TROTTER-KATO APPROXIMATIONS OF McKEAN-VLASOV TYPE STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES

T.E. GOVINDAN

Department of Mathematics School of Physics and Mathematics National Polytechnic Institute Mexico City 07738, MEXICO

ABSTRACT: This paper is concerned with a semilinear McKean-Vlasov type Itô stochastic evolution equation in a Hilbert space. The goal here is to consider the existence and uniqueness of mild solutions, Trotter-Kato approximations of mild solutions of such equations and also to deduce the weak convergence of the corresponding induced probability measures. As an application, a classical limit theorem on the dependence of such equations on a parameter is obtained. An example on a stochastic heat equation is included at the end.

AMS Subject Classification: 60H15

Key Words: stochastic evolution equations in infinite dimensions, existence and uniqueness of a mild solution, Trotter-Kato approximations, weak convergence of probability measures, classical limit theorem

Received:January 4, 2018;Accepted:April 29, 2018;Published:June 15, 2018doi:10.12732/dsa.v27i3.7Dynamic Publishers, Inc., Acad. Publishers, Ltd.https://acadsol.eu/dsa

1. INTRODUCTION

Consider the stochastic process $\{x(t), t \ge 0\}$ described by a semilinear Itô-McKean-Vlasov stochastic evolution equation in a real separable Hilbert space:

$$dx(t) = [Ax(t) + f(x(t), \mu(t))]dt + g(x(t))dw(t), \quad t > 0,$$
(1)

$$\mu(t) = \text{probability distribution of } x(t),$$
(2)

where w(t) is a given Y- valued Q- Wiener process; A is the infinitesimal generator

of a strongly continuous semigroup $\{S(t) : t \ge 0\}$ of bounded linear operators on X; f is an appropriate X-valued function defined on $X \times M_{\gamma^2}(X)$, where $M_{\gamma^2}(X)$ denotes a proper subset of probability measures on X; g is a L(Y, X)-valued function on X; and x_0 is \mathcal{F}_0 - measurable X-valued random variable. If the drift term f in equation (1) does not depend on the probability distribution $\mu(t)$ of the process x at time t, then the solution process x(t) of equation (1) is a standard Markov process, and such equations are well studied, see Da Prato and Zabczyk [2] and the references there in. On the other hand, there are situations where the nonlinear drift term f depends not only on the state of the process at time t but also on the probability distribution of the process $\{x(t), t \ge 0\}$ at that time as indicated in equation (1), we refer to McKean [11], Ahmed and Ding [1], Govindan and Ahmed [5] and Govindan [7, 8] for details. In this case, more precisely, the solution process x(t) of equation (1) with the law $L(x) = \mu$ depends also on the probability distribution $\mu(t)$, namely, $x(t) = x_{\mu}(t) = x(t, x_0, \mu(t))$.

Ahmed and Ding [1] investigated the existence and uniqueness of a mild solution and other interesting problems of a stochastic evolution equation that is related to a Mckean-Vlasov type measure-valued evolution equation, namely, an equation of the form (1) with a constant additive diffusion term, that is, $q(x) = \sqrt{Q}$. Subsequently, Govindan [7] considered the same equation as in Ahmed and Ding [1], introduced and studied Trotter-Kato approximations. Recently, Govindan [6] studied Trotter-Kato approximations of the equation of the type (1) with the time-varying drift term f(t, x) that does not depend upon μ ; while Govindan and Ahmed [5] studied Yosida approximations of the equation (1). However, to the best of our knowledge, Trotter-Kato approximations for equation (1) has not been considered in the literature. This, therefore is the motivation of the paper to study Trotter-Kato approximations and its version, so called the zeroth-order approximations, see Kannan and Barucha-Reid [10] and Govindan [4], of mild solutions of equation (1). Using the latter, we shall provide an estimate of the error in the approximation. As an application, we shall also investigate a classical limit theorem on the dependence of equation (1) on a parameter, see Gikhman and Skorokhod [3, pp. 50-54].

The rest of the paper is organized as follows: In Section 2, we give the preliminaries. The Trotter-Kato approximation results are presented in Section 3. In Section 4, we study the dependence of such equations on a parameter. Lastly, we give an example in Section 5.

