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ABSTRACT: In this paper, we study the following periodic boundary value prob-

lem of fourth-order ordinary differential equation
{

u(4)(t) + αu′′(t)− ρ4u(t) + λf(t, u(t)) = 0, t ∈ [0, 2π],

u(i)(0) = u(i)(2π), i = 0, 1, 2, 3,

where α and ρ are constants satisfying ρ 6= 0 and 4α + 16ρ4 < 1, and λ > 0 is a

parameter. By imposing some conditions on the nonlinear term f , we obtain the

existence and multiplicity of positive solutions to the above problem for suitable λ.

The main tool used is Guo-Krasnoselskii fixed point theorem.
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1. INTRODUCTION

Boundary value problems (BVPs for short) of fourth-order ordinary differential equa-

tions have received much attention due to their striking applications to engineering,

physics, material mechanics and fluid mechanics (see [1], [2], [3], [4], [5], [6], [7], [8],

[9], [10], [11] and the references therein). However, in the existing literature, most

of the boundary conditions were separated or the second derivative term of unknown

function (i.e., bending term) was not included in the discussed equation. For example,

in 1995, by applying Guo-Krasnoselskii fixed point theorem, Ma and Wang (see [2])
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established some existence results of positive solutions for the BVP consisting of the

fourth-order equation without bending term

d4y

dx4
− h(x)f(y(x)) = 0

and the separated boundary conditions

y(0) = y(1) = y′′(0) = y′′(1) = 0

or

y(0) = y′(1) = y′′(0) = y′′′(1) = 0.

In 2003, Li (see [3]) studied the existence of positive solutions for the BVP formed

by the fourth-order equation with bending term

u(4)(t) + βu′′(t)− αu(t) = f(t, u(t))

and the separated boundary conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0.

The main tool used was the fixed point index theory.

It is worth mentioning that, in 2011, by using the theory of the fixed point index

in cones, Li (see [8]) obtained the existence of at least one positive solution for the

periodic BVP (PBVP for short) consisting of the fourth-order equation with bending

term

u(4)(t)− βu′′(t) + αu(t) = f(t, u(t), u′′(t))

and the periodic boundary conditions

u(i)(0) = u(i)(1), i = 0, 1, 2, 3,

where 0 < α < (β2 + 2π2)2, β > −2π2 and α
π4 + β

π2 + 1 > 0.

In 2015, Pei and Chang (see [11]) considered the existence of positive solutions for

the PBVP formed by the fourth-order equation without bending term

u(4)(t)− ρ4u(t) + λf(t, u(t)) = 0, t ∈ [0, 2π]

and the periodic boundary conditions

u(i)(0) = u(i)(2π), i = 0, 1, 2, 3,

where ρ ∈ (0, 12 ) was a constant and λ > 0 was a parameter. Their main tool was the

Guo-Krasnoselskii fixed point theorem.
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Motivated greatly by the above-mentioned works, in this paper, we consider the

existence and multiplicity of positive solutions for the following PBVP consisting of

the fourth-order equation with bending term and periodic boundary conditions

{

u(4)(t) + αu′′(t)− ρ4u(t) + λf(t, u(t)) = 0, t ∈ [0, 2π],

u(i)(0) = u(i)(2π), i = 0, 1, 2, 3.
(1)

Throughout this paper, we always assume that α and ρ are constants satisfying ρ 6= 0

and 4α + 16ρ4 < 1, f ∈ C([0, 2π] × [0,+∞), [0,+∞)) and λ > 0 is a parameter.

Obviously, the problem in [11] is a special case of the PBVP (1). Moreover, if we let

α = 0, then ρ ∈ (− 1
2 , 0) ∪ (0, 12 ), which is different from the restriction in [11].

2. PRELIMINARIES

For convenience, we denote

A1 =

√

α2 + 4ρ4 + α

2
and A2 =

√

α2 + 4ρ4 − α

2
.

Since ρ 6= 0 and 4α+ 16ρ4 < 1, it is easy to know that 0 < A1 < 1
4 and A2 > 0.

Let

u′′(t) +A1u(t) = x(t), t ∈ [0, 2π].

