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1. INTRODUCTION

Quenching concept was first introduced by Kawarada [12] in 1975. After that, quench-

ing phenomena, beyond quenching and quenching profiles have been studied by many

researchers (e.g. Acker and Walter [1], 1976; Chan and Kaper [8], 1989; Chan and

Ke [9], 1994; Escobar [4], 2007, and references cited there).

Let T ≤ ∞, a > 0, 0 < r < 1, D = (0, a), Ω = D × (0, T ] and

χ(S) =

{

1 ; if u ∈ S,

0 ; if u /∈ S,

be the characteristic function of the set S. This article studies the steady-state solu-

tion after quenching has occurred of the semilinear parabolic equation with singularity

Mu = ut − uxx − r

x
ux = f(u)χ({u < c}) in Ω, (1)

u(x, 0) = 0 on D̄, (2)

u(0, t) = 0 = u(a, t) for 0 < t < T, (3)

where f is a twice continuously differentiable function on [0, c) for some constant c

with f (0) > 0, f ′ > 0, f ′′ ≥ 0 and limu→c− f (u) = ∞.

The linear operator M = ∂
∂t

− ∂2

∂x2 − r
x

∂
∂x

represents several physical phenomena.

For example, if r is a noninteger, it can be regarded as a first step in the approach to

a theory of generalized axially symmetric heat potentials (cf. Alexiades [2] and Arena

[3]). For 0 ≤ r ≤ 2, it can describe the conduction of heat in a body with r being a

geometric parameter concerning to the shape of the body; for instance, r = 0.5 refers

to heat transfer into one face of a flat cylinder with a small ratio of depth to diameter

(cf. Solomon [13]). Under some appropriate transformations, the operator M can be

transformed to operators which correspond to a stochastic process and problems in

the theory of probability (cf. Chan and Chen [7]).

A solution u is said to quench if there exists an extended real number tq ∈ (0,∞]

such that

max{u(x, t) : 0 ≤ x ≤ a} → c− as t → tq

(cf. Chan and Liu [11]). If tq is finite, then u is said to quench in a finite time. On

the other hand, if tq = ∞, then u is said to quench in infinite time.

Let Hu = xrut − (xrux)x. Then, the problem (1) with the conditions (2) and (3)

can be rewritten as the following problem:

Hu = xrut − (xrux)x = xrf(u)χ({u < c}) in Ω,

u(x, 0) = 0 on D̄,

u(0, t) = 0 = u(a, t) for 0 < t ≤ T.















(4)
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Definition 1. A function u is a weak solution of (4) if and only if

(i) u ∈ C([0, t0];L
1((0, a))) ∩ L∞((0, a)× (0, t0)) for each t0 > 0;

(ii) for any g ∈ C2,1(Ω̄) such that g has a compact support with respect to t and

g(0, t) = 0 = g(a, t),

∫ ∞

0

∫ a

0

uH∗g dxdt+

∫ ∞

0

∫ a

0

xrf(u)χ({u < c})g dxdt = 0, (5)

where H∗ = xr ∂
∂t

+ ∂
∂x

(

xr ∂
∂x

)

is the adjoint operator of H .

By hiring the idea of [8] for a problem with one insulated boundary condition to

the problem (4), where f (u)χ({u < c}) in (4) is being replaced with f (u), we can

deduce that there exists a critical length a∗ such that the solution may exist for all

t > 0 if a < a∗, but the solution approaches c in a finite time if a > a∗. Let τ be the

first finite quenching time of such problem. By modifying the techniques presented

in [10] with the assumptions

f ′(µ)

(

c− µ

f(µ)

)2

≤ K1 and

∫ c

µ

f(s)ds ≤ min{K2(c− µ)f(µ),K3(c− µ)γ},

for 0 ≤ µ < c and some positive constants K1, K2, K3 and γ is such that 0 < γ < 2,

we have the following theorem. As the proof to this theorem is analogous to the proof

presented in [10], we omit the details.

Theorem 2. A weak solution u of (4) exists and it has the following properties

(i) u(x, t) ∈ C2,1({u < c} ∩ Ω) ∩ C1,0(Ω) ∩ C(Ω̄);

(ii) u ≤ c in Ω;

(iii) If u(x, t0) = c for some x ∈ (0, a) and t0 ∈ [τ,∞), then u(x, t) = c for

t ∈ [t0,∞);

(iv) u is nondecreasing with respect to t in {u < c} ∩ Ω;

(v) ux = 0 at the point (x, t) where u(x, t) = c.