2. PRELIMINARIES

Let X, Y be a pair of real separable Hilbert spaces and L(Y, X) the space of bounded linear operators mapping Y into X. For convenience, we shall use the notations $|\cdot|$ and (\cdot, \cdot) for norms and scalar products for both the Hilbert spaces. We write L(X) for L(X, X). Let (Ω, \mathcal{F}, P) be a complete probability space. A map $x : \Omega \to X$ is a random variable if it is strongly measurable. Let $x : \Omega \to X$ be a square integrable random variable, that is, $x \in L_2(\Omega, \mathcal{F}, P; X)$. The covariance operator of the random element x is $Cov[x] = E[(x - Ex) \circ (x - Ex)]$, where E denotes the expectation and $g \circ h \in L(X)$ for any $g, h \in X$ is defined by $(g \circ h)k = g(h, k)$, $k \in X$. Then Cov[x] is a selfadjoint nonnegative trace class (or nuclear) operator and $trCov[x] = E|x - Ex|^2$, where tr denotes the trace. The joint covariance of any pair $\{x, y\} \subset L_2(\Omega, \mathcal{F}, P; X)$, is defined as $Cov[x, y] E[(x - Ex) \circ (y - Ey)]$.

Let I be a subinterval of $[0, \infty)$. A stochastic process $\{x\}$ with values in X is a family of random variables $\{x(t), t \in I\}$, taking values in X. Let $\mathcal{F}_t, t \in I$, be a family of increasing sub σ - algebras of the sigma algebra \mathcal{F} . A stochastic process $\{x(t), t \geq 0\}$, is adapted to \mathcal{F}_t if x(t) is \mathcal{F}_t - measurable for all $t \in I$.

A stochastic process $\{w(t), t \geq 0\}$, in a real separable Hilbert space Y is a *Q*- Wiener process if a) $w(t) \in L_2(\Omega, \mathcal{F}, P; Y)$ and Ew(t) = 0 for all $t \geq 0$, b) $Cov[w(t) - w(s)] = (t - s)Q, \ Q \in L_1^+(Y)$ is a nonnegative nuclear operator, c) w(t)has continuous sample paths, and d) w(t) has independent increments. The operator Q is called the incremental covariance (operator) of the Wiener process w(t). Then w has the representation $w(t) = \sum_{n=1}^{\infty} \beta_n(t)e_n$, where $\{e_n\}(n = 1, 2, 3, ...)$ is an orthonormal set of eigenvectors of $Q, \ \beta_n(t), \ n = 1, 2, 3, ...$ are mutually independent real-valued Wiener processes with incremental covariance $\lambda_n > 0, \ Qe_n = \lambda_n e_n$ and $\operatorname{tr} Q = \sum_{n=1}^{\infty} \lambda_n$.

In the sequel, we will use the notation $A \in G(M, \alpha)$ for an operator A which is the infinitesimal generator of a C_0 - semigroup $\{S(t) : t \ge 0\}$ of bounded linear operators on X satisfying $||S(t)|| \le M \exp(\alpha t), t \ge 0$ for some positive constants $M \ge 1$ and α , where ||.|| denotes the operator norm.

Let $\mathcal{B}(X)$ denote the Borel σ -algebra of subsets of X and let M(X) denote the space of probability measures on $\mathcal{B}(X)$ carrying the usual topology of weak convergence. C(X) denotes the space of continuous functions on X. The notation (μ, φ) means $\int_X \varphi(x)\mu(dx)$ whenever this integral makes sense. Throughout this paper we let $\gamma(x) \equiv 1 + |x|, x \in X$, and define the Banach space

$$C_{\rho}(X) = \bigg\{ \varphi \in C(X) : ||\varphi||_{C_{\rho}(X)} \equiv \sup_{x \in X} \frac{|\varphi(x)|}{\gamma^2(x)} + \sup_{x \neq y} \frac{|\varphi(x) - \varphi(y)|}{|x - y|} < \infty \bigg\}.$$

For $p \geq 1$, let $M^s_{\gamma^p}(X)$ be the Banach space of signed measures m on X satisfying $||\mu||_{\gamma^p} \equiv \int_X \gamma^p(x)|m|(dx) < \infty$, where $|m| = m^+ + m^-$ and $m = m^+ - m^-$ is the Jordan decomposition of m. Let $M_{\gamma^2}(X) = M^s_{\gamma^2}(X) \cap M(X)$ be the set of probability measures on $\mathcal{B}(X)$ having second moments. We put on $M_{\gamma^2}(X)$ a topology induced

by the following metric:

$$\rho(u,v) = \sup\{(\varphi, \mu - \nu) : ||\varphi||_{\rho} = \sup_{x \in X} \frac{|\varphi(x)|}{\gamma^{2}(x)} + \sup_{x \neq y} \frac{|\varphi(x) - \varphi(y)|}{|x - y|} \le 1\}.$$

Then $(M_{\gamma^2}(X), \rho)$ forms a complete metric space. We denote by $C([0, T], (M_{\gamma^2}(X), \rho))$ the complete metric space of continuous functions from [0, T] to $(M_{\gamma^2}(X), \rho)$ with the metric:

$$D_T(\mu,\nu) = \sup_{t \in [0,T]} \rho(\mu(t),\nu(t)), \quad for \ \ \mu,\nu \in C([0,T],(M_{\gamma^2}(X),\rho)).$$

