ0) =

1

2πi

∫

∂B(λ0,ε0)

F−1
n (z)

z − λ0
dz. (6)

Moreover, F (z) 6= 0 on ∂B(λ0, ε0) implies for z ∈ ∂B(λ0, ε0),

|F−1(z)| ≤
1

A
, A := min

∂B(λ0,ε0)
|F (z)| > 0.

Since Fn → F as n → ∞ uniformly on ∂B(λ0, ε0), we know there exists a sufficiently

large number N1(> N) such that

|F−1
n (z)| ≤

2

A
, z ∈ ∂B(λ0, ε0),

for n ≥ N1. This together with (6) gives

|F−1
n (λ0)| ≤

1

2π
2πε0

1

ε0

2

A
=

2

A
, for n ≥ N1.



CONTINUITY OF EIGENVALUES IN WEAK TOPOLOGY 357

This clearly contradicts Fn(λ0) → F (λ0) = 0 as n → ∞. Hence λ0 ∈ Σ∞ and Σ∞ = Σ

has been proven.

(ii) For the proof of the second part we note that for every λ0 ∈ Σ, there exists

ε > 0 such that B(λ0, ε) ∩ Σ = {λ0}, just as (5). Since every set Σn is countable,
⋃∞

n=1 Σn is countable. Therefore, there exists ε0 ∈ (0, ε] such that ∂B(λ0, ε0)∩Σn = ∅,

n ≥ 1. That is for n ≥ 1,

B(λ0, ε0) ∩ Σ = {λ0} and ∂B(λ0, ε0) ∩ Σn = ∅. (7)

Hence inf{|F (λ)| : λ ∈ ∂B(λ0, ε0)} > 0. This fact and Fn(λ) → F (λ) uniformly on

every compact subset of C lead that for enough large number n, we have

|F − Fn|
∣

∣

∣

∂B(λ0,ε0)
< |F |

∣

∣

∣

∂B(λ0,ε0)
.

From Rouche Theorem, we know F and Fn have the same number of zeros inB(λ0, ε0).

By the condition of Lemma 2.2 (ii), for enough large number n, we have {λ1n, λ2n} ⊂

B(λ0, ε0). Hence F has two zeros in B(λ0, ε0) with respect to multiplicity. This and

B(λ0, ε0) ∩ Σ = {λ0} imply that F ′(λ0) = 0. The proof is completed.

Let us give some symbols of the eigenvalues and analytic functions about problem

(1) and (2). Set the k-th eigenvalue of (1) and (2) as

λk(
1

p
, q, w) := λk(A), A :=

(

1

p
, q, w

)

, k = 1, 2, · · · . (8)

Moreover, let φ(·;λ,A) ∈ D be the solution of the Cauchy problem

τφ := −(pφ′)′ + qφ = λwφ, φ(a) = sin θ1, pφ
′(a) = cos θ1. (9)

Here D =
{

∫ b

a
w|y|2 < ∞ : y, py′ ∈ AC[a, b],

∫ b

a
|τy|2

/

|w| < ∞
}

and AC[a, b] is the

set of all absolutely continuous functions on [a, b]. And set

F (λ,A) := cos(θ2)φ(b;λ,A)− sin(θ2)p
∂φ

∂x
(b;λ,A), (10)

on λ ∈ C. It is well-known that F (λ,A) is analytic on λ ∈ C and λ is an eigenvalue

of (1) and (2) if and only if F (λ,A) = 0 (cf., [2, p.33] or [18, (3.8)]).

Moreover, we will prove that for any fixed λ ∈ C, F (λ,A) is continuous about the

coefficients A = (1/p, q, w) in the meaning of weak topology, see Lemma 2.4. Here

we call that fn ∈ L1[a, b] is weakly convergent to f ∈ L1[a, b] if for each g ∈ L∞[a, b]

one has

lim
n→∞

∫ b

a

gfn =

∫ b

a

gf, and take this as fn
w
−→ f,

where

L∞[a, b] := {f is a measurable function on [a, b] : esssup|f | < ∞}.
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This topology is just called the weak topology of L1[a, b]. For more details about

weak topology, one can refer to [12, p.2202], [19].

