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ABSTRACT: A delay-induced predator-prey model with Holling IV functional

response and effect of prey refuge is proposed. The globally asymptotically stability

of the coexist equilibrium and Hopf bifurcation are investigated by the theory of the

differentially dynamical system. The results show that there exist stability switches

and Hopf bifurcation occurs while the gestation delay cross a threshold value.
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1. INTRODUCTION

The predator-prey model has long been and will continue to be widely applied in

understanding the dynamics of interacting populations since the pioneering work of

Lotka and Volterra who first proposed two differential equations that describe the

relationship between predators and prey in 1925 and 1926, respectively [1]. For over

the last one hundred years, the rich and varied dynamics of Lotka-Volterra model

has been researched from various fields such as mathematics, mathematical biology,

ecology, economics, etc [2]. Therefore, it has been modified and improved in many

ways. Such as modifying the functional response of predators to prey population

which defined as the amount of prey catch per predator per unit of time to improve

the realistic application of the proposed predator-prey models [2-13].
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In fact, the dynamical consequences of the predator-prey model can be determined

by much ecological effect, such as Allee effect, harvesting effect, Crowding effect,

habitat complex, prey refuge, etc. Theoretical research and field observations on

population dynamics of prey refuges lead to the conclusion that prey refuges have the

stabilizing and/or destabilizing effect on the considered predator-prey systems [14-

22]. Ruxton [18] proposed a predator-prey model based on the assumption that the

rate of prey moving into refuges is proportional to predator density and the results

showed that the effect of prey refuge has a stabilizing effect. The stabilizing effect was

also observed in a Holling II type predator-prey model studied by Gonzalez-Olivares

and Ramos-Jiliberto [21]. Ma et al. [22] formulated a predator-prey model with a

class of functional response incorporating the effect of prey refuges and observed the

stabilizing and destabilizing effect due to the increases in the prey refuges.

Predator-prey models with time delay were much more realistic since delay oc-

curred in almost every biological situation and assumed to be one of the reasons

of regular fluctuations in population density [23-28]. New reproduction of preda-

tors after consuming prey was not momentary and instantaneous, but mediated by

some time lag required for gestation of predators [24]. Therefore, in order to make a

predator-prey model biologically more realistic, Incorporating this gestation delay in

predator-prey models was essential and interesting.

Motivated by these, the predator-prey model with Holling IV type response func-

tion and the effect of prey refuge is proposed as following form:



















ẋ(t) = rx(1 −
x

K
)− c(1−β)nxny

1+ch(1−β)xn
,

ẏ(t) = ec(1−β)nxny
1+ch(1−β)nxn

− dy,

x(0) = x0 > 0, y(0) = y0 > 0.

(1)

where x(t) and y(t) are the density of prey and predator populations at time t,

respectively, hence are all positive number. The other parameters have the following

biological meanings: r is the intrinsic per capita growth rate of prey population,

K is the prey environmental carrying capacity, c is the attack coefficient and h is

the handing time; e (0 < e < 1) is the conversion efficiency, measuring the number

of newly born predators for each captured prey, d is the per capita death rate of

predators.

Now, the gestation delay is incorporated into system (1), and it is obtained the

following system with time delay:



















ẋ(t) = rx(1 −
x

K
)− c(1−β)nxny

1+ch(1−β)xn
,

ẏ(t) = ec(1−β)nxn(t−τ)y(t−τ)
1+ch(1−β)nxn(t−τ) − dy,

x(ξ) = ϕ(ξ) > 0, y(ξ) = ψ(ξ) > 0, ξ ∈ (−τ, 0].

(2)
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in which τ (τ > 0) is the gestation delay denoting the time lag from the predation of

prey population to the birth of the new predators.

Throughout this paper, we assume that h < e/d and n ≥ 1.

2. EXISTENCE OF EQUILIBRIA

By solving the following equations







rx(1 −
x

K
)− c(1−β)nxny

1+ch(1−β)nxn
= 0,

( ec(1−β)nxn

1+ch(1−β)nxn
− d)y = 0.

(3)

we can obtain all equilibrium points of system (2): E0(0, 0), EK(K, 0), Ẽ(x̃, ỹ), where

x̃ =
1

1− β
n

√

d

c(e − dh)
; ỹ =

erx̃

d
(1 −

x̃

K
).

The equilibrium point Ẽ(x̃, ỹ) is positive if and only if 1 −
x̃

K
> 0, that is, β <

1−
1

K
(

d

c(e − dh)
)1/n.