In Section 2, we prove that as t tends to infinity, all weak solutions of (4) tend to

the unique solution of the steady-state problem

W (x) = c for b∗s ≤ x ≤ B∗
s , (6)

−(xrW ′(x))′ = xrf(W (x)) for 0 < x < b∗s, W (0) = 0, W (b∗s) = c, (7)

−(xrW ′(x))′ = xrf(W (x)) for B∗
s < x < a, W (B∗

s ) = c, W (a) = 0, (8)
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where b∗s and B∗
s are positive constants to be calculated. These constants determine

the solution profile beyond quenching to the problem (4). We disscuss the bounds

for b∗s and B∗
s . Due to the singularity term, (xrux)x, the exact values for b∗s and

B∗
s cannot be obtained. Therefore, the numerical methods for computing them and

some numerical examples are given in Section 3. Finally, conclusion and discussion

are made in Section 4.

2. BEYOND QUENCHING

The main purpose of this section is to study the behavior of all solutions of the problem

(4) beyond the finite quenching time τ . Let u denote any weak solution of (4). For

t ≥ τ , let b(t) = inf{x : u(x, t) = c}, B(t) = sup{x : u(x, t) = c}, b∗ = limt→∞ b(t)

and B∗ = limt→∞ B(t). A proof similar to those of Lemmas 2 and 6 of Chan and Ke

[9] gives the following result.

Lemma 1. The function b(t) is nonincreasing while the function B(t) is nonde-

creasing; furthermore, b∗ ≥ b∗s > 0 and B∗ ≤ B∗
s < a.

Since u(≤ c) is continuous and nondecreasing with respect to t, it follows from the

Dini Theorem ([14], p.143) that u(x, t) converges uniformly to the limit, limt→ ∞ u(x, t),

which is continuous on [0, a]. Let U(x) = limt→∞ u(x, t).

Intuitively, Lemma 2.1 implies that, as t → ∞, the portion in the domain (0, a)

where u reaches c is broadened. However, since our problem concerns the Dirichlet

boundary conditions at both ends, u cannot reach c on the entire domain. Thus, the

solution profile separates into three segments determined by b∗s and B∗
s as shown in

the following lemma.

Lemma 2. (i) For x ∈ (0, b∗), u(x, t) converges uniformly to a solution of (7) as

t → ∞ with b∗ = b∗s.

(ii) For x ∈ (B∗, a), u(x, t) converges uniformly to a solution of (8) as t → ∞ with

B∗ = B∗
s .

(iii) For x ∈ [b∗s, B
∗
s ], U(x) ≡ c.

(iv) U ′
s (b

∗
s) = 0 = U ′ (B∗

s ).

Proof. (i) Let us consider u in the region [0, b̃]× (0,∞) where b̃ ∈ [0, b∗]. Let

F (x, t) =

∫ b̃

0

ρrG̃ (x; ρ) u (ρ, t) dρ,
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where G̃ (x; ρ) is Green’s function corresponding to (7) with b∗s being replaced by b̃.

Note that

G̃ (x; ρ) =



































x1−r
(

b̃1−r − ρ1−r
)

b̃1−r (1− r)
for 0 ≤ x ≤ ρ,

ρ1−r
(

b̃1−r − x1−r
)

b̃1−r (1− r)
for ρ < x ≤ b̃.

Since the operator is self-adjoint, G̃ (x; ρ) = G̃ (ρ;x). We have

Ft (x, t) =

∫ b̃

0

ρrG̃ (x; ρ) ut (ρ, t) dρ

=

∫ b̃

0

G̃ (x; ρ) (ρruρ (ρ, t))ρ dρ+

∫ b̃

0

G̃ (x; ρ) ρrf (u (ρ, t)) dρ.

Using integration by parts to the first integral on the right hand side of the above

equation, we obtain

Ft (x, t) = −u(b̃, t)ρrG̃ρ(b̃;x)− u (x, t) +

∫ b̃

0

G̃ (x; ρ) ρrf (u (ρ, t)) dρ.