Then it is not difficult to verify that the PBVP (1) is equivalent to the PBVP











− x′′(t) +A2x(t) = λf

(

t,

∫ 2π

0

H(t, s)x(s)ds

)

, t ∈ [0, 2π],

x(i)(0) = x(i)(2π), i = 0, 1,

(2)

where

H(t, s) =
1

2
√
A1

(

1− cos
(

2
√
A1π

) )











































































sin
(

√

A1 (s− t)
)

+

sin
(

√

A1(2π + t− s)
)

,

0 ≤ t ≤ s ≤ 2π,

sin
(

√

A1(t− s)
)

+

sin
(

√

A1(2π + s− t)
)

,

0 ≤ s ≤ t ≤ 2π.

(3)

Lemma 1. H(t, s) defined by (3) has the following properties:

(1) H(t, s) > 0, (t, s) ∈ [0, 2π]× [0, 2π];

(2)
∫ 2π

0
H(t, s)ds = 1

A1
, t ∈ [0, 2π].
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Proof. (1) Since the proof of the case when 0 ≤ s ≤ t ≤ 2π is similar, we only prove

the case when 0 ≤ t ≤ s ≤ 2π. Let 0 ≤ t ≤ s ≤ 2π. Then in view of 0 <
√
A1π < π

2

and −π
2 <

√
A1(π + t− s) < π

2 , we have

H(t, s) =
sin

(√
A1(s− t)

)

+ sin
(√

A1(2π + t− s)
)

2
√
A1

(

1− cos
(

2
√
A1π

))

=
sin

(√
A1π

)

cos
(√

A1(π + t− s)
)

√
A1

(

1− cos
(

2
√
A1π

))

=
cos

(√
A1(π + t− s)

)

2
√
A1sin

(√
A1π

)

> 0.

(2) For any t ∈ [0, 2π],

∫ 2π

0

H(t, s)ds

=

∫ t

0
sin

(√
A1(t− s)

)

+ sin
(√

A1(2π + s− t)
)

ds

2
√
A1

(

1− cos
(

2
√
A1π

)) +

∫ 2π

t
sin

(√
A1(s− t)

)

+ sin
(√

A1(2π + t− s)
)

ds

2
√
A1

(

1− cos
(

2
√
A1π

))

=
1− cos

(

2
√
A1π

)

A1

(

1− cos
(

2
√
A1π

))

=
1

A1
.

Lemma 2. If the PBVP (2) has a positive solution, then the PBVP (1) has also a

positive solution.

Proof. Suppose that x is a positive solution of the PBVP (2). Let

u(t) =

∫ 2π

0

H(t, s)x(s)ds, t ∈ [0, 2π].

Then it follows from (1) of Lemma 1 that u is a positive solution of the PBVP (1).

Lemma 3. For any y ∈ C[0, 2π], the PBVP
{

− x′′(t) +A2x(t) = y(t), t ∈ [0, 2π],

x(i)(0) = x(i)(2π), i = 0, 1
(4)

has a unique solution

x(t) =

∫ 2π

0

G(t, s)y(s)ds, t ∈ [0, 2π],
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where

G(t, s) =
1

2
√
A2(e2

√
A2π − 1)







































e
√
A2(2π+t−s) + e

√
A2(s−t),

0 ≤ t ≤ s ≤ 2π,

e
√
A2(2π+s−t) + e

√
A2(t−s),

0 ≤ s ≤ t ≤ 2π.

(5)

Proof. In view of the equation in (4), we can suppose that

x(t) = C1(t)e
√
A2t + C2(t)e

−
√
A2t, t ∈ [0, 2π]. (6)

So,

x′(t) = C′
1(t)e

√
A2t +

√

A2C1(t)e
√
A2t+

C′
2(t)e

−
√
A2t −

√

A2C2(t)e
−
√
A2t, t ∈ [0, 2π].

If we let

C′
1(t)e

√
A2t + C′

2(t)e
−
√
A2t = 0, t ∈ [0, 2π], (7)

then

x′(t) =
√

A2C1(t)e
√
A2t −

√

A2C2(t)e
−
√
A2t, t ∈ [0, 2π]

and

x′′(t) =
√

A2C
′
1(t)e

√
A2t +A2C1(t)e

√
A2t−

√

A2C
′
2(t)e

−
√
A2t +A2C2(t)e

−
√
A2t, t ∈ [0, 2π]. (8)

Therefore, it follows from the equation in (4), (6) and (8) that

−
√

A2C
′
1(t)e

√
A2t +

√

A2C
′
2(t)e

−
√
A2t = y(t), t ∈ [0, 2π]. (9)

By (7) and (9), we get

C′
1(t) = −e−

√
A2t

2
√
A2

y(t), C′
2(t) =

e
√
A2t

2
√
A2

y(t), t ∈ [0, 2π].

