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1. INTRODUCTION

The initiative idea of non-integer order derivatives is quite old and history of frac-

tional calculus spans on three centuries. Since in the mid twentieth century, and

latter decades the number of papers devoted to fractional calculus increased rapidly.

One of the reasons for the significant interest in the field of fractional calculus is that

verity of physical [1], chemical [2] and biological [3] phenomena can be described with

fractional differential equations. The field of fractional calculus can be considered
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as new branch of applied mathematics. A fair amount of basic mathematical theory

related to the study of fractional calculus attributed to Leibniz, Caputo, Liouville,

Riemann, Euler and many others. However, in the past few decades more and more

convincing applications in different fields of engineering and sciences [4] have been

found. It is notable that a larger part of research work is committed to the exis-

tence theory of fractional differential equations(FDEs)(see [5, 6, 7]). Recently, many

researchers used fractional differential equations as a valuable tool in modeling of

various stable physical phenomena. However, exploration of stability theory of non-

linear FDEs is still in its initial stages and a bunch of work could be done in this

area. A little while back the theory of FDEs has been investigated enormously and

several fundamental results are obtained which includes the stability theory as well.

In mathematical language, stability theory discusses the convergence of solutions of

differential equations under the small changes in the initial data. The question of sta-

bility is a central task in the study of FDEs and it has been studied by many authors

(see [8, 9, 10, 11, 12, 13, 14, 15, 16]). Anyhow, the analysis for stability of nonlinear

FDEs is relatively more tricky than that of classical integer order differential equa-

tions. Partially this is because the fractional derivatives are nonlocal and inherent

a weakly singular kernels. During the last decades, many researchers have been at-

tracted to the study of stability theory of non-linear fractional differential equations

and therefore various methods are introduced. However, we note that only a few

steps are taken to use the fixed point theorems in the investigation of the stability

of FDEs. The application of fixed point theorem to study the stability properties

of differential equations have extensively been studied by T. A. Burton (see [17] and

references therein). In [18], Fudong Ge and Chunhai Kou considered the stability of

Caputo type FDEs for α ∈ (1, 2). They used Krasnoselskii’s fixed point theorem to

obtain their main results. Motivated by their work, in this paper we present sufficient

conditions for the existence of solution in conjunction with stability analysis of the

following class of non-linear fractional initial value problem

cDα
0,tu(t) + u(t) = a(t)u(t) + f(t, u(t)), u(0) = u0, 0 < α ≤ 1, (1.1)

where u0 ∈ R, f : [0,∞) × R → R and a : [0,∞) → R are continuous functions

and f(t, 0) ≡ 0. The differential operator cDα
0,t is the standard Caputo fractional

differential operator of order α ∈ (0, 1].

The tools used in this paper remain the same as in [18, 17]. A crucial difference

here in this work and in references cited above is that we are using an equivalent

integral equation for (1.1) which is derived by the Laplace transform. This approach

allows us to use properties of Mittage–Lefler function to simplify calculations while

establishing stability results. This approach has been used by [21] to study stability

of system of fractional differential equations. To the best of authors knowledge, this

approach has never been used to study the stability via fixed point approach.
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We arranged this paper as follows: Section 2 contains some basic definitions and

lemmas that are helpful in what follows, and our main results are presented in section

3.

2. PRELIMINARIES

For ease, this section is devoted to providing an outline of few ideas, definitions and

some fundamental outcomes from fractional calculus which are utilized throughout

this article.

Definition 2.1. [19] The Caputo derivative cDα
a,t of fractional order α ∈ [0,∞) of

function u ∈ Cm+1[a, b], is defined as

cDα
a,tu(t) = Im−α

a Dmu(t) =

∫ t

a

(t− τ)m−α−1

Γ(m− α)
u(m)(τ)dτ,

where m−1 < α ≤ m ∈ Z
+ and Iαa u(t) :=

∫ t

a

(t−τ)α−1

Γ(α) u(τ)dτ is the Riemann–Liouvill

integral of fractional order α ∈ (0,∞).