Let $C([0,T]; L_2(\Omega; X))$ $(0 < T < \infty)$ be the Banach space of continuous maps from [0,T] into $L_2(\Omega; X)$ satisfying the condition $\sup_{t \in [0,T]} E|x(t)|^2 < \infty$. Let Λ_2 be the closed subspace of $C([0,T]; L_2(\Omega; X))$ consisting of measurable and \mathcal{F}_t -adapted processes $x = \{x(t) : t \in [0,T]\}$. Then, Λ_2 is a Banach space with the norm topology given by $||x||_{\Lambda_2} = (\sup_{t \in [0,T]} E|x(t)|^2)^{1/2}$.

From now on all stochastic processes considered in this paper are assumed to be based on the complete filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, P)$.

Let us define a mild solution concept.

Definition 1. A stochastic process $x : [0,T] \to X$ defined on the probability space (Ω, \mathcal{F}, P) is called a mild solution of the system (1)-(2), or simply equation (1) if

- i) x is jointly measurable and \mathcal{F}_{t} adapted and its restriction to the interval [0, T] satisfies $\int_{0}^{T} |x(t)|^{2} dt < \infty$, P a.s., and
- ii) x(t) satisfies the integral equation

$$\begin{aligned} x(t) &= S(t)x_0 + \int_0^t S(t-s)f(x(s),\mu(s))ds \\ &+ \int_0^t S(t-s)g(x(s))dw(s), \quad t \in [0,T], \quad P-a.s. \end{aligned}$$

The second integral in the last equality is defined in the sense of Itô. For the definition and properties of these integrals, we refer to Ichikawa [9], Da Prato and Zabczyk [2] and Govindan [8].

3. TROTTER-KATO APPROXIMATIONS

In this section, we shall establish the Trotter-Kato approximation results. But, first, we state a result concerning the existence and uniqueness of a mild solution of the system (1)-(2).

For this we introduce the following assumptions:

Hypothesis (H1)

- (i) $A \in G(M, \alpha)$, and
- (ii) For $p \ge 2$, $f: X \times (M_{\gamma^2}(X), \rho) \to X$ and $g: X \to L(Y, X)$ satisfy the following Lipschitz and linear growth conditions:

$$\begin{aligned} |f(x,\mu) - f(y,\nu)| &\leq L_1(|x-y| + \rho(\mu,\nu)), \\ |g(x) - g(y)| &\leq L_2|x-y|, \\ |f(x,\mu)|^p &\leq L_3(1+|x|^p + ||\mu||_{\gamma}^p), \\ |g(x)|^p &\leq L_4(1+|x|^p), \end{aligned}$$

for all $x, y \in X$ and $\mu, \nu \in M_{\gamma^2}(X)$, where $L_i, i = 1, 2, 3, 4$ are positive constants.

Theorem 1. Suppose that the Hypothesis (H1) hold. Then, for every \mathcal{F}_0 - measurable X- valued random variable $x_0 \in L_2(\Omega, X)$,

- (a) The system (1)-(2) has a unique mild solution $x = \{x(t), t \in [0, T]\}$ in Λ_2 with the associated probability distribution $\mu = \{\mu(t) = L(x(t)), t \in [0, T]\}$ belonging to $C([0, T], (M_{\gamma^2}(X), \rho)).$
- (b) For any $p \ge 1$ and \mathcal{F}_0 -measurable $x_0 \in L_{2p}(\Omega, X)$, we have

$$\sup_{t \in [0,T]} E|x(t)|^{2p} \le k_{p,T}(1+E|x_0|^{2p}),$$

where $k_{p,T}$ is a positive constant.

Proof. See Govindan and Ahmed [5].

Consider the family of stochastic evolution equations

$$dx_n(t) = [A_n x_n(t) + f(x_n(t), \mu_n(t))]dt + g(x_n(t))dw(t), \quad t > 0,$$
(3)

$$x_n(0) = x_0, \tag{4}$$

where $A_n, n = 1, 2, 3, ...$, is the infinitesimal generator of a strongly continuous semigroup $\{S_n(t) : t \ge 0\}$ of bounded linear operators on X.

