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RICARDO AGUILAR-LÓPEZ1 AND JUAN L. MATA-MACHUCA2

1Department of Biotechnology and Bioengineering

CINVESTAV-IPN, IPN 2508, 07360, Mexico City, MEXICO

2Department of Advanced Technologies, National

Polytecnic Institute (Instituto Politécnico Nacional)
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ABSTRACT: The failure of available physical sensors for the online measurement

of protein concentration in cells is a key problem to understanding the transition in

bio-systems. In this paper, a new state observer has been designed to estimate three

protein concentrations by using a gene-expression mathematical model. Interestingly,

its only input is the concentration of one messenger RNA (mRNA). Similarly by

differential-algebraic observability analysis is showed that the gene-expression model

is indeed observable. The observer convergence was demonstrated by analysing the

estimation error dynamics. In silico experiments confirm the satisfactory performance

of this new observer.
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1. INTRODUCTION

From the soil bacterial communities to the human immune response cells, all biolog-

ical systems are well known for their nonlinear behavior. This is due to the intrinsic
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relationship among their components, and is in turn reflected in the reversible and au-

tocatalytic biochemical reactions, the abundant feedbacks and the circadian rhythms

[1, 2]. Currently, the study of biological systems can be done by focusing on the cell

and its most basic biochemical units, such as nucleic acids, lipids, carbohydrates and

proteins [3].

The quantification of all of the above macromolecules calls for the development

of sophisticated mathematical models. These models are tools, which help account

for the intracellular behavior with respect to time. Yet, the measurement of macro-

molecule concentration can be expensive, time consuming and in many cases only

possible off line. This is a strong limitation for system manipulation in real time in

bioprocess applications. In spite of this, system concentrations can be determined

on-line via the design and implementation of state observer algorithms, also named

software sensors. They can accurately estimate the vector values, which cannot oth-

erwise be measured by physical sensors [4].

Research on state estimation has developed quickly during the last 50 years [5, 6].

However, there have only been a handful of works on the successful application of the

observer algorithms to the estimation of RNA and protein concentrations in metabol-

ically active cells. The work [7] is focused on the reconstruction of the gene expression

dynamics when the online measurement of all the transcription network components

was not feasible. In their work, they employed a mathematical model of the tran-

scription process, a set of online measurements of the promoter transcriptional activity

(obtained by the real-time polymerase chain reaction (RT-PCR) technique), and also

the classical extended Luenberger observer. This observer can estimate mRNA and

protein concentrations despite non-smooth input perturbations, small parameter un-

certainties and low noise measurements. (For a review on current observer design

problems, see [8]. Further, the extended Luenberger observer also shows effectiveness

in spite of measuring only one target gene. The contribution [9] deals with three

different state observers (the extended Luenberger observer, a linear observer and the

extended Kalman filter) and a basic model that describes the transcription-translation

process. In [9] is aimed to reconstruct mRNA concentration by the sole measurement

of total protein concentration. The best performance was achieved with the nonlin-

ear observer, although it exhibited considerable overshoots. In the manuscript [10]

is applied the nonlinear Luenberger observer to accurately estimate the fifteen state

variables of a gene transcription circuit based on Goodwin’s model. And they did so,

by measuring an inhibitor from the gene circuit. This observer showed robustness to

small model uncertainties and low noise output measurements.

Despite the successful application of this kind of classic observers in estimating

the mRNA and proteins concentrations in gene-expression systems, it is imperative

to design new nonlinear observer algorithms. These need to significantly improve the
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performance of the Luenberger observer or the Kalman Filter [6, 11]. And this can

be achieved by decreasing the overshoots and the settling time, while increasing the

robustness to high noise measurements and large parameter uncertainties. Hence, in

this article we propose an alternative observer with dual feedback, comprised of a pro-

portional and a sigmoidal function. This observer is able to estimate the time course

of the three protein concentrations in a basic gene-expression model by measuring

only one mRNA concentration with the RT-PCR technique. This is demonstrated

by the observer convergence proof, which analyzes the estimation error dynamics.

Furthermore, numerical simulations corroborate the fine performance of the proposed

observer algorithm.

The rest of this work is organized as follows. Section 2 describes the gene ex-

pression modeling. Section 3 contains some important concepts such as observability

properties and differential-algebraic observability analysis. In Section 4, the state

observer is designed. Section 5 explains the obtained results. Finally, we give some

concluding remarks in Section 6.