Now we will show the following continuity and continuous differentiability results,

which is related to the solutions of Cauchy problem (9) in the weak topology of

L1[a, b].

Proposition 2.3. (cf., [11, Theorem 6, p.1292], [12, Theorem 1.1]) For any fixed

λ ∈ C, φ(x;λ,A) and p∂φ
∂x (x;λ,A) are uniformly continuous on x ∈ [a, b], with respect

to the coefficient functions A in the weak topology of L1[a, b], where the definition of

φ(x;λ,A) is in (9).

In this paper, a weaker case is enough, see Lemma 2.4(i). Furthermore, under the

condition of Lemma 2.2, we will prove Lemma 2.4(ii).

Lemma 2.4. Suppose An = (1/pn, qn, wn)
w
−→ A = (1/p, q, w), as n → ∞, where

An
w
−→ A means 1/pn

w
−→ 1/p, qn

w
−→ q and wn

w
−→ w as n → ∞. Then,

(i) φ(b;λ,An) → φ(b;λ,A) and pnφ
′(b;λ,An) → pφ′(b;λ,A).

(ii) {|φ(b;λ,An)|, |pnφ
′(b;λ,An)|, n ≥ 1} are uniformly bounded about λ on any

compact subset of C.

Proof. We only need to prove (ii). For An, n ≥ 1, the Cauchy problem (9) can be

rewritten as a system,

∂

∂x

(

φn

pnφ
′
n

)

=

(

0 1/pn

qn − λwn 0

)(

φn

pnφ
′
n

)

,

(

φn

pnφ
′
n

)

(a) =

(

sin θ1

cos θ1

)

.

Then, we have the estimate

(|φn|+ |pnφ
′
n|)(x) ≤ 2 +

∫ x

a

(

1

pn
+ |qn|+ |λ|wn

)

(|φn|+ |pnφ
′
n|)

≤ 2 + (1 + |λ|)

∫ x

a

|An|(|φn|+ |pnφ
′
n|),

where |An| := |1/pn| + |qn| + |wn|. Since An
w
−→ A, there exists a constant M > 0,

such that for any n ≥ 1, |An| < M by [5, Theorem 1.27] or Proposition 3.2 (i). Hence

the Gronwall inequality can lead that for any x ∈ [a, b],

(|φn|+ |pnφ
′
n|)(x) ≤ 2e(1+λ)M(x−a). (11)

Especially, for any n ≥ 1, we get

|φ(b;λ,An)|+ |pnφ
′(b;λ,An)| ≤ 2e(1+λ)M(b−a).

This inequality can lead to (ii) and the proof is finished.
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From Lemma 2.4 (ii) we know {F (λ,An), n ≥ 1} is uniformly bounded on compact

subsets of C. Moreover, according to Lemma 2.4 (i), if An
w
−→ A, then F (λ,An) →

F (λ,A), as n → ∞. Hence the conditions of Lemma 2.2 are satisfied. Using Lemma

2.2, we can prove the next lemma.

Lemma 2.5. If An = (1/pn, qn, wn)
w
−→ A and {λ1(An) : n ≥ 1} are bounded

below, then for any k ≥ 1, λk(An) → λk(A), n → ∞.

Proof. Set Fn(λ) := F (λ,An) and F (λ) := F (λ,A), where the definition of F (λ,A)

is in (10). Then by Lemma 2.4 we know

F 6≡ 0 and Fn(λ) → F (λ), as n → ∞.

In the proof, the definitions of Σn, Σ∞ and Σ are the same as in Lemma 2.2. There-

fore, Σn = {λk(An), k ≥ 1} and Σ = {λk(A), k ≥ 1}.