For each n = 1, 2, 3, ..., by Theorem 1 (a), the system (3)-(4) has a unique mild solution $x_n \in C([0, T], L_2(\Omega, X))$. Hence, $x_n(t)$ satisfies the stochastic integral equation

$$x_{n}(t) = S_{n}(t)x_{0} + \int_{0}^{t} S_{n}(t-s)f(x_{n}(s),\mu_{n}(s))ds + \int_{0}^{t} S_{n}(t-s)g(x_{n}(s))dw(s), \quad t \in [0,T], \quad P-a.s.$$

We now make the following assumptions: **Hypothesis (H2)**

- i) Let $A_n \in G(M, \alpha)$ for each n = 1, 2, 3, ...,
- ii) As $n \to \infty$, $A_n x \to A x$ for every $x \in D$, where D is a dense subset of X, and
- iii) There exists a γ with Re $\gamma > \alpha$ for which $(\gamma I A)D$ is dense in X, then the closure \overline{A} of A is in $G(M, \alpha)$.

A somewhat different consequence of the Trotter-Kato theorem is the following. **Theorem 2.** (Pazy [12, Theorem 4.5, p. 88]) Let the Hypothesis (H2) hold. If $S_n(t)$ and S(t) are the C_0 - semigroups generated by A_n and \overline{A} , respectively, then

$$\lim_{n \to \infty} S_n(t)x = S(t)x, \qquad x \in X,$$
(5)

for all $t \ge 0$, and the limit in (5) is uniform in t for t in bounded intervals.

Theorem 3. Suppose that the Hypotheses (H1) and (H2) are satisfied. Let x(t) and $x_n(t)$ be the mild solutions of equations (1) and (3), respectively. Then, for each T > 0,

$$\sup_{0 \le t \le T} E|x_n(t) - x(t)|^2 \to 0 \quad as \quad n \to \infty.$$

Proof. Considering the difference

$$\begin{aligned} x_n(t) - x(t) &= [S_n(t) - S(t)]x_0 \\ &+ \int_0^t [S_n(t-s)f(x_n(s), \mu_n(s)) - S(t-s)f(x(s), \mu(s))]ds \\ &+ \int_0^t [S_n(t-s)g(x_n(s)) - S(t-s)g(x(s))]dw(s), \quad P-a.s., \end{aligned}$$

for $t \in [0, T]$, we obtain

$$\begin{aligned} |x_n(t) - x(t)|^2 &\leq 5 \bigg\{ |S_n(t)x_0 - S(t)x_0|^2 \\ &+ \bigg| \int_0^t S_n(t-s)[f(x_n(s),\mu_n(s)) - f(x(s),\mu(s))]ds \bigg|^2 \\ &+ \bigg| \int_0^t [S_n(t-s) - S(t-s)]f(x(s),\mu(s))ds \bigg|^2 \\ &+ \bigg| \int_0^t S_n(t-s)[g(x_n(s)) - g(x(s))]dw(s) \bigg|^2 \\ &+ \bigg| \int_0^t [S_n(t-s) - S(t-s)]g(x(s))dw(s) \bigg|^2 \bigg\}, \quad P-a.s., \quad (6) \end{aligned}$$

for $t \in [0, T]$.

We shall now estimate each term on the RHS of (6):

Since $A_n \in G(M, \alpha)$ for each $n = 1, 2, 3, ..., \text{ and } \overline{A} \in G(M, \alpha)$,

 $E|[S_n(t) - S(t)]x_0| \le 2M \exp(\alpha t)E|x_0|$, uniformly in *n* and $t \in [0, T]$, where $\{S(t) : t \ge 0\}$ is the C_0 - semigroup generated by \overline{A} . Therefore, by Theorem 2, we have

$$\sup_{0 \le t \le T} E|S_n(t)x_0 - S(t)x_0|^2 \to 0 \quad \text{as} \quad n \to \infty,$$
(7)

for all $t \ge 0$, $x_0 \in X$, and the limit in (7) is uniform in t for t in bounded intervals. By Hypothesis (H1),

$$\sup_{0 \le s \le t} E \left| \int_{0}^{s} S_{n}(s-r) [f(x_{n}(r),\mu_{n}(r)) - f(x(r),\mu(r))] dr \right|^{2} \\ \le T \int_{0}^{t} ||S_{n}(t-r)||^{2} E |f(x_{n}(r),\mu_{n}(r)) - f(x(r),\mu(r))|^{2} dr \\ \le T L_{1}^{2} M^{2} \exp(2\alpha T) \int_{0}^{t} [E |x_{n}(s) - x(s)|^{2} + \rho^{2}(\mu_{n}(s),\mu(s))] ds \\ \le 2T L_{1}^{2} M^{2} \exp(2\alpha T) \int_{0}^{t} E |x_{n}(s) - x(s)|^{2} ds,$$
(8)

where $\rho^2(\mu_n(s), \mu(s)) \leq E|x_n(s) - x(s)|^2$ has been used.