3. POSITIVITY AND BOUNDEDNESS OF SYSTEM (1)

In order to study the positivity and boundedness for the solutions of system (1),

we denote the function on the right hand of system(1) as G = (xg1, yg2) in which

g1(x, y) = r(1 −
x

K
)− c(1−β)nxn−1y

1+ch(1−β)nxn
,

g2(x, y) =
ec(1−β)nxn

1+ch(1−β)nxn
− d.

Clearly, G ∈ C1(R2
+). Thus G : R2

+ → R2 is locally lipschitz on R2
+ = {(x, y)|x >

0, y > 0}. Hence the fundamental theorem of existence and uniqueness assures exis-

tence and uniqueness of solution of the system (1.1) with the given initial conditions.

The state space of the system is the non-negative cone in R2
+. In the theoretical ecol-

ogy, positivity and boundedness of the system establishes the biological well behaved

nature of system.

Theorem 1. All the solutions of the system (1) with the given initial conditions are

always positive and bounded.

Proof. Firstly, we wish to prove that (x(t), y(t)) ∈ R2
+ for all t ∈ [0,+∞]. We show

this by method of contradiction. Supposing this is not true. Hence, there must exists
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one t̄ ∈ [0,+∞], such that x(t̄) ≤ 0 and y(t̄) ≤ 0. From the system(1), we have

x(t) = x(0) exp(

∫ t

0

g1(x, y)dt),

y(t) = x(0) exp(

∫ t

0

g2(x, y)dt).

Since (x(t), y(t)) are well defined and continuous on [0, t̄], there must exist aM > 0

such that ∀ t ∈ [0, t̄]

x(t) = x(0) exp(

∫ t

0

g1(x, y)dt) ≥ x(0) exp(−Mt̄),

y(t) = x(0) exp(

∫ t

0

g2(x, y)dt) ≥ y(0) exp(−Mt̄).

It is clear that if limit t→ t̄, we obtain

x(t̄) ≥ x(0) exp(−Mt̄) > 0,

y(t̄) ≥ y(0) exp(−Mt̄) > 0,

which is a contradiction.

Hence, all the solutions of the system (1) are always positive.

Secondly, we will prove the boundedness.

Letting V (t) = x(t) + 1
ey(t), then we obtain that

V̇ (t) = rx(1−
x

K
)−

c(1− β)nxny

1 + ch(1− β)nxn
+

c(1− β)nxny

1 + ch(1− β)nxn
−
d

c
y ≤ −dV (t)+(d+r)K.

Integrating both sides of above equation and applying the theorem of differential

inequality, we have

0 < V (t) <
(d+ r)K

d
(1− e−dt) + V (0)e−dt, V (0) = V (x(0), y(0)).

and limt→+∞ V (t) ≤ (d+r)K
d .

Hence, all solutions of system (1) without delay are bounded.

4. STABILITY AND BIFURCATION ANANLYSIS

In this paper, we mainly consider the stability of the positive equilibrium point and

omit study the trivial equilibrium point E0(0, 0) and predator-extinction equilibrium

point EK(K, 0). To do these, the characteristic equation of model (2) at the positive

equilibrium point Ẽ(x̃, ỹ) is given as following form

λ2 − (A+ de−λτ )λ+Be−λτ − C = 0. (4)
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in which

A =
r[(1 − n)K + ch(1− β)nKx̃n − (2 − n)x̃− 2ch(1− β)nx̃n+1]

K(1 + ch(1− β)nx̃n)
−d,

B =
dr[(1 − n)K + ch(1− β)nKx̃n − (2− n)x̃− 2ch(1− β)nx̃n+1]

K(1 + ch(1− β)nx̃n)

+
nder(K − x̃)

K(1 + ch(1− β)nx̃n)
,

C =
dr[(1 − n)K + ch(1− β)nKx̃n − (2− n)x̃− 2ch(1− β)nx̃n+1]

K(1 + ch(1− β)x̃n)
> 0.

When there is no delay, the corresponding characteristic equation (4) is given by

λ2 − (A+ d)λ+B − C = 0. (5)

and the eigenvalues are

λ1,2 =
(A+ d)±

√

(A+ d)2 − 4(B − C)

2
.