The Mittag–Leffler (ML) function is simple generalization of exponential function

introduced by Swedish mathematician Gosta Mittag–Leffler (1846-1927). It plays sig-

nificant role in qualitative and quantitative theory of fractional differential equations.

Definition 2.2. The two parametric ML function Eα,β(t) is defined as

Eα,β(t) =
∞∑

k=0

tk

Γ(αk + β)
t ∈ R, α, β > 0. (2.1)

From numerical evidences, as illustrated in Figure [20] we notice that, for t ∈

[0,∞), 0 < α ≤ 1, the one-parameter Mittag–Leffler function Eα,1(−t
α) is decreasing

function of t and it is bounded from above by 1. That is Eα,1(−t
α) ≤ 1. Furthermore,

it is to be noted that

lim
t→∞

Eα,1(−t
α) = 0. (2.2)

Now, we present definition for stability of solutions for (1.1).

Definition 2.3. The solution u = ψ(t) of (1.1) is called

(i) stable, if for every ǫ > 0 and t0 ≥ 0, there exists a δ = δ(t0, ǫ) > 0 such that

|u(t, u0, t0)− ψ(t)| < ǫ for |u0 − ψ(t0)| ≤ δ(t0, ǫ) and all t ≥ t0;

(ii) attractive, if there exists σ(t0) > 0 such that ‖u0‖∞ ≤ σ implies lim
t→∞

u(t, u0, t0) =

0;
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Figure 1: Graphs of Eα,1(−t
α) for α = 0.2, 0.4, 0.6, 0.8, 1.

(iii) asymptotically stable if it is stable and attractive.

To continue promote, we give the accompanying auxiliary lemma.

Lemma 2.4. [21] Let 0 < α ≤ 1 and u0 ∈ R. Moreover assume that f : [0,∞) →

R, a : [0,∞) → R are continuous and f(t, 0) ≡ 0. Then u(t) ∈ C[R,R] is a solution

of (1.1) if and only if it is the solution of the integral equation

u(t) = u0Eα,1(−t
α) +

∫ t

0

Eα,1(−(t− τ)α)a(τ)u(τ)dτ

+

∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ. (2.3)

3. MAIN RESULTS

In this section, we prove results for the existence and stability of the solutions of (1.1).

We begin with some notations for our next theorems.

Assume

(H1) supt≥0

∫ t

0 a(τ)dτ ≤ ρ2 < 1− ρ1, ρ1 ∈ (0, 1).

Let B := {u(t) ∈ C([0, χ1],R) : ||u||∞ <∞}, where χ1 = ρ1ǫ
||f ||∞

, ǫ > 0. And B is a

Banach space equipped with the norm ‖u‖∞ = supt∈[0,T ] |u(t)|, T > 0. Furthermore,

for any t ≥ 0, we assume ||φ||t = max{|φ(t)| : 0 ≤ s ≤ t}, for any given φ ∈ C[0, χ1]

and suppose M(ǫ) = {u : u ∈ B, ||u||∞ ≤ ǫ}, ǫ > 0.

Theorem 3.1. Consider the integral equation (2.3), where f : [0,∞)×R → R, is a

bounded and continuous function on R, that satisfies the Lipschitz condition

‖f(t, u)− f(t, v)‖∞ ≤ L‖u− v‖∞, for all t ∈ [0, T ], T > 0,
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where L is a positive constant. Then there exist at least one solution of (1.1).

Proof. Let us set Λ ≥ |u0|+rT

1−MT
, M < 1

T
where M = supt∈[0,T ]{a(t)}. Consider the

non-empty closed convex subset K = {u : u ∈ B, ‖u‖∞ ≤ Λ} of B. We consider the

mapping F on K as defined in equation (3.1).

Also let ‖f(t, u)‖∞ ≤ r∀(t, u) ∈ [0, T ]× R.

First we show that F maps K into K.

∣∣(Fu)(t)
∣∣ =

∣∣∣∣u0Eα,1(−t
α) +

∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ

+

∫ t

0

Eα,1(−(t− τ)α)a(τ)u(τ)dτ

∣∣∣∣

≤|u0|+ (ΛM + r)T ≤ Λ.