By using the fact that f is increasing, u(ρ, t) is increasing with respect to t, and

limt→∞ u(ρ, t) = U(ρ), we have from the Monotone Convergence Theorem and the

continuity of f that

lim
t→∞

Ft (x, t) = −U(b̃)ρrG̃ρ(b̃;x)− U (x) +

∫ b̃

0

G̃ (x; ρ) ρrf (U (ρ)) dρ.

Because u is nondecreasing with respect to t, we have from the definition of F (x, t)

that limt→∞ Ft (x, t) ≥ 0. If this limit value were positive at some point x, then

limt→∞ Ft (x, t) = ∞, which contradicts to limt→∞ u (x, t) ≤ c. Therefore,

lim
t→∞

Ft (x, t) = 0.

Thus,

U (x) = −U(b̃)ρrG̃ρ(b̃;x) +

∫ b̃

0

G̃ (x; ρ) ρrf (U (ρ)) dρ.

Since G̃ (x; ρ) = G̃ (ρ;x), we have

ρrG̃ρ(b̃;x) =























b̃1−r − x1−r

b̃1−r
for 0 ≤ ρ ≤ x,

−x1−r

b̃1−r
for x < ρ ≤ b̃.
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Therefore,

U (x) =
x1−r

b̃1−r
U(b̃) +

∫ b̃

0

G̃ (x; ρ) ρrf (U (ρ)) dρ. (9)

Then, U (0) = 0. For 0 < x < b̃,

U ′ (x) =
(1− r) x−r

b̃1−r
U(b̃) +

∫ b̃

0

G̃x (x; ρ) ρ
rf (U (ρ)) dρ.

Multiplying with xr and differentiate with respect to x on both sides yields

− (xrU ′ (x))
′
= −

∫ b̃

0

(

xrG̃x (x; ρ)
)

x
ρrf (U (ρ)) dρ

=

∫ b̃

0

δ (ρ− x) ρrf (U (ρ)) dρ = xrf (U (x)) .

Since b̃ was arbitrary and U is continuous on [0, a], the proof is complete.

(ii) Let us consider u in the region [B̃, a]× (0,∞) where B̃ ∈ [B∗, a]. Let

F (x, t) =

∫ a

B̃

ρrG̃ (x; ρ)u (ρ, t) dρ,

where G̃ (x; ρ) is Green’s function corresponding to (8) with B∗
s being replaced by B̃.

Note that

G̃ (x; ρ) =































(

x1−r − B̃1−r

1− r

)

(

a1−r − ρ1−r

a1−r − B̃1−r

)

for B̃ ≤ x ≤ ρ,

(

x1−r − a1−r

1− r

)

(

B̃1−r − ρ1−r

a1−r − B̃1−r

)

for ρ < x ≤ a.

Since the operator is self-adjoint, G̃ (x; ρ) = G̃ (ρ;x). We have

Ft (x, t) =

∫ a

B̃

ρrG̃ (x; ρ) ut (ρ, t) dρ

=

∫ a

B̃

G̃ (x; ρ) (ρruρ (ρ, t))ρ dρ+

∫ a

B̃

G̃ (x; ρ) ρrf (u (ρ, t)) dρ.

Using integration by parts to the first integral on the right hand side of the above

equation, we obtain

Ft (x, t) = u(B̃, t)ρrG̃ρ(B̃;x)− u (x, t) +

∫ a

B̃

G̃ (x; ρ) ρrf (u (ρ, t)) dρ.

By using the fact that f is increasing, u(ρ, t) is increasing with respect to t, and

limt→∞ u(ρ, t) = U(ρ), we have from the Monotone Convergence Theorem and the

continuity of f that

lim
t→∞

Ft (x, t) = U(B̃)ρrG̃ρ(B̃;x)− U (x) +

∫ a

B̃

G̃ (x; ρ) ρrf (U (ρ)) dρ.
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Because u is nondecreasing with respect to t, we have from the definition of F (x, t)

that limt→∞ Ft (x, t) ≥ 0. If this limit value were positive at some point x, then

limt→∞ Ft (x, t) = ∞, which contradicts to limt→∞ u (x, t) ≤ c. Therefore,

lim
t→∞

Ft (x, t) = 0.

Thus,

U (x) = U(B̃)ρrG̃ρ(B̃;x) +

∫ a

B̃

G̃ (x; ρ) ρrf (U (ρ)) dρ.