The standard qualitative analysis depicts that the locally asymptotic stability of

equilibrium is determined by the sign of the A + d at the corresponding equilibrium

point. The following conclusions can be made on the locally asymptotic stability of

boundary equilibria. Therefore, the positive equilibrium point Ẽ(x̃, ỹ) is locally stable

if and only if

A+ d < 0

⇔ r(1 −
2x̃

K
)−

n

1 + ch(1− β)nx̃n
[r(1 − x̃

K )] < 0

⇔ r(1 −
2x̃

K
)−

n(e− dh)

(e − dh) + d
[r(1 −

x̃

K
)] < 0

⇔
nr(e − dh)

(e− dh) + d
[(1− n)(e − dh) + d− ((2 − n)(e− dh) + 2d)

x̃

K
] < 0

⇔ [(1− n)(e − dh) + d]− [(2− n)(e − dh) + 2d]
1

K(1− β)
n

√

d

c(e − dh)
< 0.

(6)

Therefore, we can obtain the following theorem.

Theorem 2. If [(1−n)(e−dh)+d]− [(2−n)(e−dh)+2d]
1

K(1− β)
n

√

d

c(e− dh)
< 0,

h < e/d and n ≥ 1, then system (2) is globally asymptotically stable without time delay

around the equilibrium point Ẽ(x̃, ỹ).

Proof. Now, we will prove the global stability of the positive equilibrium point

Ẽ(x̃, ỹ).
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We first choose a Lyapunov function defined as follows

W (x(t), y(t)) =

∫ x

x̃

u− x̃

u
du+ p

∫ y

ỹ

w − ỹ

w
dw (p > 0).

By simple computation on the region Σ = {(x, y)|x ∈ B(x̃), y > 0}, we obtain

that
dW

dt
=
x− x̃

x

dx

dt
+ p

y − ỹ

y

dy

dt

= (x− x̃)[r(1 −
x

K
)−

c(1− β)nxn−1y

1 + ch(1− β)nxn
] + p(y − ỹ)(

ec(1− β)nxn

1 + ch(1− β)nxn
− d)

= (x− x̃)[r(1 −
x

K
) +

c(1− β)nx̃n−1ỹ

1 + ch(1− β)nx̃n
− r(1 −

x̃

K
)−

c(1− β)nxn−1y

1 + ch(1− β)nxn
]

+p(y − ỹ)[
ec(1− β)nxn

1 + ch(1− β)nxn
−

ec(1− β)nx̃n

1 + ch(1− β)nx̃n
]

= −
r

K
(x− x̃)2 − y(x− x̃)(

c(1 − β)nx̃n−1

1 + ch(1− β)nx̃n
−

c(1− β)nxn−1

1 + ch(1− β)nxn
)

+(x− x̃)(y − ỹ)
c(1− β)nx̃n−1

1 + ch(1− β)nx̃n

+p(y − ỹ)[
ec(1− β)nxn

1 + ch(1− β)nxn
−

ec(1− β)nx̃n

1 + ch(1− β)nx̃n
]

= −
r

K
(x− x̃)2 −

c(1− β)n(n− 1)x̃n−2y

1 + ch(1− β)nx̃n
(x− x̃)2

+[
c(nep− 1)(1− β)nx̃n−1

1 + ch(1− β)nx̃n
](x − x̃)(y − ỹ).

Selecting p = 1
ne > 0, then we have

dW

dt
= −

r

K
(x− x̃)2 − c(1− β)n(n− 1)x̃n−2y(x− x̃)2.

Hence, dW
dt < 0 if n ≥ 1.

For the delay-induced system (2), the the equilibrium point Ẽ(x̃, ỹ) will be asymp-

totically stable if all the roots of the corresponding characteristic equation (4) have

negative real parts. To determine the nature of the stability, we require the sign of the

real parts of the roots of the equation (4). We start with the assumption that Ẽ(x̃, ỹ)

is asymptotically stable in case of non-delayed system and then find conditions for

which Ẽ(x̃, ỹ) is still stable for all delays [29]. By Rouche’s Theorem [30] and the

continuity, the transcendental equation (4) has roots with positive real parts if and

only if it has purely imaginary roots. From this, we shall be able to find conditions

for all eigenvalues to have negative real parts.
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Let

λ(τ) = η(τ) + iω(τ),

in which η and ω are real. As the positive equilibrium point Ẽ(x̃, ỹ) of the non-

delayed model is stable, we assume η(0) < 0. By continuity, if τ (τ > 0) is sufficiently

small, we still have η(τ) < 0 (τ > 0) and the positive equilibrium point Ẽ(x̃, ỹ) is

stable. The change of stability will occur at some values of τ for which η(τ) = 0 and