So,

C1(t) = C1(0)−
∫ t

0
e−

√
A2sy(s)ds

2
√
A2

,

C2(t) = C2(0) +

∫ t

0
e
√
A2sy(s)ds

2
√
A2

, t ∈ [0, 2π],

and so,

x(t) = C1(0)e
√
A2t + C2(0)e

−
√
A2t−
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∫ t

0
[e

√
A2(t−s) − e

√
A2(s−t)]y(s)ds

2
√
A2

, t ∈ [0, 2π],

which together with the boundary conditions in (4) implies that

C1(0) =

∫ 2π

0
e
√
A2(2π−s)y(s)ds

2
√
A2(e2

√
A2π − 1)

, C2(0) = −
∫ 2π

0
e
√
A2(s−2π)y(s)ds

2
√
A2(e−2

√
A2π − 1)

.

Therefore,

x(t) =

∫ 2π

0
[e

√
A2(2π+t−s) + e

√
A2(s−t)]y(s)ds

2
√
A2(e2

√
A2π − 1)

−
∫ t

0 [e
√
A2(t−s) − e

√
A2(s−t)]y(s)ds

2
√
A2

=

∫ 2π

0

G(t, s)y(s)ds, t ∈ [0, 2π].

Lemma 4. G(t, s) defined by (5) has the following property:

0 < m :=
e
√
A2π

√
A2(e2

√
A2π − 1)

≤ G(t, s) ≤ e2
√
A2π + 1

2
√
A2(e2

√
A2π − 1)

=: M,

(t, s) ∈ [0, 2π]× [0, 2π].

Proof. Since the proof of the case when 0 ≤ s ≤ t ≤ 2π is similar, we only prove the

case when 0 ≤ t ≤ s ≤ 2π. Let 0 ≤ t ≤ s ≤ 2π. Then

G(t, s) =
e
√
A2(2π+t−s) + e

√
A2(s−t)

2
√
A2(e2

√
A2π − 1)

.

Define

g(x) =
e
√
A2(2π−x) + e

√
A2x

2
√
A2(e2

√
A2π − 1)

, x ∈ [0, 2π].

Then it is easy to verify that g(x) is decreasing on [0, π] and monotonically increasing

on [π, 2π], which together with g(π) = m and g(0) = g(2π) = M shows that

m ≤ g(x) ≤ M, x ∈ [0, 2π].

In view of 0 ≤ t ≤ s ≤ 2π, we have 0 ≤ s− t ≤ 2π. So,

m ≤ G(t, s) = g(s− t) ≤ M.

Let C[0, 2π] be equipped with the maximum norm and

K = {x ∈ C[0, 2π] : x(t) ≥ 0, t ∈ [0, 2π], min
t∈[0,2π]

x (t) ≥ σ‖x‖},
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where 0 < σ = 2e
√

A2π

e2
√

A2π+1
< 1. Then K is a cone in Banach space C[0, 2π].

Now, we define an operator Tλ as follow:

(Tλx)(t)

= λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds, x ∈ K, t ∈ [0, 2π].

Obviously, if x is a nontrivial fixed point of Tλ, then x is a positive solution of the

PBVP (2).

Lemma 5. Tλ : K → K is completely continuous.

Proof. For any x ∈ K, by Lemma 4, we know that

0 ≤ (Tλx)(t) = λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≤ Mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds, t ∈ [0, 2π],

so,

‖Tλx‖ ≤ Mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds,

which together with Lemma 4 shows that

(Tλx)(t) = λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≥ mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≥ m

M
‖Tλx‖

= σ‖Tλx‖, t ∈ [0, 2π],

and so,

min
t∈[0,2π]

(Tλx) (t) ≥ σ‖Tλx‖.

This indicates that Tλ(K) ⊂ K. Moreover, it follows from Arzela-Ascoli theorem that

Tλ : K → K is completely continuous.

Lemma 6. (Guo-Krasnoselskii fixed point theorem (see [12], [13])) Let X be a

Banach space and K be a cone in X. Assume that Ω1 and Ω2 are bounded open

subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let T : K ∩ (Ω2 \ Ω1) → K be a completely

continuous operator such that either

(1) ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω1, and ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω2; or

(2) ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω1, and ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).
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In the remainder of this paper, for any constant c > 0, we define

Ωc = {x ∈ C[0, 2π] : ‖x‖ < c}.

