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1. INTRODUCTION

Let M be a closed smooth Reimannian manifold, and let Diff(M) be the space of

diffeomorphisms of M endowed with the C1 topology. Denote by d the distance

on M induced from a Riemannian metric ‖ · ‖ on the tangent bundle TM . Let

f ∈ Diff(M). We say that f is expansive if there is e > 0 such that for any x, y ∈ M

if d(f i(x), f i(y)) < e for all i ∈ Z then x = y.

In differentiable dynamical systems, a main goal is the stability theory, and many

peoples have studied the topic (see [3, 4, 12, 17, 18]). Among the various properties,

expansiveness has been used to investigate the stability theory. For instance, Mañé

[17] proved that a diffeomorphism f belongs to the C1-interior of the set of expansive

diffeomorphisms coincides with the set of quasi-Anosov diffeomorphisms. Here f is

quasi-Anosov if for all v ∈ TM \ {0}, the set {‖Dfn(v)‖ : n ∈ Z} is unbounded. Lee

[14] proved that a diffeomorphism f belongs to the C1-interior of the set of measure

expansive diffeomorphisms coincides with the set of quasi-Anosov diffeomorphisms.

Sakai et al [20] proved that a diffeomorphism f belongs to the C1-interior of the set of
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measure expansive diffeomorphisms coincides with the set of quasi-Anosov diffeomor-

phisms. Sakai [19] roved that a diffeomorphism f belongs to the C1-interior of the set

of continuum-wise expansive diffeomorphisms coincides with the set of quasi-Anosov

diffeomorphisms.

From now, we can find a general expansivities - N-expansive [15], measure expan-

sive [16], countably expansive [16], continuum-wise expansive [8], etc. We say that f

is N-expansive if there is e > 0 such that for any x ∈ M , the number of elements of

the set Γe(x) = {y ∈ M : d(f i(x), f i(y)) < e for all i ∈ Z} is less than N. We say that

f is countably expansive if there is e > 0 such that for x ∈ M , the number of elements

of the set Γe(x) is countable, where e is an expansive constant for f.

Note that if a diffeomorphism f is expansive then Γe(x) = {x} for x ∈ M. Thus

if a diffeomorphism f is expansive then f is countably expansive, but the converse is

not true (see [16]).

The following notion was introduced by Morales and Sirvent [16]. For a Borel

probability measure µ on M , we say that f is µ-expansive if there is δ > 0 such that

µ(Γe(x)) = 0 for all x ∈ M.

Definition 1.1. We say that f is measure expansive if it is µ-expansive for every

non-atomic Borel probability measure µ on M .

Let Λ be a closed f -invariant set. We say that Λ is hyperbolic if the tangent

bundle TΛM has a Df -invariant splitting Es ⊕ Eu and there exist constants C > 0

and 0 < λ < 1 such that

‖Dxf
n|Es

x
‖ ≤ Cλn and ‖Dxf

−n|Eu
x
‖ ≤ Cλn

for all x ∈ Λ and n ≥ 0. If Λ = M then f is said to be Anosov.

It is well know that if a diffeomorphism f is Anosov then it is quasi-Anosov, but

the converse is not true (see [6]). Note that if a diffeomorphism f is Anosov then f is

expansive, N-expansive, measure expansive, countably expansive and continuum-wise

expansive. In the paper, we consider measure expansivity.

A subset G ⊂ Diff(M) is called residual if it contains a countable intersection

of open and dense subsets of Diff(M). A dynamic property is called C1generic if

it holds in a residual subset of Diff(M). Arbieto [2] proved that C1 generically, if a

diffeomorphism f is expansive then it is Axiom A without cycles. Lee [14] proved that

C1 generically, if a diffeomorphism f is N-expansive then it is Axiom A without cycles.

Yang and Gan [21] proved that C1 generically, if a homoclinic class is expansive then

it is hyperbolic. For measure expansive diffeomorphisms, Koo et al [9] proved that

C1 generically, if a locally maximal homoclinic class is measure expansive then it is

hyperbolic. Lee and Lee [10] proved that if the homoclinic class is C1 robust way

then it is hyperbolic which is a general result of [11]. From the result of [9], Lee
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[13] studied in a general condition and showed that if a homoclinic class is measure

expansive then it is hyperbolic.