Now we prove that F(B) is relatively compact.

Taking 0 ≤ t1 ≤ t2 ≤ T, we have

∣∣(Fu)(t1)− (Fu)(t2)
∣∣ =

∣∣∣∣u0Eα,1(−t
α
1 ) +

∫ t1

0

Eα,1(−(t1 − τ)α)f(τ, u(τ))dτ

+

∫ t1

0

Eα,1(−(t1 − τ)α)a(τ)u(τ)dτ − u0Eα,1(−t
α
2 )

−

∫ t2

0

Eα,1(−(t2 − τ)α)f(τ, u(τ))dτ −

∫ t2

0

Eα,1(−(t2 − τ)α)a(τ)u(τ)dτ

∣∣∣∣

≤

∣∣∣∣u0(Eα,1(−t
α
1 )− Eα,1(−t

α
2 ))

∣∣∣∣

+

∫ t1

0

∣∣∣∣(Eα,1(−(t1 − τ)α)− Eα,1(−(t2 − τ)α)

∣∣∣∣|f(τ, u(τ))|dτ

+

∫ t2

t1

|f(τ, u(τ))|dτ +

∫ t1

0

∣∣∣∣(Eα,1(−(t1 − τ)α)− Eα,1(−(t2 − τ)α)

∣∣∣∣

× |a(τ)u(τ)|dτ + Λ

∫ t2

t1

a(τ)dτ

≤

∣∣∣∣u0(Eα,1(−t
α
1 )− Eα,1(−t

α
2 ))

∣∣∣∣

+

∫ t1

0

∣∣∣∣(Eα,1(−(t1 − τ)α)− Eα,1(−(t2 − τ)α)

∣∣∣∣|f(τ, u(τ))|dτ

+

∫ t1

0

∣∣∣∣(Eα,1(−(t1 − τ)α)− Eα,1(−(t2 − τ)α)

∣∣∣∣|a(τ)u(τ)|dτ

+ (ΛM+ r)(t2 − t1) → 0

as t1 → t2. Now let u, ũ ∈ K such that

∣∣(Fu)(t)− (F ũ)(t)
∣∣ =

∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ
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+

∫ t

0

Eα,1(−(t− τ)α)a(τ)u(τ)dτ

−

∫ t

0

Eα,1(−(t− τ)α)f(τ, ũ(τ))dτ −

∫ t

0

Eα,1(−(t− τ)α)a(τ)ũ(τ)dτ

∣∣∣∣

≤

∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)a(τ)(u(τ) − ũ(τ))dτ

∣∣∣∣

+

∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)(f(τ, u(τ)) − f(τ, ũ(τ)))dτ

∣∣∣∣

≤ MT ‖u− ũ‖∞ + LT ‖u− ũ‖∞.

Hence |(Fu)(t)−(F ũ)(t)| < ǫ1 whenever ‖u−ũ‖∞ < δ1, δ1 <
ǫ1

(M+L)T .Which implies

that F is relatively compact in B.

Hence, by Schauder’s fixed point theorem there exist at least one fixed point of F

in K.

Theorem 3.2. Assume that the following conditions are satisfied:

(H2) ‖f(t, u)− f(t, v)‖∞ ≤ L(t)‖u− v‖∞,

(H3)
∫ t

0 a(τ)dτ → 0 as t → ∞,

(H4)
∫ t

0 L(τ)dτ → 0 as t→ ∞,

where L(t), a(t) ∈ L1[0,∞) and M1 + M2 < 1, where M1 = supt∈[0,∞)

∫ t

0
a(τ)dτ,

and M2 = supt∈[0,∞)

∫ t

0 L(τ)dτ. Then there exists a unique solution of (1.1) and

u(t) → 0 as t→ ∞. Moreover, the trivial solution of (1.1) is stable.

Proof. Setting K >
|u0|

1−M1−M2

. Define a set E = {u ∈ C[R,R], ‖u‖∞ ≤ K and u(t) →

0 as t→ ∞}. Note that

|f(t, u)| =|f(t, u)− f(t, 0) + f(t, 0)| ≤ |f(t, u)− f(t, 0)|+ |f(t, 0)|

≤L‖u− 0‖∞ + 0 = L‖u‖∞.