Lemma 7. Let c > 0 be a constant. Then for any x ∈ K ∩ ∂Ωc,

σc

A1
≤

∫ 2π

0

H(s, τ)x(τ)dτ ≤ c

A1
, s ∈ [0, 2π].

Proof. It is easy to prove from the definition of K and Lemma 1.

3. MAIN RESULTS

For convenience, we denote

f0 = lim sup
u→0+

max
t∈[0,2π]

f(t, u)

u
, f0 = lim inf

u→0+
min

t∈[0,2π]

f(t, u)

u
,

f∞ = lim sup
u→+∞

max
t∈[0,2π]

f(t, u)

u
, f∞ = lim inf

u→+∞
min

t∈[0,2π]

f(t, u)

u
,

i0 =















0, f0 6= 0 and f∞ 6= 0,

1, f0 = 0 and f∞ 6= 0, or f0 6= 0 and f∞ = 0,

2, f0 = f∞ = 0,

i∞ =















0, f0 6= +∞ and f∞ 6= +∞,

1, f0 = +∞ and f∞ 6= +∞, or f0 6= +∞ and f∞ = +∞,

2, f0 = f∞ = +∞.

Theorem 8. Assume that i0 6= 0 and there exist [a, b] ⊂ [0, 2π] and r > 0 such that

f(t, u) > 0 for (t, u) ∈ [a, b]× [σ
2r
A1

, r
A1

]. Then there exists λ∗ > 0 such that the PBVP

(1) has at least i0 positive solution(s) for any λ > λ∗.

Proof. Let

m0 = min{f(t, u) : (t, u) ∈ [a, b]× [
σ2r

A1
,
r

A1
]}. (10)

Obviously, m0 > 0.

Choose λ∗ = r
mm0(b−a) . In what follows, for any λ > λ∗, we prove that the PBVP

(1) has at least i0 positive solution(s). Since i0 6= 0, we divide the proof into two

cases:

Case 1: i0 = 1. At this time, f0 = 0 and f∞ 6= 0, or f0 6= 0 and f∞ = 0.

(i) f0 = 0 and f∞ 6= 0:
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Since f0 = 0, there exists r1 ∈ (0, σr) such that

f(t, u) <
A1

2πMλ
u, (t, u) ∈ [0, 2π]× (0,

r1

A1
]. (11)

For any x ∈ K ∩ ∂Ωr1 , in view of Lemma 7, we have

0 <
σr1

A1
≤

∫ 2π

0

H(s, τ)x(τ)dτ ≤ r1

A1
, s ∈ [0, 2π], (12)

so, by (11) and (12), we get

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

<
A1

2πMλ

∫ 2π

0

H(s, τ)x(τ)dτ

≤ r1

2πMλ
, s ∈ [0, 2π], (13)

and so, it follows from Lemma 4 and (13) that

(Tλx)(t) = λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≤ Mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

< r1 = ‖x‖, t ∈ [0, 2π],

which indicates that

‖Tλx‖ < ‖x‖, x ∈ K ∩ ∂Ωr1 . (14)

On the other hand, for any x ∈ K ∩ ∂Ωσr, in view of Lemma 7, we have

σ2r

A1
≤

∫ 2π

0

H(s, τ)x(τ)dτ ≤ σr

A1
<

r

A1
, s ∈ [0, 2π], (15)

so, by (10) and (15), we get

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

≥ m0, s ∈ [a, b], (16)

and so, it follows from Lemma 4 and (16) that

(Tλx)(t) = λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≥ mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≥ mλ

∫ b

a

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≥ mλm0(b− a)

> mλ∗m0(b− a)

= r > σr = ‖x‖, t ∈ [0, 2π],
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which indicates that

‖Tλx‖ > ‖x‖, x ∈ K ∩ ∂Ωσr. (17)

Therefore, it follows from Lemma 6, (14) and (17) that Tλ has a fixed point x1 ∈ K

satisfying

r1 < ‖x1‖ < σr.