Next, by Proposition 1.9 from Ichikawa [9], we have

$$\sup_{0 \le s \le t} E \left| \int_0^s S_n(s-r) [g(x_n(r)) - g(x(r))] dw(r) \right|^2$$

$$\le \operatorname{tr} Q \int_0^t ||S_n(t-r)||^2 E |g(x_n(r)) - g(x(r))|^2 dr$$

$$\le \operatorname{tr} Q L_2^2 M^2 \exp(2\alpha T) \int_0^t E |x_n(s) - x(s)|^2 ds.$$
(9)

Using the estimates (7)-(9), inequality (6) reduces to

$$\sup_{0 \le s \le t} \frac{E|x_n(s) - x(s)|^2}{5M^2 \exp(2\alpha T)(2TL_1^2 + \operatorname{tr} QL_2^2)} \int_0^t E|x_n(s) - x(s)|^2 ds,$$

where

$$\beta(n,T) = 5 \sup_{0 \le s \le t} E|S_n(t)x_0 - S(t)x_0|^2 + 5 \sup_{0 \le s \le t} E\left|\int_0^s [S_n(s-r) - S(t-r)]f(x(r),\mu(r))dr\right|^2 + 5 \sup_{0 \le s \le t} E\left|\int_0^s [S_n(s-r) - S(t-r)]g(x(r))dw(r)\right|^2.$$
(10)

An application of Bellman-Gronwall's lemma yields

$$\sup_{0 \le s \le t} E|x_n(s) - x(s)|^2 \le \beta(n, T) \exp\{5M^2 \exp(2\alpha T)(2TL_1^2 + \operatorname{tr} QL_2^2)t\}, \quad t \in [0, T].$$

The first term on the RHS of (10) tends to zero as $n \to \infty$ by (7). By Hypothesis (H1) and Theorem 1 (b), we now have

$$\begin{split} \sup_{0 \le s \le t} E \left| \int_0^s [S_n(s-r) - S(t-r)] f(x(r), \mu(r)) dr \right|^2 \\ \le & T \int_0^t ||S_n(t-r) - S(t-r)||^2 E |f(x(r), \mu(r))|^2 dr \\ \le & T L_3 \int_0^t ||S_n(t-r) - S(t-r)||^2 (1 + E |x(r)|^2 + ||\mu(r)||_\gamma^2) dr \\ \le & 2T L_3 M^2 \exp\left(2\alpha T\right) (1 + ||\mu||_\gamma^2 + k_{p,T} (1 + E |x_0|^2)) < \infty. \end{split}$$

Hence, the second term of (10) also tends to zero in view of (7) together with the Lebesgue's dominated convergence theorem. Regarding the third term, note that

$$\sup_{0 \le s \le t} E \left| \int_0^s [S_n(s-r) - S(t-r)]g(x(r))dw(r) \right|^2$$

$$\le 2 \operatorname{tr} Q L_4 M^2 \exp\left(2\alpha T\right)(1 + k_{p,T}(1 + E|x_0|^2)) < \infty.$$

Finally, by Lebesgue's dominated convergence theorem, this term also tends to zero. Thus $\beta(n,T) \to 0$ as $n \to \infty$. This completes the proof.

Corollary 1. The sequence of probability laws $\{\mu_n\}_{n=1}^{\infty}$ corresponding to mild solutions $\{x_n\}_{n=1}^{\infty}$ of equation (3) converges to the probability law μ of mild solutions x of equation (1) in $C([0,T], (M_{\lambda^2}(H), \rho))$ as $n \to \infty$.

Proof. This follows from the fact that

$$D_T(\mu_n, \mu) = \sup_{t \in [0,T]} \rho(\mu_n(t), \mu(t)) \le \sup_{t \in [0,T]} \sqrt{E|x_n(t) - x(t)|^2}.$$

Let us next consider the zeroth-order approximations, that is, approximating a stochastic evolution equation by a deterministic evolution equation.

Consider the stochastic evolution equation

$$dx_{\varepsilon}(t) = [A_{\varepsilon}x_{\varepsilon}(t) + f(x_{\varepsilon}(t), \mu_{\varepsilon}(t))]dt + \varepsilon g(x_{\varepsilon}(t))dw(t), \quad t \in [0, T], \quad (11)$$

$$x_{\varepsilon}(0) = x_0 \in D(A_{\varepsilon}), \tag{12}$$

where $A_{\varepsilon}(\varepsilon > 0)$ is the infinitesimal generator of a strongly continuous semigroup $\{S_{\varepsilon}(t) : t \geq 0\}$ of bounded linear operators on X, along with the deterministic evolution equation

$$\frac{d}{dt}\overline{x}(t) = A\overline{x}(t) + f(\overline{x}(t),\overline{\mu}(s)), \quad t \in [0,T],$$
(13)