Now, we define a mapping F on E as:

(Fu)(t) = u0Eα,1(−t
α) +

∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ

+

∫ t

0

Eα,1(−(t− τ)α)a(τ)u(τ)dτ. (3.1)

It is obvious that for u ∈ E , Fu is continuous.

First we prove that F maps E into itself.

‖(Fu)(t)‖∞ ≤ |u0Eα,1(−t
α)|+

∫ t

0

Eα,1(−(t− τ)α)|f(τ, u(τ))|dτ
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+

∫ t

0

Eα,1(−(t− τ)α)|a(τ)|‖u(τ)‖∞dτ

≤ |u0|+K

∫ t

0

L(τ)dτ +K

∫ t

0

a(τ)dτ

≤ |u0|+K(M1 +M2) ≤ K.

Hence F maps E into E .

Next we show that (Fu)(t) → 0 as t→ ∞.

Now, since lim
t→∞

u0Eα,1(−t
α) → 0 as t→ ∞ and we have

∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ

∣∣∣∣ ≤
∫ t

0

Eα,1(−(t− τ)α)|f(τ, u(τ))|dτ

≤

∫ t

0

Eα,1(−(t− τ)α)L(τ)‖u‖∞dτ

≤ K

∫ t

0

Eα,1(−(t− τ)α)L(τ)dτ

≤ K

∫ t

0

L(τ)dτ ≤ Kǫ, ǫ > 0.

Thus
∣∣ ∫ t

0 Eα,1(−(t− τ)α)f(τ, u(τ))dτ
∣∣ → 0 as t→ ∞. And

∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)a(τ)u(τ)dτ

∣∣∣∣ ≤
∫ t

0

Eα,1(−(t− τ)α)|a(τ)||u(τ)|dτ

≤ K

∫ t

0

Eα,1(−(t− τ)α)|a(τ)|dτ

≤ K

∫ t

0

a(τ)dτ ≤ Kǫ, ǫ > 0,

implies
∣∣ ∫ t

0
Eα,1(−(t− τ)α)a(τ)u(τ)dτ

∣∣ → 0 as t→ ∞.

Hence (Fu)(t) → 0 as t→ ∞.

Next, we prove that F is a contraction mapping.

|(Fu)(t)− (Fv)(t)| ≤

∫ t

0

Eα,1(−(t− τ)α[a(τ) + L(τ)]‖u − v‖∞dτ

= (M1 +M2)‖u− v‖∞.

Since M1+M2 < 1. Thus F is contraction. Hence by contraction mapping principle

(1.1) has a unique solution. The stability of trivial solution of (1.1) follows just by

replacing K by ǫ. This completes the proof.

Theorem 3.3. Let u be the solution of (1.1), and v be the solution of the following

initial value problem

cDα
0,tv(t) + v(t) = a(t)v(t) + f(t, v(t)), 0 < α ≤ 1,

v(0) = v0.
(3.2)
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Moreover, let for any very small ǫ > 0, δ = (1 − M1 − M2)ǫ. Then under the

conditions of Theorem 3.2, we have

‖u− v‖∞ = O

(
|u0 − v0|

1−M1 −M2

)
.

Proof. Since u is solution of (1.1) and v is solution of (3.2) satisfying the initial

condition v(0) = v0. Then

‖u− v‖∞ ≤ |u0 − v0|Eα,1(−t
α) +

∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)(f(τ, u(τ))− f(τ, v(τ)))dτ