Since G̃ (x; ρ) = G̃ (ρ;x), we have

ρrG̃ρ (ρ;x) =























a1−r − x1−r

a1−r − B̃1−r
for B̃ ≤ ρ ≤ x,

B̃1−r − x1−r

a1−r − B̃1−r
for x < ρ ≤ a.

Therefore,

U (x) =
a1−r − x1−r

a1−r − B̃1−r
U(B̃) +

∫ a

B̃

G̃ (x; ρ) ρrf (U (ρ)) dρ. (10)

Then, U (a) = 0. For B̃ < x < a,

U ′ (x) =
(r − 1)x−r

a1−r − B̃1−r
U(B̃) +

∫ a

B̃

G̃x (x; ρ) ρ
rf (U (ρ)) dρ.

Multiplying with xr and differentiate with respect to x on both sides yields

− (xrU ′ (x))
′
= −

∫ a

B̃

(

xrG̃x (x; ρ)
)

x
ρrf (U (ρ)) dρ

=

∫ a

B̃

δ (ρ− x) ρrf (U (ρ)) dρ = xrf (U (x)) .

Since B̃ was arbitrary chosen and U is continuous on [0, a], the proof is complete.

(iii) Let us suppose that there exists some x0 ∈ [b∗s, B
∗
s ] such that U(x0) < c. By the

continuity of U , there exists an interval (x1, x2) with b∗s < x1 < x0 < x2 < B∗
s such

that U(x1) = c = U(x2) and U(x) < c for x ∈ (x1, x2). Since ut ≥ 0 for u < c, we

have u(x, t) < c in {(x, t) : x ∈ (x1, x2) and t > 0}. This implies Hu = xrf(u) for

x1 < x < x2 and t > 0. Let

F (x, t) =

∫ x2

x1

ρrG̃ (x; ρ)u (ρ, t) dρ, (11)

where

G̃ (x; ρ) =



























(

x1−r
2 − x1−r

1− r

)(

ρ1−r − x1−r
1

x1−r
2 − x1−r

1

)

for x1 ≤ ρ ≤ x,

(

x1−r
1 − x1−r

1− r

)(

ρ1−r − x1−r
2

x1−r
2 − x1−r

1

)

for x < ρ ≤ x2.
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Since u(x, t) is nondecreasing with respect to t, it follows from (11) that limt→∞ Ft (x, t) ≥
0. By direct calculation, we obtain

Ft (x, t) =

(

x1−r
2 − x1−r

x1−r
2 − x1−r

1

)

u (x1, t)− u (x, t)−
(

x1−r
1 − x1−r

x1−r
2 − x1−r

1

)

u (x2, t)

+

∫ x2

x1

G̃ (x; ρ) ρrf (u (ρ, t)) dρ.

Since f is nondecreasing, it follows from the Monotone Convergence Theorem, the

continuity of f and U (x1) = c = U (x2) that

lim
t→∞

Ft (x, t) = −U(x) + c+

∫ x2

x1

G̃ (x; ρ) ρrf (U(ρ)) dρ. (12)

To show that limt→∞ Ft (x, t) = 0, let us suppose that limt→∞ Ft (x, t) > 0 at some

point x ∈ (x1, x2). Then, as t tends to infinity, F (x, t) increases without bound there.

This implies that u reaches c at some finite time. This contradicts to U(x) < c for

x ∈ (x1, x2). Thus, limt→∞ Ft (x, t) = 0. From (12),

U(x) = c+

∫ x2

x1

G̃ (x; ρ) ρrf (U (ρ)) dρ > c

for x ∈ (x1, x2). This contradiction leads us to the conclusion U (x) ≡ c for x ∈
(b∗s, B

∗
s ).

(iv) By applying Theorem 1.2 (i) and (v), we obtain

lim
(x,t)→(b∗

s
,∞)

ux(x, t) = 0 = lim
(x,t)→(B∗

s
,∞)

ux(x, t).

Thus, U ′(b∗) = 0 = U ′(B∗).

By modifying the proof of Lemma 3.4 of Chan and Boonklurb [6], we have the

uniqueness of the solutions of (7) and (8).

Lemma 3. Each of (7) and (8) has a unique solution.

From Lemmas 2.2 and 2.3, we obtain the following result.

Theorem 3. As t tends to infinity, all weak solutions of (4) tend to the unique

steady-state solution given by (6) - (8).