2. GENE EXPRESSION MODELING

The gene expression model was taken from Zhdanov [12], whose work describes the

transcription-translation process. In simple terms, transcription is a set of steps that

lead to the synthesis of RNA from genomic DNA. On the other hand, translation is

the process in which a kind of RNA called mRNA is used as a blueprint to direct

protein synthesis.

This model takes into account the relationship between one mRNA and the three

proteins synthesized thereafter. Two of these proteins are the precursors of the third

one, which is a transcription inhibitor (a feedback regulator). The model can be con-

sidered as an analog of a chemical reaction network governed by the mass conservation

principle (MCP) [13, 14, 15, 16].

The gene expression model is given by,

dN

dt
= w

(

K

K + n3

)m

− kN (1)

dn1

dt
= vN − k12n1 − k1n1 (2)

dn2

dt
= k12n1 − k23n2 (3)

dn3

dt
= k23n2 − k3n3 (4)

Where N is the mRNA, n1 and n2 are the precursor proteins 1 and 2, respectively,

n3 is the active protein 3, w is the transcription rate at n3 → 0, K is the constant
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of association of n3 with a regulatory site, m is the number of regulatory sites, v is

the translation rate constant, k12 and k23 are the conversion rate constants, and k, k1

and k3 are the degradation rate constants. All the constants have a strictly positive

value.

In order to analyze the dynamic properties of the gene-expression model (1)-(4),

let us consider the following condition.

Assumption 1. Let x = [N, n1, n2, n3]
′ ∈ Ω ⊂ R

4
+ be the state vector of the

gene-expression model (1)-(4). Let the set Ω ⊂ R
4
+ be the physically realizable domain

of the dynamical model if

Ω =
{

[N, n1, n2, n3]
′ ∈ R

4
+ | 0 ≤ N ≤ Nm; 0 ≤ ni ≤ nim, i = 1, 2, 3

}

where Nm < ∞ and nim < ∞, i = 1, 2, 3, are the maximal values for the mRNA,

precursor protein 1, precursor protein 2, and active protein, respectively. Thus, we

write

Nm >
w

k

(

K

K + n3

)m

; n1m >
vN

k12 + k1
; n2m >

k12

k23
n1; n3m >

k23

k3
n2

�

Now, from the existence and uniqueness theorem [17] it is straightforward to check

that if f(x) =
(

K
K+n3

)m

is locally Lipschitz on Ω, then the system (1)-(4) with

x(t0) = x0 for any x0 ∈ Ω has a unique solution over [t0, t0 + δ] for some δ.

With respect to the equilibrium points for the gene-expression model (1)-(4),

we have the following statements. The equilibrium points are denoted by x̄ =

[N̄ , n̄1, n̄2, n̄3]
′ ∈ Ω, and are defined by n̄1 = vN̄

k12+k1

, n̄2 = k12

k23

n̄1, where N̄ and n̄3

satisfies kN̄ = w
(

K
K+n3

)m

. In the original reference of the gene-expression model

[12, 18], it is shown that around one equilibrium x̄ ∈ Ω there exists an oscillatory at-

tractor. In the following section, we discuss the observability properties of the system

(1)-(4).

3. DIFFERENTIAL-ALGEBRAIC OBSERVABILITY ANALYSIS

Observability is a system property, which offers the possibility of determinate if in-

ternal states on the basis of input/output data can be estimated [19].

Now, consider a state space representation of the system (1)-(4) as a nonlinear

autonomous system which involves an input/output state space, with the following

structure:
ẋ = f(x, u)

y = Υx
(5)
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Where x ∈ R
n is the state vector; u ∈ R

q is the input vector, y ∈ R
p is the continuous

and differentiable measured vector and Υ is the measurable matrix. In the study

of observability conditions for nonlinear models, there exist three main observability

methods known as linear, geometric and differential-algebraic approaches [23]. We

will consider differential-algebraic methods in this proposal.

The differential-algebraic observability is relatively recently methodology based on

differential-algebraic techniques. This observability approach suggests that a system

is observable if and only if all the states of the model can be expressed in terms of

the measurable outputs and a finite number of its time derivatives. For a preliminary

background, see references [20, 21].