This shows that x1 is a positive solution of the PBVP (2). By Lemma 2, we know

that u1(t) =
∫ 2π

0
H(t, s)x1(s)ds, t ∈ [0, 2π] is a positive solution of the PBVP (1).

(ii) f0 6= 0 and f∞ = 0:

Since f∞ = 0, there exists r2 ∈ (r,+∞) such that

f(t, u) <
A1

2πMλ
u, (t, u) ∈ [0, 2π]× [

σr2

A1
,+∞). (18)

For any x ∈ K ∩ ∂Ωr2 , in view of Lemma 7, we have

σr2

A1
≤

∫ 2π

0

H(s, τ)x(τ)dτ ≤ r2

A1
, s ∈ [0, 2π], (19)

so, by (18) and (19), we get

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

<
A1

2πMλ

∫ 2π

0

H(s, τ)x(τ)dτ

≤ r2

2πMλ
, s ∈ [0, 2π], (20)

and so, it follows from Lemma 4 and (20) that

(Tλx)(t) = λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≤ Mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

< r2 = ‖x‖, t ∈ [0, 2π],

which indicates that

‖Tλx‖ < ‖x‖, x ∈ K ∩ ∂Ωr2 . (21)

On the other hand, for any x ∈ K ∩ ∂Ωr, in view of Lemma 7, we have

σ2r

A1
<

σr

A1
≤

∫ 2π

0

H(s, τ)x(τ)dτ ≤ r

A1
, s ∈ [0, 2π], (22)

so, by (10) and (22), we get

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

≥ m0, s ∈ [a, b], (23)
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and so, it follows from Lemma 4 and (23) that

(Tλx)(t) = λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≥ mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≥ mλ

∫ b

a

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≥ mλm0(b− a)

> mλ∗m0(b− a)

= r = ‖x‖, t ∈ [0, 2π],

which indicates that

‖Tλx‖ > ‖x‖, x ∈ K ∩ ∂Ωr. (24)

Therefore, it follows from Lemma 6, (21) and (24) that Tλ has a fixed point x2 ∈ K

satisfying

r < ‖x2‖ < r2.

This shows that x2 is a positive solution of the PBVP (2). By Lemma 2, we know

that u2(t) =
∫ 2π

0
H(t, s)x2(s)ds, t ∈ [0, 2π] is a positive solution of the PBVP (1).

Case 2: i0 = 2. At this time, f0 = f∞ = 0.

First, it follows from the proof of Case 1 that there exist xi ∈ K (i = 1, 2) such

that

r1 < ‖x1‖ < σr < r < ‖x2‖ < r2 (25)

and ui(t) =
∫ 2π

0 H(t, s)xi(s)ds, t ∈ [0, 2π] (i = 1, 2) are positive solutions of the

PBVP (1).

Next, we prove that u1 and u2 are two different positive solutions of the PBVP

(1).

In fact, by Lemma 1 and (25), we get

u1(t) =

∫ 2π

0

H(t, s)x1(s)ds ≤ ‖x1‖
A1

<
σr

A1
<

σ‖x2‖
A1

≤
∫ 2π

0

H(t, s)x2(s)ds = u2(t), t ∈ [0, 2π].

This shows that u1 and u2 are two different positive solutions of the PBVP (1).

Theorem 9. If i∞ 6= 0, then there exists λ∗∗ > 0 such that the PBVP (1) has at

least i∞ positive solution(s) for any 0 < λ ≤ λ∗∗.

Proof. Let γ > 0 be given and

M0 = 1 +max{f(t, u) : (t, u) ∈ [0, 2π]× [
σ2γ

A1
,
γ

A1
]}. (26)
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Choose λ∗∗ = σγ
2πMM0

. In what follows, for any 0 < λ ≤ λ∗∗, we prove that the

PBVP (1) has at least i∞ positive solution(s). Since i∞ 6= 0, we divide the proof into

two cases:

Case 1: i∞ = 1. At this time, f0 = +∞ and f∞ 6= +∞, or f0 6= +∞ and

f∞ = +∞.

(i) f0 = +∞ and f∞ 6= +∞:

Since f0 = +∞, there exists γ1 ∈ (0, σγ) such that

f(t, u) >
A1

2πmσλ
u, (t, u) ∈ [0, 2π]× (0,

γ1

A1
]. (27)

For any x ∈ K ∩ ∂Ωγ1
, in view of Lemma 7, we have

0 <
σγ1

A1
≤

∫ 2π

0

H(s, τ)x(τ)dτ ≤ γ1

A1
, s ∈ [0, 2π], (28)

so, by (27) and (28), we get

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

>
A1

2πmσλ

∫ 2π

0

H(s, τ)x(τ)dτ

≥ γ1

2πmλ
, s ∈ [0, 2π], (29)

and so, it follows from Lemma 4 and (29) that

(Tλx)(t) = λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≥ mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