Now, we can find the fixed point representations for b∗s and B∗
s . These represen-

tations enable us to find the bounds for b∗s and B∗
s .

Theorem 4. (i) b∗s ≥
[

1−r√
2(b∗

s
)r

∫ c

0

(

∫ c

ς
f(η)dη

)− 1

2

dς

]

1

1−r

.
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(ii) B∗
s ≤ a

[

1 + r−1√
2a

∫ c

0

(

∫ c

ς
f(η)dη

)− 1

2

dς

]
1

1−r

.

Proof. (i) Multiplying (7) by xrW ′(x), integrating from x to b∗s, and using W ′(b∗s) =

0, we have

1

2
(xrW ′(x))

2
=

∫ b∗
s

x

ρ2rf(W (ρ))W ′(ρ)dρ.

Since W ′(x) ≥ 0 for x ∈ [0, b∗s], we have

1

xr
=

1√
2

(

∫ b∗
s

x

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
W ′(x).

Therefore,

∫ x

0

1

ξr
dξ =

1√
2

∫ x

0

(

∫ b∗
s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
W ′(ξ)dξ, (13)

which gives

b∗s =









1− r√
2

∫ b∗
s

0

(

∫ b∗
s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
W ′(ξ)dξ









1

1− r

. (14)

We would like to find a lower bound for b∗s. Since ρ2r ≤ (b∗s)
2r
, where ρ ∈ [ξ, b∗s] and

f(W (ρ))W ′(ρ) > 0, we have

∫ b∗
s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ ≤ (b∗s)
2r
∫ b∗

s

ξ

f(W (ρ))W ′(ρ)dρ = (b∗s)
2r
∫ c

W (ξ)

f(η)dη,

which gives

(

∫ b∗
s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ)

)−
1

2
≥ (b∗s)

−r

(

∫ c

W (ξ)

f(η)dη

)−
1

2
.

Since W ′(ξ) > 0, we obtain

1− r√
2

∫ b∗
s

0

(

∫ b∗
s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
W ′(ξ)dξ

≥ 1− r√
2(b∗s)

r

∫ b∗
s

0

(

∫ c

W (ξ)

f(η)dη

)−
1

2
W ′(ξ)dξ.
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From (14), we have

b∗s ≥









1− r√
2(b∗s)

r

∫ b∗
s

0

(

∫ c

W (ξ)

f(η)dη

)−
1

2
W ′(ξ)dξ









1

1− r

=







1− r√
2(b∗s)

r

∫ c

0

(
∫ c

ς

f(η)dη

)−
1

2
dς







1

1− r

. (15)

(ii) Multiplying (8) by xrW ′(x), integrating from B∗
s to x, and using W ′(B∗

s ) = 0, we

have

−
∫ x

B∗

s

(ρrW ′(ρ))(ρrW ′(ρ))′dρ =

∫ x

B∗

s

(ρrW ′(ρ))(ρrf(W (ρ)))dρ.

That is,

1

2
(xrW ′(x))

2
=

∫ B∗

s

x

ρ2rf(W (ρ))W ′(ρ)dρ.

From W ′(x) ≤ 0 for x ∈ [B∗
s , a], we have

1

xr
= − 1√

2

(

∫ B∗

s

x

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
W ′(x).

Hence,

∫ x

a

1

ξr
dξ = − 1√

2

∫ x

a

(

∫ B∗

s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
W ′(ξ)dξ, (16)

which gives

(B∗
s )

1−r
= a1−r +

r − 1√
2

∫ B∗

s

a

(

∫ B∗

s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
W ′(ξ)dξ.

Thus,

B∗
s =









a1−r +
r − 1√

2

∫ B∗

s

a

(

∫ B∗

s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
W ′(ξ)dξ









1

1− r

. (17)

We would like to find an upper bound for B∗
s . Since ρ2r ≤ ξ2r, where ρ ∈ [B∗

s , ξ]

and −f(W (ρ))W ′(ρ) > 0, we have

∫ B∗

s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ ≤ ξ2r
∫ B∗

s

ξ

f(W (ρ))W ′(ρ)dρ = ξ2r
∫ c

W (ξ)

f(η)dη,
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which gives

(

∫ B∗

s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
≥ ξ−r

(

∫ c

W (ξ)

f(η)dη

)−
1

2
.