∣∣∣∣

+

∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)(a(τ)u(τ) − a(τ)v(τ))dτ

∣∣∣∣

≤ |u0 − v0|Eα,1(−t
α) +

∫ t

0

Eα,1(−(t− τ)α)|f(τ, u(τ)) − f(τ, v(τ))|dτ

+

∫ t

0

Eα,1(−(t− τ)α)|a(τ)u(τ) − a(τ)v(τ)|dτ

≤ |u0 − v0|+

∫ t

0

‖f(τ, u(τ))− f(τ, v(τ))‖∞dτ +

∫ t

0

a(τ)|u(τ) − v(τ)|dτ

≤ |u0 − v0|+

∫ t

0

L(τ)‖u(τ) − v(τ)‖∞dτ +

∫ t

0

a(τ)|u(τ) − v(τ)|dτ

≤ |u0 − v0|+ ‖u(τ)− v(τ)‖∞

∫ t

0

L(τ)dτ + ‖u(τ)− v(τ)‖∞

∫ t

0

a(τ)dτ

≤ |u0 − v0|+M2‖u(τ)− v(τ)‖∞ +M1‖u(τ)− v(τ)‖∞,

implies ‖u− v‖∞ = O
(

|u0−v0|
1−M1−M2

)
as desired.

Remark 3.4. From Theorem 3.2 and Theorem 3.3, it is clear that solution of (1.1)

is asymptotically stable.

Theorem 3.5. Suppose that (H1) holds and there exist constants ρ1, ρ2 such that

0 < ρ1 < 1, ρ2 ∈ (0, 1 − ρ1) and a uniformly continuous function f on the compact

set [0, χ1]×M(ǫ) so that for given ǫ1 > 0, exists a δ1 > 0 such that

(H5) |f(t, u)− f(t, v)| < ǫ1
χ1

whenever ||u− v||∞ < δ1.

Then the solution u ≡ 0 of (1.1) is stable in Banach space B.

Proof. Let 0 < δ < (1 − ρ1 − ρ2)ǫ. Consider the non-empty closed convex subset

M(ǫ) ⊆ B, and define two mappings F1, F2 on M(ǫ) for t ≥ 0, as follows:

F1u(t) =

∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ,

F2u(t) = x0Eα,1(−t
α) +

∫ t

0

Eα,1(−(t− τ)α)a(τ)u(τ)dτ.
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For u ∈ M(ǫ) and t ∈ [0, χ1], we obtain

∣∣F1u(t)
∣∣ =

∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ

∣∣∣∣ ≤ ||f ||∞|t| ≤ ||f ||∞χ1 <∞, (3.3)

∣∣F2u(t)
∣∣ =

∣∣∣∣u0Eα,1(−t
α) +

∫ t

0

Eα,1(−(t− τ)α)a(τ)u(τ)dτ

∣∣∣∣

≤|u0|+ ρ2||u||∞ <∞. (3.4)

Then F1M(ǫ) ⊆ B and F2M(ǫ) ⊆ B. Now we prove the existence of at least one fixed

point of the operator F1 + F2 in M(ǫ).

Firstly, we prove that F1u+ F2v ∈ M(ǫ) for all u, v ∈ M(ǫ).

For any u, v ∈ M(ǫ), from (H1) we get that

sup
t≥0

∣∣F1u+ F2v
∣∣ = sup

t≥0

{∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ

+ u0Eα,1(−t
α) +

∫ t

0

Eα,1(−(t− τ)α)a(τ)u(τ)dτ

∣∣∣∣
}

≤ ρ1ǫ + δ + ρ2ǫ ≤ ǫ,

which implies F1u+ F2v ∈ M(ǫ) for all u, v ∈ M(ǫ).

Secondly, we prove that F1M(ǫ) is relatively compact in B.

Taking 0 ≤ t1 ≤ t2 ≤ t, we have

∣∣F1u(t1)−F1u(t2)
∣∣ =

∣∣∣∣
∫ t1

0

Eα,1(−(t1 − τ)α)f(τ, u(τ))dτ

−

∫ t2

0

Eα,1(−(t2 − τ)α)f(τ, u(τ))dτ

∣∣∣∣

≤||f ||∞(t2 − t1) → 0,

as t1 → t2. Now, let u, ũ ∈ M(ǫ) such that ||u− ũ||∞ < δ1. Then, in view of (H5), we

obtain

|f(t, u)− f(t, ũ)| <
ǫ1

χ1
for all t ∈ [0, χ1].