$$\overline{x}(0) = x_0 \in D(A). \tag{14}$$

The mild solutions of equation (11) and (13) are

$$x_{\varepsilon}(t) = S_{\varepsilon}(t)x_{0} + \int_{0}^{t} S_{\varepsilon}(t-s)f(x_{\varepsilon}(s),\mu_{\varepsilon}(s))ds + \varepsilon \int_{0}^{t} S_{\varepsilon}(t-s)g(x_{\varepsilon}(s))dw(s), \quad P-a.s.,$$
(15)

for $t \in [0, T]$, and

$$\overline{x}(t) = S(t)x_0 + \int_0^t S(t-s)f(\overline{x}(s),\overline{\mu}(s))ds, \quad t \in [0,T],$$
(16)

respectively. For each $\varepsilon > 0$, one can show by Theorem 1 (a) that equation (11) has a unique mild solution $x_{\varepsilon} \in C([0, T]; L_2(\Omega, X))$, given by (15); and equation (13) also has a unique mild solution given by (16) when $g \equiv 0$ as a special case.

We now make the following assumptions to consider the next result, see Kannan and Bharucha-Reid [10]:

Hypothesis (H3)

Let $A, A_{\varepsilon} \in G(M, \alpha)(\varepsilon > 0)$ with $D_{A_{\varepsilon}} = D(A)(\varepsilon > 0)$; and $S_{\varepsilon}(t) \to S(t)$ as $\varepsilon \downarrow 0$, uniformly in $t \in [0, T]$ for each T > 0.

In the following result, we shall estimate the error in the approximation. The proof follows mimicking some arguments from Theorem 3.

Theorem 4. Suppose that the Hypotheses (H1) and (H3) hold. Let $x_{\varepsilon}(t)$ and $\overline{x}(t)$ be the mild solutions given by (15) and (16), respectively. Then

$$E|x_{\varepsilon}(t) - \overline{x}(t)|^2 \le \varphi(\varepsilon)\phi(t),$$

where $\phi(t)$ is a positive exponentially increasing function and $\varphi(\varepsilon)$ is a positive function decreasing monotonically to zero as $\varepsilon \downarrow 0$.

Proof. Consider

$$\begin{aligned} x_{\varepsilon}(t) - \overline{x}(t) &= [S_{\varepsilon}(t) - S(t)]x_{0} \\ &+ \int_{0}^{t} S_{\varepsilon}(t-s)[f(x_{\varepsilon}(s), \mu_{\varepsilon}(s)) - f(\overline{x}(s), \overline{\mu}(s))]ds \\ &+ \int_{0}^{t} [S_{\varepsilon}(t-s) - S(t-s)]f(\overline{x}(s), \overline{\mu}(s))ds \\ &+ \varepsilon \int_{0}^{t} S_{\varepsilon}(t-s)g(x_{\varepsilon}(s))dw(s), \quad P-a.s., \end{aligned}$$
(17)

for $t \in [0, T]$.

We now estimate each term on the RHS of (17):

573

Since $S_{\varepsilon}(t) \to S(t)$ as $\varepsilon \downarrow 0$, uniformly in $t \in [0, T]$, there exists an $\varepsilon_1 > 0$ and some constant $K_1 > 0$ such that $E|S_{\varepsilon}(t)x_0 - S(t)x_0|^2 \leq K_1a_1(\varepsilon)$, for all $t \in [0, T]$, where $0 < a_1(\varepsilon) \downarrow 0$ as $\varepsilon_1 > \varepsilon \downarrow 0$.

From the proof of Theorem 3, we have

$$\begin{split} E \left| \int_0^t S_{\varepsilon}(t-s) [f(x_{\varepsilon}(s),\mu_{\varepsilon}(s)) - f(\overline{x}(s),\overline{\mu}(s))] ds \right|^2 \\ &\leq TL_1^2 M^2 \exp(2\alpha T) \int_0^t [E|x_{\varepsilon}(s) - \overline{x}(s)|^2 + \rho^2(x_{\varepsilon}(s),\overline{x}(s))] ds \\ &\leq 2TL_1^2 M^2 \exp(2\alpha T) \int_0^t E|x_{\varepsilon}(s) - \overline{x}(s)|^2 ds. \end{split}$$

Next, proceeding as before,

$$E\left|\int_0^t [S_{\varepsilon}(t-s) - S(t-s)]f(\overline{x}(s), \overline{\mu}(s))ds\right|^2$$

$$\leq 2TL_3M^2 \exp(2\alpha T)(1+||\overline{\mu}||_{\gamma}^2 + k_{p,T}(1+E|x_0|^2)) < \infty.$$

Therefore, by the Lebesgue's dominated convergence theorem

$$E\left|\int_0^t [S_{\varepsilon}(t-s) - S(t-s)]f(\overline{x}(s), \overline{\mu}(s))ds\right|^2 \to 0 \quad \text{as} \quad \varepsilon \downarrow 0.$$

Hence, there exist an $\varepsilon_2 > 0$ and $K_2 > 0$ such that

$$E\left|\int_0^t [S_{\varepsilon}(t-s) - S(t-s)]f(\overline{x}(s), \overline{\mu}(s))ds\right|^2 < K_2 a_2(\varepsilon),$$

uniformly for $t \in [0,T]$, where $0 < a_2(\varepsilon) \downarrow 0$ as $\varepsilon_2 > \varepsilon \downarrow 0$.