For ξ ∈ [B∗
s , a], we have ξ−r ≥ a−r and hence,

(

∫ B∗

s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
≥ a−r

(

∫ c

W (ξ)

f(η)dη

)−
1

2
.

Since W ′(ξ) < 0, we obtain

a1−r +
r − 1√

2

∫ B∗

s

a

(

∫ B∗

s

ξ

ρ2rf(W (ρ))W ′(ρ)dρ

)−
1

2
W ′(ξ)dξ

≤ a1−r +
r − 1√
2ar

∫ B∗

s

a

(

∫ c

W (ξ)

f(η)dη

)−
1

2
W ′(ξ)dξ.

From (17), we have

B∗
s ≤









a1−r +
r − 1√
2ar

∫ B∗

s

a

(

∫ c

W (ξ)

f(η)dη

)−
1

2
W ′(ξ)dξ









1

1− r

= a






1 +

r − 1√
2a

∫ c

0

(
∫ c

ς

f(η)dη

)−
1

2
dς







1

1− r

. (18)

3. NUMERICAL COMPUTATIONS FOR B
∗

S
AND B

∗

S

By replacing b̃ in (9) with b∗s, the integral equation corresponding to (7) becomes

W (x) =

(

x1−r

(b∗s)
1−r

)

c +

∫ b∗
s

0

G̃(x; ρ)ρrf(W (ρ))dρ for x ∈ (0, b∗s), (19)

where G̃(x; ρ) is Green’s function for −(xrW ′(x))′ in (0, b∗s) subject to G̃(0; ρ) = 0 =

G̃(b∗s; ρ). Similarly, by replacing B̃ in (10) with B∗
s , the integral equation correspond-

ing to (8) becomes
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W (x) =

(

a1−r − x1−r

a1−r − (B∗
s )

1−r

)

c +

∫ a

B∗

s

G̃(x; ρ)ρrf(W (ρ))dρ for x ∈ (B∗
s , a), (20)

where G̃(x; ρ) is Green’s function for −(xrW ′(x))′ in (B∗
s , a) subject to G̃(B∗

s ; ρ) =

0 = G̃(a; ρ).

Let us construct a sequence {Wi(x)} with W0(x) = 0 and for i ∈ {0, 1, 2, ...},

Wi+1(x) =

(

x1−r

(b∗s)
1−r

)

c +

∫ b∗
s

0

G̃(x; ρ)ρrf(Wi(ρ))dρ for x ∈ (0, b∗s), (21)

and

Wi+1(x) =

(

a1−r − x1−r

a1−r − (B∗
s )

1−r

)

c +

∫ a

B∗

s

G̃(x; ρ)ρrf(Wi(ρ))dρ for x ∈ (B∗
s , a). (22)

By using MatLab R2017b and modifying the computational method of Chan and

Boonklurb [5], we can use (22) to compute B∗
s as follows:

Step 1: Let Bl =
a
2 , Bu = a

[

1 + r−1√
2a

∫ c

0

(

∫ c

ς
f(η)dη

)− 1

2

dς

]

1

1−r

, B = Bl+Bu

2 and

h = a−B
m

for some positive integer m. For k ∈ {0, 1, 2, ...,m}, we use the subroutine

trapz to perform the numerical integration:

W1(B + kh) =

(

a1−r −B + kh1−r

a1−r −B1−r

)

c + f(0)

∫ B+kh

B

G̃(B + kh; ρ)ρrdρ

+ f(0)

∫ a

B+kh

G̃(B + kh; ρ)ρrdρ.

Step 2: Using subroutine polyfit, we construct an interpolation function W1(x)

from W1(B + kh), where k ∈ {0, 1, 2, ...,m}. Then, for each i ∈ {0, 1, 2, ...}, we use

the subroutine trapz to integrate

Wi+1(B + kh) =

(

a1−r −B + kh1−r

a1−r −B1−r

)

c +

∫ B+kh

B

G̃(B + kh; ρ)ρrf(Wi(ρ))dρ

+

∫ a

B+kh

G̃(B + kh; ρ)ρrf(Wi(ρ))dρ,

with k ∈ {0, 1, 2, ...,m}. After that, use subroutine polyfit to construct an interpola-

tion function Wi+1(x) from Wi+1(B + kh), where k ∈ {0, 1, 2, ...,m}.
Step 3: Let err = max0≤k<m |Wi+1(B + kh)−Wi(B + kh)|. If err < tol for

some given tolerance tol and Wi+1(B + kh) ≤ c for k ∈ {0, 1, 2, ...,m}, then let

B = Bu and we repeat the process by going to Steps 1, 2 and 3. If Wi+1(B+ kh) > c

for some k, then let B = Bl and we repeat the process by going to Steps 1, 2 and 3.
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Step 4: The process is stopped when Bu−Bl ≤ 10−5. Then, Bu is taken to be B∗
s .