For these results, we consider measure expansiveness for C1 generic diffeomorphsims.

Theorem A For C1 generic f ∈ Diff(M), if f is measure expansive then it is Axiom

A without cycles.

2. PROOF OF THEOREM A

Let M be as before, and let f ∈ Diff(M). The following Franks’ lemma [5] will play

essential roles in our proofs.

Lemma 2.1. Let U(f) be any given C1-neighborhood of f . Then there exist ǫ > 0

and a C1-neighborhood U0(f) ⊂ U(f) of f such that for given g ∈ U0(f), a finite set

{x1, x2, · · · , xN}, a neighborhood U of {x1, x2, . . . , xN} and linear maps Li : Txi
M →

Tg(xi)M satisfying ‖Li−Dxi
g‖ ≤ ǫ for all 1 ≤ i ≤ N , there exists ĝ ∈ U(f) such that

ĝ(x) = g(x) if x ∈ {x1, x2, · · · , xN} ∪ (M \ U) and Dxi
ĝ = Li for all 1 ≤ i ≤ N .

Denote by P (f) the set of periodic points of f and by Ph(f) the set of hyperbolic

periodic points of f.

Lemma 2.2. If f ∈ Diff(M) has a non-hyperbolic periodic point, then for any

neighborhood U(f) of f and any η > 0, there are g ∈ U(f) and a curve γ with the

following properties:

1. γ is g periodic, that is, there is n ∈ Z such that gn(γ) = γ;

2. the length of gi(γ) is less than η, for all i ∈ Z;

3. the two end points of γ are hyperbolic periodic points of g, and γ is normally

hyperbolic with respect to g.

Proof. Let U(f) be a C1 neighborhood of f . Suppose that p ∈ P (f) is not a

hyperbolic point of f. Let U0(f) ⊂ U(f) be a C1 neighborhood given by Lemma 2.1.

Then there is g ∈ U0(f) such that Dpg
π(p) has an eigenvalue λ with |λ| = 1. For

simplicity, we may assume that gπ(p)(p) = g(p) = p. Denote by Ec
p the eigenspace

corresponding to λ. If λ ∈ R then dimEc
p = 1 and if λ ∈ C then dimEc

p = 2.

First, we consider dimEc
p = 1. Then we assume that λ = 1 (the other case is

similar). By Lemma 2.1, there are ǫ > 0 and h ∈ U(f) such that

· h(p) = g(p) = p,

· h(x) = expp ◦Dpg ◦ exp−1
p (x) if x ∈ Bǫ(p), and
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· h(x) = g(x) if x /∈ B4ǫ(p).

Since λ = 1, we can construct a closed small arc Ip ⊂ Bǫ(p) ∩ expp(E
c
p(ǫ)) with its

center at p such that

· diamIp = ǫ/4,

· h(Ip) = Ip, and

· h|Ip
is the identity map.

Here Ec
p(ǫ) is the ǫ-ball in Ec

p centered at the origin −→o p. From Franks’ lemma, we can

take h1 C1 close to h (C1 close to f), such that the two end points of Ip can make

hyperbolic points for h1, and h1 satisfies the above construction of the small arc Ip.

Then Ip is normally hyperbolic with respect to h1, and for any η < ǫ/4, the length

of Ip is less than η.

Finally, we consider dimEc
p = 2. For convenience, we assume that gπ(p)(p) =

g(p) = p. By Lemma 2.1, there is ǫ > 0 and g1 ∈ U(f) such that

· g1(p) = g(p) = p,

· g1(x) = expp ◦Dpg ◦ exp−1
p (x) if x ∈ Bǫ(p), and

· g1(x) = g(x) if x /∈ B4ǫ(p).