To begin with, we prove that {λ1(An) : n ≥ 1} is bounded above. Suppose on

the contrary, then without losing generality we can assume that λ1(An) → ∞ as

n → ∞. Since λk(An) ≥ λ1(An) for any k ≥ 1, one sees that Σ∞ = ∅ 6= Σ, which

contradicts Lemma 2.2 (i). With the same method, it can be deduced that for any

k ≥ 1, {λk(An) : n ≥ 1} is bounded above.

For the case k = 1, from the condition of Lemma 2.5 we know that {λ1(An), n ≥

1} are bounded below. Then {λ1(An) : n ≥ 1} is bounded. Hence there exists λ1 ∈ R

such that λ1(An) → λ1 ∈ Σ∞ = Σ as n → ∞. This fact and Σ = Σ∞ in Lemma 2.2

(i) can lead to

lim
n→∞

λ1(An) = λ1 = inf Σ∞ = inf Σ = λ1(A).

For the case k = 2, the same method can be used to obtain λ2(An) → λ2 ≥

λ1(A), n → ∞. If λ2 = λ1(A), by Lemma 2.2 (ii) we know F ′(λ1(A)) = 0. It is

a contradiction with the fact that the eigenvalue λ1(A) is algebraic simple. Hence

λ2 > λ1(A) = λ1 and

lim
n→∞

λ2(An) = λ2 = inf Σ∞ \ {λ1} = inf Σ \ {λ1(A)} = λ2(A).

By mathematical deduction, we get for the general case λk(An) → λk(A) as n → ∞,

for any k ≥ 1. The proof is finished.

3. THE CONTINUITY OF EIGENVALUES IN WEAK TOPOLOGY

The main conclusion of this paper will be given in this section. In Theorem 3.5, we

will prove the continuities of eigenvalues in the weak topology of L1[a, b] on all the
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coefficient functions of problem (1) and (2). First, in Lemma 3.3, we will prove the

first eigenvalue of (1) and (2) is bounded below about the the coefficient functions.

Firstly, δ and ε will be defined. By 1/p ∈ L1[a, b], we know there exists a number

larger than zero, which is defined as δ := δ(1/p, q) > 0 such that

sup

{

∫ t+δ

t

1

p
: t ∈ [a, b− δ]

}

≤
1

8 + 4‖q‖1
, (12)

where ‖q‖1 :=
∫ b

a
|q|. Then for any t ∈ [a, b− δ],

∫ t+δ

t
1/p ≤ 1

8+4‖q‖1

.

Furthermore, set

ε := ε(δ, w) := ε(A) =
1

4
inf

{

∫ t+δ

t

w : t ∈ [a, b− δ]

}

, (13)

where A = (1/p, q, w) and the definition of δ is in (12). Clearly, ε > 0 from w > 0

a.e. on [a, b].

Lemma 3.1. Let λ1 := λ1(A) be the first eigenvalue of (1) and (2). Then

λ1 ≥ −
4 + 2‖q‖1

ε
, (14)

where the definition of ε = ε(A) is in (13).

Proof. Let φ with

max{|φ|} := max{|φ(x)| : x ∈ [a, b]} = 1, (15)

be the corresponding eigenfunction about the first eigenvalue λ1 of the problem (1)

and (2). Without losing generality, we can assume λ1 < 0.

Integrating (1) from a to b and using the boundary condition (2), we can get

cot(θ1)φ
2(a)− cot(θ2)φ

2(b) +

∫ b

a

p|φ′|2 +

∫ b

a

q|φ|2

= λ1

∫ b

a

w|φ|2.

(16)

Plug (15) into (16) and notice λ1 < 0, we have

∫ b

a

p|φ′|2 ≤ | cot(θ1)|+ | cot(θ2)|+ ‖q‖1 = 2 + ‖q‖1. (17)

Then (15) and (17) can lead to
∣

∣

∣

∣

∣

cot(θ1)φ
2(a)− cot(θ2)φ

2(b) +

∫ b

a

p|φ′|2 +

∫ b

a

q|φ|2

∣

∣

∣

∣

∣

≤ 4 + 2‖q‖1.