Theorem 2. A state xi is said to be algebraically observable, if it is a function of

u (inputs), y (measurable output) and the first r1, r2 ∈ N time derivatives of u and y

[22, 23], that is:

xi = Fi

(

u, u̇, ü,
d3u

dt3
, . . . ,

dr1u

dtr1
, y, ẏ, ÿ,

d3y

dt3
, . . . ,

dr2u

dtr2

)

= 0 (6)

where the function Fi : R
(r1+1)q × R

(r2+1)p → R. �

To satisfy Theorem 2, it is necessary to express each state variable in terms of the

measurable outputs and a finite set of their time derivatives.

If the measured output of the gene model is the mRNA concentration (N), then

the following algebraic relationship can be written:

N = y (7)

Then, considering eq. (1) and substitute it with eq. (7),

n3 = K











1
(

ẏ + ky

w

)
1

m

− 1











= F3(y, ẏ)

(8)

Replacing eq. (8) and its time derivative in eq. (4) we obtain,

n2 = −
K

k23











k3











1−
1

(

ẏ + ky

w

)
1

m











+
kẏ + ÿ

mw

(

ẏ + ky

w

)
1

m
+1











= F2(y, ẏ, ÿ)

(9)

Finally, substituting eq. (9) and its time derivate in eq. (3),
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n1 = −
K

k12











k3











1−
1

(

ẏ + ky

w

)
1

m











+

(kẏ + ÿ)

(

1 +
k3

k23

)

mw

(

ẏ + ky

w

)
1

m
+1

+
1

k23mw











kÿ +
...
y

(

ẏ + ky

w

)
1

m
+1

−
kẏ + ÿ

mw

(

ẏ + ky

w

)
1

m
+2





















= F1(y, ẏ, ÿ,
...
y )

(10)

Note that eqs. (7)-(10) is a set of differential algebraic equations, where the

mRNA and the three proteins mass balances are explicit and are functions of y, ẏ, ÿ,

. . ., dn−1y
dtn−1 . Therefore, from Theorem 2, we conclude that this system is algebraically

observable. This result agrees with the observability matrix rank. And thus, a non-

linear observer algorithm can be utilized.

4. STATE OBSERVER DESIGN

The nonlinear observer design assumes continuous time measurements. It is based on

the mathematical model shown in equations (1)-(4),

ẋ = f(x, u)

y = Υx
(11)

where x = [N, n1, n2, n3]
′ ∈ Ω ⊂ R

4
+ is the state vector and y = N is the measured

output.

Let us take into account the following assumption.

Assumption 3. System (11) satisfies the condition

‖f(x, u)− f(x̂, u)‖ ≤ L < ∞

We suppose the system is bounded in x and uniformly bounded regarding u. �

Now, we establish the main result of this work.

Proposition 4. Consider the gene-expression model (1)-(4) on a compact domain

Ω ⊂ R
4
+, and suppose that the Assumptions 1 and 3 are satisfied. Then the following

dynamic system is an exponential observer for the system (1)-(4),

˙̂x = f(x̂, u)− d1(y −Υx̂−Υd2) (12)

where the observer gains are given by, ‖d1Υd2‖ ∼= L, with d1 ∈ R
n, d2 ∈ R

n and the

matrix d1Υ is stable.



A CLASS OF GENE-EXPRESSION SYSTEM 537

Proof. Let us define the estimation error as,

ξ = x− x̂

Then, the dynamic equation of the estimation error is provided by,

ξ̇ = f(x, u)− f(x̂, u) + d1(Υξ −Υd2) (13)

The correction term d1(Υξ−d2) is viewed as an exponential measured output feedback

for system (13).

Solving the equation (13), we have

ξ(t) = exp (d1Υt) ξ0 +

∫ t

0

exp (d1Υ(t− τ)) (f(x, u)− f(x̂, u)− d1Υd2) dτ (14)

where ξ(0) = ξ0.

Applying CauchySchwarz inequality to (15) and using Assumption 3,

‖ξ(t)‖ ≤ ‖ exp (d1Υt) ‖ ‖ξ0‖+ (L− ‖d1Υd2‖)

∫ t

0

exp (d1Υ(t− τ)) dτ (15)

From this, as above considered it is proposed that the tuning of the observer gains

obey the following algebraic relationship,

‖d1Υd2‖ ∼= L (16)

If the above holds, therefore,

‖ξ(t)‖ ≤ ‖ exp (d1Υt) ‖ ‖ξ0‖ (17)

Since the matrix d1Υ is stable, we prove that system (12) is an exponential observer

for the system (11).