For any v ∈ Ec
p(ǫ), there is l > 0 such that Dpg

l(v) = v. Take u ∈ Ec
p(ǫ) such

that ‖u‖ = ǫ/2. As in the first case, we can construct a closed connected small arc

Jp ⊂ Bǫ(p) ∩ expp(E
c
p(ǫ)) such that

· diamJp = ǫ/4,

· gl1(Jp) = Jp, and

· gl1|Jp
is the identity map.

As in the proof of the first case, there is h C1 close to g1 such that Jp is normally

hyperbolic with respect to h, and for any η < ǫ/4, the length of Jp is less than η. �

Remark 2.3. (a) By the persistency of normally hyperbolic manifold we know

that there is a neighborhood U(g) of g such that for any g̃ ∈ U(g) there is a

curve γ̃ close to γ such that all properties of γ listed in the Lemma 2.2 is also

satisfied for γ̃.

(b) For convenience, we call γ is a ε-simply periodic curve for g if γ satisfies the

items in the Lemma 2.2.
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We say that f is Axiom A if the non-wandering set Ω(f) is hyperbolic and it is

the closure of P (f). A point x ∈ M is said to be non-wandering for f if for any non-

empty open set U of x there is n ≥ 0 such that fn(U) ∩ U 6= ∅. Denote by Ω(f) the

set of all non-wandering points of f. It is clear that P (f) ⊂ Ω(f). A diffeomorphism

f is Ω-stable if there is a C1-neighborhood U(f) of f such that for any g ∈ U(f) there

is a homeomorphism h : Ω(f) → Ω(g) such that h ◦ f = g ◦ h, where Ω(g) is the

non-wandering set of g. For f ∈ Diff(M), we say that f is the star diffeomorphism

(or f satisfies the star condition) if there is a C1-neighborhood U(f) of f such that

all periodic points of g ∈ U(f) are hyperbolic. Denote by F(M) the set of all star

diffeomorphisms. Aoki [1] and Hayashi [7] showed that for any dimension case, if

f ∈ F(M) then f is Axiom A without cycles.

Lemma 2.4. There is a residual set G ⊂ Diff(M) such that for any f ∈ G,

· either f is a star diffeomorphism,

· or for any ε > 0 there is a periodic curve γ such that the length of fn(γ) is less

than ε, for any n ∈ Z.

Proof. Let Hn be the set of C1 diffeomorphisms f such that f has a normally

hyperbolic γ which is 1/n-simply periodic curve (n ∈ N). By Remark 2.3, Hn is open.

Let Nn = Diff(M) \ Hn. Then Hn(η) ∪ Nn(η) is open and dense in Diff(M). Let

G =
⋂

n∈N+

(Hn ∪ Nn).

Then G is C1 residual in Diff(M). Let f ∈ G and assume f is not the star diffeomor-

phism. Then we know that f ∈ Hn for any n ∈ N+ by Lemma 2.2. Hence f /∈ Nn

and f ∈ Hn for any n ∈ N. Thus we know that f has a normally hyperbolic γ which

is ε-simply periodic curve, for any ε > 0. �

Proof of Theorem A. Let f ∈ G be measure expansive. Suppose by contradiction

that f 6∈ F(M). From Lemma 2.4, for any ε > 0 there is a periodic curve γ such

that the length of f i(γ) is less than ε, for any i ∈ Z. Let µγ be a normalized

Lebesgue measure on γ, and define a non-atomic Borel probability measure µ by

µ(C) = µγ(C ∩ γ), for any Borel set C of M . For x ∈ M , let Γǫ(x) = {y ∈ M :

d(f i(x), f i(y)) ≤ ǫ for all i ∈ Z}. Since fn(γ) = γ for some n ∈ Z, for x ∈ γ, we define

∆ǫ(x) = {y ∈ γ : d(f in(x), f in(y)) ≤ ǫ for all i ∈ Z}. Clearly ∆ǫ(x) ⊂ Γǫ(x). Then

we have

0 < µ(∆ǫ(x)) ≤ µ(Γǫ(x)).

This is a contradiction. Thus if f ∈ G is measure expansive then it is Axiom A

without cycles.
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de Matemática, 2013.
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