(18)
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Since eigenfunction φ is continuous, there exists x0 ∈ [a, b] such that max{|φ|} =

|φ(x0)| = 1. From the definition of δ in (12), we know it holds for at least one of

[x0, x0 + δ] ⊂ [a, b] and [x0 − δ, x0] ⊂ [a, b]. Then we have

∫ x0+δ

x0

1

p
≤

1

8 + 4‖q‖1
or

∫ x0

x0−δ

1

p
≤

1

8 + 4‖q‖1
. (19)

Cauchy inequality and (17), (19) can lead that for any x ∈ (a, b) and |x− x0| ≤ δ, we

have

|φ(x)| ≥ |φ(x0)| −

∣

∣

∣

∣

∫ x

x0

φ′

∣

∣

∣

∣

≥ 1−

∣

∣

∣

∣

∫ x

x0

p|φ′|2
∫ x

x0

1

p

∣

∣

∣

∣

1/2

≥
1

2
.

This fact and the definition of ε can lead to the next estimate,

∫ b

a

w|φ|2 ≥

∫ x0+δ

x0

or

∫ x0

x0−δ

w|φ|2 ≥
1

4

∫ x0+δ

x0

or

∫ x0

x0−δ

w ≥ ε. (20)

Hence it follows from (16), (18) and (20) can lead to

|λ1| ≤
1

∫ b

a
w|φ|2

∣

∣

∣

∣

∣

cot(θ1)φ
2(a)− cot(θ2)φ

2(b) +

∫ b

a

(p|φ′|2 + q|φ|2)

∣

∣

∣

∣

∣

≤
4 + 2‖q‖1

ε

and the proof is finished.

Fixing the weight function w and applying Lemma 3.1, we can give a lower bound

of all the eigenvalues of problem (1) and (2), see Lemma 3.3. First, we need the next

conclusion which is a special case of [3, p.294] or [11, Lemma 1, p.1289].

Proposition 3.2. (cf., [3, p.294] or [11, Lemma 1, p.1289]) Suppose 1/pn
w
−→ 1/p

in L1[a, b]. Then,

(i) there exists r > 0 such that ‖qn‖1 < r, for any n ≥ 1.

(ii) for every ε̂ > 0 there exists δ̂ > 0 such that
∫ d

c
1/pn < ε̂ for any n ≥ 1 and

any [c, d] ⊂ [a, b] with d− c < δ̂.

Lemma 3.3. If 1/pn
w
−→ 1/p and qn

w
−→ q, then for any fixed weight function w, we

have

λ1

(

1

pn
, qn, w

)

≥ −
4 + 2r

ε(1/p, q, w)
, n = 1, 2, · · · ,

where the definition of ε(1/p, q, w) > 0 is in (13) and independent of 1/pn and qn.

Proof. Note, by [5, Theorem 1.27] or Proposition 3.2 (i), qn
w
−→ q can deduce that

there exists r > 0 such that

‖qn‖1 < r, for any n ≥ 1. (21)
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Since 1/pn
w
−→ 1/p, by Proposition 3.2, we can get that for the r in (21), there exists

δ̂ := δ̂(1/p, r) > 0 such that (cf., the definition of δ in (12))

sup

{

∫ t+δ̂

t

1

pn
: t ∈ [a, b− δ̂]

}

≤
1

8 + 4r
, for any n ≥ 1. (22)

By ‖qn‖1 < r, contrasting δ̂(1/p, r) in (22) and the definition of δ(1/pn, qn) in (12),

we can select δ(1/pn, qn) such that

δ̂(1/p, r) ≤ δ(1/pn, qn). (23)

Then (23) and the definition of ε := ε(δ, w) in (13) lead that

ε
(

δ̂(1/p, r), w
)

≤ ε (δ(1/pn, qn), w) := ε (1/pn, qn, w) . (24)

Recall (14) in Lemma 3.1, using ‖qn‖1 < r and (24), we get a lower bound of the

first eigenvalues. For any n = 1, 2, · · · ,

λ1

(

1

pn
, qn, w

)

≥ −
4 + 2‖qn‖1

ε (1/pn, qn, w)
≥ −

4 + 2r

ε(1/p, r, w)
.