If t → ∞, we obtain,

lim
t→∞

‖ξ(t)‖ = 0

Hence, the state estimation is achieved for global initial conditions of the states.

�

5. RESULTS AND DISCUSSION

Numerical simulations were performed in Matlabr with the numerical routine ode113

solver. The performance of the proposed observer was compared with a nonlinear

observer (with correction term equal to d1 tanh(Υξ)), which has shown a good per-

formance applied to biological systems [24]. The initial conditions and parameter

values for the gene-expression model and both observers used are shown in Table 1

and Table 2, respectively.
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Table 1: Initial conditions for the gene-expression model and both observers

proved.

Initial conditions Gene expression model State Observers

mRNA concentration 500 250

Protein 1 concentration 750 350

Protein 2 concentration 1500 1000

Protein 3 concentration 2250 3000

Table 2: Parameter values for the gene-expression model and both observers

proved.

Model parameters Gene expression model State Observers

w 4.16× 104 s−1 3.53× 104 s−1

K0 500 500

k 6.66× 10−3 s−1 6.66× 10−3 s−1

v 0.033 s−1 0.3 s−1

k12 3.33× 10−3 s−1 3.83× 10−3 s−1

k1 3.33× 10−3 s−1 3.33× 10−3 s−1

k23 3.33× 10−3 s−1 3.66× 10−3 s−1

k3 3.33× 10−3 s−1 3.33× 10−3 s−1

m 6 6

Figure 1 shows the time series of mRNA, protein 1, protein 2, and protein 3,

for the nominal model and both observers. The observers began at the same initial

conditions that are different to those used in the nominal model (see Table 1).

Also, the observer gains employed have the same value (see Table 3), where the

observer gains d1 ∈ R
4 and d2 ∈ R

4 are defined as

d1 = [d1mRNA, d1Protein 1, d1Protein 2, d1Protein 3]
′

and

d2 = [d2mRNA, d2Protein 1, d2Protein 2, d2Protein 3]
′

The estimated dynamic given by the proposed observer rapidly caught up with

the real dynamics, in contrast to the hyperbolic tangent observer. This observer took

longer to converge to the real dynamics and also showed an overshoot. Additionally,

Figure 2 and Figure 3 present a visualization of the real and estimated trajectories as

a 3D phase portrait, where the differences between the proposed and the hyperbolic

tangent observers are more evident. It is important to stress here the fast and accurate
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Figure 1: State estimation.

Table 3: Gain values for both observers proved.

Gain values Proposed observer Hyperbolic tangent observer

d2mRNA 10 −

d2Protein 1 1 −

d2Protein 2 −0.01 −

d2Protein 3 −13 −

d1mRNA 10 10

d1Protein 1 1 1

d1Protein 2 −0.01 −0.01

d1Protein 3 13 13

convergence of the proposed observer.

Furthermore, Figure 4 and Figure 5 show the error dynamics of each variable state.

As expected, error diminishes quickly and is closer to zero with the proposed observer

than with the hyperbolic tangent observer. Finally, the Figure 6 presents the global

error dynamics. It is clear that the performance of the new observer is superior to

the hyperbolic tangent observer.

6. CONCLUSIONS

In this work, the estimation of protein concentrations was possible in an observable-

gene expression model, using the mRNA as the only measurable output. The software

sensor designed for this task is robust to both uncertainties in the model parame-
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Figure 2: Phase portrait of the state estimation.

Figure 3: Phase portrait of the state estimation.

ters and noisy output measurements, which are the current challenges in the state

estimation research. Furthermore, the proposed observer has demonstrated a finer

performance compared to a hyperbolic tangent observer, a recent nonlinear observer

reported in literature.

NOMENCLATURE

N is the mRNA, mgL−1, the measured output

n1 precursor protein 1, mgL−1
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Figure 4: Estimation errors.

Figure 5: Estimation errors.

n2 precursor protein 2, mgL−1

n3 active protein, mgL−1

w is the transcription rate, mgL−1h−1

K is the constant of association of n3 with a regulatory site, mgL−1

m is the number of regulatory sites

v is the translation rate constant, mgL−1h−1

k1,2, k2,3 are the conversion rate constants, mgL−1h−1
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Figure 6: Global estimation errors.

k, k1, k3 are the degradation rate constants, mgL−1h−1

d1, d2 observer gains

ξ is the estimation error

Υ system output vector
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