Finally, consider the stochastic integral term:

$$\varepsilon \int_0^t S_\varepsilon(t-s)g(x_\varepsilon(s))dw(s) = \varepsilon \int_0^t S_\varepsilon(t-s)[g(x_\varepsilon(s)) - g(\overline{x}(s))]dw(s) + \varepsilon \int_0^t S_\varepsilon(t-s)g(\overline{x}(s))dw(s) = J_1 + J_2, \quad \text{say.}$$

Using proposition 1.9 from Ichikawa [9], we have

$$E|J_1|^2 \le \varepsilon \operatorname{tr} QL_2^2 M^2 \exp\left(2\alpha T\right) \int_0^t E|x_\varepsilon(s) - \overline{x}(s)|^2 ds$$

and

$$E|J_2|^2 \le \varepsilon \operatorname{tr} QL_4 M^2 \exp(2\alpha T)(1 + k_{p,T}(1 + E|x_0|^2)).$$

Hence, there exists an $\varepsilon_3 > 0$ and some constant $K_3 > 0$ such that $E|J_2|^2 \leq K_3 a_3(\varepsilon)$, where $0 < a_3(\varepsilon) \downarrow 0$ as $\varepsilon_3 > \varepsilon \downarrow 0$. Set $\varphi(\varepsilon) = 5\{K_1a_1(\varepsilon) + K_2a_2(\varepsilon) + K_3a_3(\varepsilon)\}$ for $0 < \varepsilon < \varepsilon_0$, where $\varepsilon_0 < \min\{\varepsilon_i, i = 1, 2, 3\}$. Consequently, for $\varepsilon_0 > \varepsilon > 0$,

$$\begin{split} E|x_{\varepsilon}(t) - \overline{x}(t)|^2 &\leq \varphi(\varepsilon) + 5M^2 \exp(2\alpha T)(2TL_1^2 + \varepsilon L_2^2 \text{tr}Q) \\ &\times \int_0^t E|x_{\varepsilon}(s) - \overline{x}(s)|^2 ds. \end{split}$$

Invoking Bellman-Gronwall's lemma, one obtains

$$E|x_{\varepsilon}(t) - \overline{x}(t)|^2 \le \varphi(\varepsilon)\phi(t), \quad t \in [0,T],$$

where $\phi(t) = \exp\{5M^2 \exp(2\alpha T)(2TL_1^2 + \varepsilon L_2^2 \operatorname{tr} Q)t\}$.

4. DEPENDENCE OF THE EQUATION ON A PARAMETER

In this section, as an application of the results in Section 3, we consider a classical limit theorem on the dependence of the stochastic evolution equation (1) on a parameter. For this, we shall follow Gikhman and Skorokhod [3, pp. 50-54].

Consider the family of stochastic evolution equations

$$dx_n(t) = [A_n x_n(t) + f_n(x_n(t), \mu_n(t))]dt + g_n(x_n(t))dw(t), \quad t \in [0, T], \quad (18)$$

$$x_n(0) = x_0, \quad (19)$$

where $A_n, n = 1, 2, 3,...$ is the infinitesimal generator of a strongly continuous semigroup $\{S_n(t) : t \ge 0\}$ of bounded linear operators on X.

Let A_n , $f_n(x, \mu)$ and $g_n(x)$ satisfy the conditions of Theorem 1 (a) for n = 1, 2, 3, ...with the same constants L_i , i = 1, 2, 3, 4. Then equation (18) for each n = 1, 2, 3, ... has a unique mild solution $x_n \in C([0, T]; L_2(\Omega, X))$. Hence, $x_n(t)$ satisfies the stochastic integral equation

$$\begin{aligned} x_n(t) &= S_n(t)x_0 + \int_0^t S_n(t-s)f_n(x_n(s),\mu_n(t))ds \\ &+ \int_0^t S_n(t-s)g_n(x_n(s))dw(s), \quad t \in [0,T], \quad P-a.s.. \end{aligned}$$

We now make the following further assumptions to consider our main result of the section, see Gikhman and Skorokhod [3, p. 52].