The proof is finished.

According to Lemma 3.3, for any fixed w, the eigenvalues of problem (1) and (2)

with coefficients {(1/pn, qn, w), n ≥ 1}, are bounded below. Hence by Lemma 2.5 we

obtain the next corollary.

Corollary 3.4. If 1/pn
w
−→ 1/p and qn

w
−→ q, then for any fixed weight function w

and k ≥ 1, we have

λk

(

1

pn
, qn, w

)

→ λk

(

1

p
, q, w

)

, as n → ∞.

Using this conclusion, we can prove the main result of this paper. Recall the

symbols An = (1/pn, qn, wn) and A = (1/p, q, w).

Theorem 3.5. Suppose An and A satisfy the standard condition (3). If An
w
−→ A,

then for any k ≥ 1, λk(An) → λk(A), as n → ∞.

Proof. We only need to prove that {λ1(An) : n = 1, 2, · · · } is bounded below, by

Lemma 2.5. Consider the next three problems

−(py′)′ + (q + (1− λ1(A))w)y = µwy, on (a, b), (25)

−(pny
′)′ + (qn + (1− λ1(A))wn)y = µ̂(n)wy, on (a, b), (26)

−(pny
′)′ + (qn + (1− λ1(A))wn)y = µ̃(n)wny, on (a, b), (27)
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all with the boundary condition (2).

Clearly, the first eigenvalue of (25) satisfies µ1 = 1. Note

1

pn

w
−→

1

p
, and qn + (1− λ1(A))wn

w
−→ q + (1− λ1(A))w,

as n → ∞, hence we have µ̂1(n) → µ1, n → ∞, by Corollary 3.4. This fact and

µ1 = 1 lead that there exists N > 0, for any n ≥ N , µ̂1(n) > 0. Since the left

differential expression of (26) is the same as (27), we obtain that

for any n ≥ N, µ̃1(n) > 0. (28)

Moreover, from (27) and the definition of λ1(An), we get

−(pny
′)′ + qny = {µ̃1(n) + λ1(A)− 1}wny = λ1(An)wny,

y = y(x), x ∈ (a, b). Hence, for any n ≥ N , λ1(An) = µ̃1(n)+λ1(A)−1 > λ1(A)−1,

by (28). Then λ1(An) is bounded below and the proof is complete.

In this section, for obtaining the main result, we find the most important thing

is that all the eigenvalues are bounded below. By Lemmas 3.1 and 3.3, we know the

estimation of the lower bound of eigenvalues contains δ and ε. However the definitions

of δ and ε in (12) and (13) are complicated, hence two examples, which can be easily

calculated, will be given in the next example.

Example 1. (i) Consider the case p ≡ w ≡ 1, i.e.,

−y′′(x) + q(x)y(x) = λy(x), x ∈ (a, b), (29)

with the boundary condition (2).

In this case, we can select δ = 1
8+4‖q‖1

, and ε = δ/4. Then Lemma 3.1 gives

λ1 ≥ −
4 + 2‖q‖1

ε
= −32(2 + ‖q‖1)

2.

(ii) Consider the case 1/p(x) ≤ 1/M < +∞, w(x) ≥ w0 > 0 a.e. on x ∈ [a, b], and

‖q‖1 ≤ r < +∞.

Then we can select δ = M
8+4r , and ε = δw0/4. Then Lemma 3.3 gives

λ1 ≥ −
4 + 2r

ε
= −

32(2 + r)2

Mw0
.
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