To compute b∗s, the same procedure as above can be used by replacing (21) with

(22).

As an illustration, let f(u) = (1 − u)−β, where β ∈ (0, 1). We have f(0) = 1,

f ′(u) = β(1− u)
−β−1

> 0, f ′′(u) = β(β + 1)(1− u)
−β−2

> 0, limu→1− f(u) = ∞
and

∫ 1

0
f(u)du = (1− β)−1. We note that

∫ 1

0

(
∫ 1

ς

f(η)dη

)−
1

2
dς =

√

1− β

∫ 1

0

(1 − ς)

β − 1

2 dς =
2
√
1− β

1 + β
.

From (15) and (18), we have

[

(1− r)
√

2(1− β)

(b∗s)
r(1 + β)

]

1

1− r
≤ b∗s and B∗

s ≤ a

[

1 +
(r − 1)

√

2(1− β)

a(1 + β)

]

1

1− r
.

Tables 3.1 and 3.2 show the values of b∗s and B∗
s for various values of a with m = 10

and tol = 10−6

r β a Lower bound Upper bound b∗s
1
5

1
4 5 0.6515 5

2 0.7143

10 0.5656 5 0.7143

15 0.5170 15
2 0.7143

100 0.3286 50 0.7140
1
5

1
3 4 0.5868 2 0.6395

5 0.5623 5
2 0.6395

9 0.4979 9
2 0.6395

40 0.3524 20 0.6395

Table 1: Numerical examples of b∗s.

r β a Lower bound Upper bound B∗
s

1
5

1
4 5 5

2 4.0402 4.0132

10 5 9.0300 9.0184

15 15
2 14.0267 14.0199

100 50 99.0212 99.0212
1
5

1
3 4 2 3.1536 3.1194

5 5
2 4.1495 4.1218

9 9
2 8.1425 8.1258

40 20 39.1359 39.1292

Table 2: Numerical examples of B∗
s .
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(a) a = 5 (b) a = 10

(c) a = 15 (d) a = 100

Figure 1: Solution profiles for β = 1/4 and r = 1/5.

4. CONCLUSION AND DISCUSSION

The semilinear parabolic equation with singularity is studied. It was shown that under

some conditions on the forcing term f , the problem has a weak solution u(x, t). In the

second section of this work, the beyond quenching profile of the solution was studied.

We proved that as the time t approaches infinity, all weak solutions u (x, t) on the

space domain [0, a] approach a unique steady-state solution U (x). The steady-state

solution profile U(x) on [0, a] consists of three segments determined by the values

of b∗s and B∗
s as [0, a] = [0, b∗s] ∪ [b∗s, B

∗
s ] ∪ [B∗

s , a]. The bounds for b∗s and B∗
s were

obtained and the numerical methods were established for finding the approximations

of b∗s and B∗
s . The numerical results show the length of the space domain plays and

important role. The longer the space domain, the longer the segment [b∗s, B
∗
s ], where

the steady-state solution U(x) reaches the value c.

If we consider various values of r, where r ∈ [0.05, 0.5], we obtain that the value of

B∗
s − b∗s increases with repect to r as shown in Figure 4.1. Furthermore, the beyond

quenching profile is asymmetric suggested by the fact that both B∗
s and b∗s decrease

with the different rates as r increases from 0.05 to 0.5 (Figure 4.2).
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(a) a = 4 (b) a = 5

(c) a = 9 (d) a = 40

Figure 2: Solution profiles for β = 1/3 and r = 1/5.

Figure 3: Plot of B∗
s − b∗s against r, where r ∈ [0.05, 0.5], for a = 10 and

β = 1/4.



688 R. BOONKLURB, K. KAEWRAK, AND T. TREEYAPRASERT

(a) B∗

s
(b) b∗

s

Figure 4: Plots of B∗
s and b∗s against r, where r ∈ [0.05, 0.5], for a = 10 and

β = 1/4.
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