> γ1 = ‖x‖, t ∈ [0, 2π],

which indicates that

‖Tλx‖ > ‖x‖, x ∈ K ∩ ∂Ωγ1
. (30)

On the other hand, for any x ∈ K ∩ ∂Ωσγ , in view of Lemma 7, we have

σ2γ

A1
≤

∫ 2π

0

H(s, τ)x(τ)dτ ≤ σγ

A1
<

γ

A1
, s ∈ [0, 2π], (31)

so, by (26) and (31), we get

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

< M0, s ∈ [0, 2π], (32)
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and so, it follows from Lemma 4 and (32) that

(Tλx)(t) = λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≤ Mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

< 2πMλM0

≤ 2πMλ∗∗M0

= σγ = ‖x‖, t ∈ [0, 2π],

which indicates that

‖Tλx‖ < ‖x‖, x ∈ K ∩ ∂Ωσγ . (33)

Therefore, it follows from Lemma 6, (30) and (33) that Tλ has a fixed point x1 ∈ K

satisfying

γ1 < ‖x1‖ < σγ.

This shows that x1 is a positive solution of the PBVP (2). By Lemma 2, we know

that u1(t) =
∫ 2π

0 H(t, s)x1(s)ds, t ∈ [0, 2π] is a positive solution of the PBVP (1).

(ii) f0 6= +∞ and f∞ = +∞:

Since f∞ = +∞, there exists γ2 ∈ (γ,+∞) such that

f(t, u) >
A1

2πmσλ
u, (t, u) ∈ [0, 2π]× [

σγ2

A1
,+∞). (34)

For any x ∈ K ∩ ∂Ωγ2
, in view of Lemma 7, we have

σγ2

A1
≤

∫ 2π

0

H(s, τ)x(τ)dτ ≤ γ2

A1
, s ∈ [0, 2π], (35)

so, by (34) and (35), we get

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

>
A1

2πmσλ

∫ 2π

0

H(s, τ)x(τ)dτ

≥ γ2

2πmλ
, s ∈ [0, 2π], (36)

and so, it follows from Lemma 4 and (36) that

(Tλx)(t) = λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≥ mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

> γ2 = ‖x‖, t ∈ [0, 2π],

which indicates that

‖Tλx‖ > ‖x‖, x ∈ K ∩ ∂Ωγ2
. (37)
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On the other hand, for any x ∈ K ∩ ∂Ωγ , in view of Lemma 7, we have

σ2γ

A1
<

σγ

A1
≤

∫ 2π

0

H(s, τ)x(τ)dτ ≤ γ

A1
, s ∈ [0, 2π], (38)

so, by (26) and (38), we get

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

< M0, s ∈ [0, 2π], (39)

and so, it follows from Lemma 4 and (39) that

(Tλx)(t) = λ

∫ 2π

0

G(t, s)f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

≤ Mλ

∫ 2π

0

f

(

s,

∫ 2π

0

H(s, τ)x(τ)dτ

)

ds

< 2πMλM0

≤ 2πMλ∗∗M0

= σγ < γ = ‖x‖, t ∈ [0, 2π],

which indicates that

‖Tλx‖ < ‖x‖, x ∈ K ∩ ∂Ωγ . (40)

Therefore, it follows from Lemma 6, (37) and (40) that Tλ has a fixed point x2 ∈ K

satisfying

γ < ‖x2‖ < γ2.

This shows that x2 is a positive solution of the PBVP (2). By Lemma 2, we know

that u2(t) =
∫ 2π

0
H(t, s)x2(s)ds, t ∈ [0, 2π] is a positive solution of the PBVP (1).

Case 2: i∞ = 2. At this time, f0 = f∞ = +∞.

First, it follows from the proof of Case 1 that there exist xi ∈ K (i = 1, 2) such

that

γ1 < ‖x1‖ < σγ < γ < ‖x2‖ < γ2 (41)

and ui(t) =
∫ 2π

0
H(t, s)xi(s)ds, t ∈ [0, 2π] (i = 1, 2) are positive solutions of the

PBVP (1).

Next, we prove that u1 and u2 are two different positive solutions of the PBVP

(1).

In fact, by Lemma 1 and (41), we get

u1(t) =

∫ 2π

0

H(t, s)x1(s)ds ≤ ‖x1‖
A1

<
σγ

A1
<

σ‖x2‖
A1

≤
∫ 2π

0

H(t, s)x2(s)ds = u2(t), t ∈ [0, 2π].

This shows that u1 and u2 are two different positive solutions of the PBVP (1).
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