ω(τ) 6= 0, let τ be such that η(τ ) = 0 and ω(τ) = ω 6= 0. Hence, the λ(τ ) = iω is the

purely imaginary root. Now, substituting iω into the characteristic equation (4), it is

obtained

−ω2 − i(A+ de−iω τ )ω +Be−iω τ − C = 0. (7)

Separating the real and imaginary parts, we have






−ω2 − C = −dω sin(ω τ)−B cos(ω τ),

Aω = B sin(ω τ )− dω cos(ω τ ).
(8)

From the above equations (8), we get

ω4 +Rω2 + S = 0. (9)

in which

R = A2 + 2C − d2

= (
r[(1 − n)K + ch(1− β)nKx̃n − (2− n)x̃− 2ch(1− β)nx̃n+1]

K(1 + ch(1− β)nx̃n)
)2 > 0,

S = C2 −B2.

Now, two cases are considered as follows

• if S > 0, then the positive equilibrium point Ẽ(x̃, ỹ) is locally asymptotically

stable since all roots of equation (9) have negative real parts for all delay,

• if if S < 0, then the positive equilibrium point Ẽ(x̃, ỹ) is unstable since equation

(9) has one positive root,

The secondary case implies that the characteristic equation (4) will have a pair of

purely imaginary roots ±iω such that η(τ ) = 0 and ω(τ ) = ω. Solving τ from the

equations (9), we have

τ j =
1

ω
cos−1[

(B − dA)ω2 + dC

B2 + (dω)2
] +

2jπ

ω
j = 0, 1, 2, ... . (10)

Next, we will verify the transversality condition, so differentiating the character-

istic equation (4) with τ

2λ
dλ

dτ
− (A+ de−λτ )

dλ

dτ
− dλe−λτ (−λ− τ

dλ

dτ
) +Be−λτ (−λ− τ

dλ

dτ
) = 0,
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and solving (
dλ

dτ
)−1 associating the characteristic equation (4), we have

(
dλ

dτ
)−1 =

2λ−A

Cλ+Aλ2 − λ3
−

B

Bλ+ dλ2
−
τ

λ
.

Thus, at τ = τ and λ = iω, we can get

(
d(Reλ(τ)

dτ
)−1|τ=τ =

A2 + d2 − 2C + 2ω2

B2 + (dω)2
=

R + 2ω2

B2 + (dω)2
> 0 since R > 0.

According to Theorems 2 and the continuity, the real part of η(τ) will become

positive when τ > τ and the positive equilibrium point Ẽ(x̃, ỹ) becomes globally

stable to unstable and a Hopf bifurcation occurs while τ passes through the threshold

value τ .

Therefore, we can obtain the following theorem

Theorem 3. Assuming

[(1− n)(e − dh) + d]− [(2− n)(e − dh) + 2d]
1

K(1− β)
n

√

d

c(e − dh)
< 0,

h < e/d and n ≥ 1, we have

• if S ≤ 0, then the positive equilibrium point Ẽ(x̃, ỹ) is globally asymptotically

stable for τ < τ and unstable for τ > τ , a Hopf bifurcation occurs as τ passes

through the threshold value τ , where τ =
1

ω
cos−1[

(B − dA)ω2 + dC

B2 + (dω)2
].

• if S > 0, then the positive equilibrium point Ẽ(x̃, ỹ) is globally asymptotically

stable for all τ > 0.
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[23] E. González-Olivars, R. Ramos-Jiliberto, Dynamics consequences of prey refuges

in a simple model system: more prey, few predators and enhanced stability, Ecol.

Model. 166 (2003) 135-146.

[24] Z. Ma, W. Li, Y. Zhao, W. Wang, H. Zhang, Z. Li, Effects of prey refuges on

a predator-prey model with a class of functional responses: The role of refuges,

Math. Biosci. 218 (2009) 73-79.

[25] Y. Gong, J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-

prey model with prey harvesting, Acta Math. Appl. Sinica Eng. Ser. 30 (2014),

239-244.

[26] H. Zhao, X. Zhang, X. Huang, Hopf bifurcation and spatial patterns of a delayed

biological economic system with diffusion, Appl. Math. Comput. 266 (2015),

462-480.

[27] R. Yuan, W. Jiang, Y. Wang, Saddle-node-Hopf bifurcation in a modified Leslie-

Gower predator-prey model with timedelay and prey harvesting, J. Math. Anal.

Appl. 422 (2015), 1072-1090.

[28] D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with

Michaelis-Menten type predator harvesting, Nonlinear Anal. RWA. 33 (2017),

58-82.