Hence,

∣∣(F1u)(t)− (F1ũ)(t)
∣∣ =

∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ

−

∫ t

0

Eα,1(−(t− τ)α)f(τ, ũ(τ))dτ

∣∣∣∣

≤
ǫ1

χ1
|t| = ǫ1,

which proves our required conclusion.
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Thirdly, we argue that F2 : M(ǫ) → B is a contraction mapping.

For any u, v ∈ M(ǫ), from (H1), we get

sup
t≥0

∣∣F2u(t)−F2v(t)
∣∣ = sup

t≥0

{∣∣∣∣
∫ t

0

Eα,1(−(t− τ)α)a(τ)(u(τ) − v(τ))dτ

∣∣∣∣
}

≤ ρ2||u− v||∞ < ||u− v||∞.

Hence, the operator F1 + F2 has at least one fixed point in M(ǫ).

Finally, for any ǫ2 > 0, if 0 < δ2 < (1− ρ1 − ρ2)ǫ2, then |u0| < δ2 implies that

||u||∞ =sup
t≥0

{∣∣∣∣u0Eα,1(−t
α) +

∫ t

0

Eα,1(−(t− τ)α)a(τ)u(τ)dτ

+

∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ

∣∣∣∣
}

≤ǫ2.

Thus, the solution of (1.1) is stable in Banach space B.

Theorem 3.6. Assume that all the conditions of Theorem 3.5 are fulfilled. And

there exists a function φρ(t) ∈ L1[0, χ1], φρ(t) > 0 for any ρ > 0, such that |τ | ≤ ρ

implies

|f(t, τ)| ≤ φρ(t), t ∈ [0,∞).

Then the zero solution of (1.1) is asymptotically stable.

Proof. Stability of zero solution is guaranteed by Theorem 3.5. Now, we prove that

the zero solution of (1.1) is attractive.

Defining

M∗(ρ) = {u : u ∈ M(ρ), lim
t→∞

u(t) = 0} for any ρ > 0.

For this we will show that, for any u, v ∈ M∗(ρ), F1u + F2v ∈ M∗(ρ) that is, as

t→ ∞, F1u(t) + F2v(t) → 0, where

F1u(t) + F2v(t) = u0Eα,1(−t
α) +

∫ t

0

Eα,1(−(t− τ)α)f(τ, u(τ))dτ

+

∫ t

0

Eα,1(−(t− τ)α)a(τ)u(τ)dτ.

In fact, for u, v ∈ M∗(ρ), stem from the similar argument used in the proof of

the second step of Theorem 3.5, and we obtain our required conclusion by (2.2), (H1)

and by the hypothesis that φρ(t) ∈ L1[0, χ1].

Finally, we give an example to illustrate our result.
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Example 3.7. Consider the following non-linear fractional differential equation

cD
1

2

0,tu(t) + u(t) =
1

3
u cos t+ u2e−(u2+t2), t ≥ 0

u(0) = u0,

where u0 ∈ R, a(t) = 1
3 cos t, f(t, u) = u2e−(u2+t2). Obviously, f(t, 0) ≡ 0. Let

ρ1 = 1
2 and ρ2 = 1

3 , so we get supt≥0

∫ t

0
a(τ)dτ ≤ 1

3 , that is assumption (H1) is

satisfied. Now by computations we have

‖f‖∞ = sup
t≥0

|f(t, u)| =
1

e
, χ1 =

ρ1ǫ

‖f‖∞
=

ǫ

2e
, ǫ > 0.

And clearly f is uniformly continuous on the compact set [0, χ1]×M(ǫ), whereM(ǫ) =

{u : u ∈ B, ‖u‖∞ < ǫ}. Further we choose ǫ1 = ǫ > 0, and found δ1 = 2e
M1

> 0, for

some constant M1 > 0, such that

|f(t, u)− f(t, v)| ≤ |u+ v||u− v| ≤ M1|u− v| < 2e, whenever |u− v| < δ1.

Since Theorem 3.5 fulfilled. Hence the trivial solution of (1.1) is stable in Banach

space B.
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