Hypothesis (H4)

For each N > 0,

$$\sup_{|x| \le N} |f_n(x,\mu) - f(x,\mu)| \to 0 \text{ and } \sup_{|x| \le N} |g_n(x) - g(x)| \to 0$$

as $n \to \infty$, uniformly in μ for each $t \in [0, T]$.

Theorem 5. Suppose that the hypotheses (H1), (H2) and (H4) hold. Let $x_n(t)$ and

x(t) be the mild solutions of equations (18) and (1), respectively. Then, for each T > 0,

$$\sup_{0 \le t \le T} E|x_n(t) - x(t)|^2 \to 0 \quad as \quad n \to \infty.$$

Proof. Consider

$$\begin{aligned} x_n(t) - x(t) &= \psi(t) + \int_0^t S_n(t-s) [f_n(x_n(s), \mu_n(s)) - f_n(x(s), \mu(s))] ds \\ &+ \int_0^t S_n(t-s) [g_n(x_n(s)) - g_n(x(s))] dw(s), \quad P-a.s., \end{aligned}$$

 $t \in [0, T]$, where

$$\psi(t) = [S_n(t) - S(t)]x_0 + \int_0^t S_n(t-s)[f_n(x(s),\mu(s)) - f(x(s),\mu(s))]ds$$

+
$$\int_0^t [S_n(t-s) - S(t-s)]f(x(s),\mu(s))ds$$

+
$$\int_0^t S_n(t-s)[g_n(x(s)) - g(x(s))]dw(s)$$

+
$$\int_0^t [S_n(t-s) - S(t-s)]g(x(s))dw(s).$$
(20)

By Hypothesis (H2) and Proposition 1.9 from Ichikawa [9], we get

$$\begin{split} E|x_n(t) - x(t)|^2 &\leq 3 \bigg\{ E|\psi(t)|^2 \\ &+ M^2 \exp(2\alpha T) TL_1^2 \int_0^t [E|x_n(s) - x(s)|^2 + \rho^2(\mu_n(s), \mu(s))] ds \\ &+ M^2 \exp(2\alpha T) \operatorname{tr} QL_2^2 \int_0^t E|x_n(s) - x(s)|^2 ds \bigg\} \\ &\leq 3E|\psi(t)|^2 + L \int_0^t E|x_n(s) - x(s)|^2 ds, \end{split}$$

where $L = 3M^2 \exp(2\alpha T)(2TL_1^2 + \text{tr}QL_2^2)$. Hence, by Lemma 1 from Gikhman and Skorokhod [3, p. 41], we get

$$E|x_n(t) - x(t)|^2 \le 3E|\psi(t)|^2 + L \int_0^t e^{L(t-s)}E|\psi(t)|^2 ds.$$

Hence, to prove the theorem, it is sufficient to show that $\sup_{0 \le t \le T} E |\psi(t)|^2 \to 0$. First, $\sup_{0 \le t \le T} E |S_n(t)x_0 - S(t)x_0|^2 \to 0$ as $n \to \infty$ as shown earlier in (7). To show that the remaining terms in (20) also go to zero, consider first

$$E\left|\int_{0}^{t} S_{n}(t-s)[f_{n}(x(s),\mu(s)) - f(x(s),\mu(s))]ds\right|^{2}$$

$$\leq 2TL_3M^2 \exp(2\alpha T)(1+||\mu||_{\gamma}^2+k_{p,T}(1+E|x_0|^2)) < \infty.$$

Hence, by Hypothesis (H4) and the Lebesgue's dominated convergence theorem,

$$\sup_{0 \le t \le T} E \left| \int_0^t S_n(t-s) [f_n(x(s),\mu(s)) - f(x(s),\mu(s))] ds \right|^2 \to 0 \quad \text{as} \quad n \to \infty.$$

By Hypotheses (H1), (H2), (7) and the dominated convergence theorem, it can be shown that

$$\sup_{0 \le t \le T} E \left| \int_0^t [S_n(t-s) - S(t-s)] f(x(s), \mu(s)) ds \right|^2 \to 0 \quad \text{as} \quad n \to \infty.$$

Next, consider the stochastic integral term:

$$E \left| \int_0^t S_n(t-s) [g_n(x(s)) - g(x(s))] dw(s) \right|^2 \\ \le 2 \operatorname{tr} Q L_4 M^2 \exp(2\alpha T) (1 + k_{p,T} (1 + E|x_0|^2)) < \infty,$$

by Proposition 1.9 from Ichikawa [9] and the hypothesis. Hypothesis (H4) and Lebesgue's dominated convergence theorem again yield

$$\sup_{0 \le t \le T} E \left| \int_0^t S_n(t-s) [g_n(x(s)) - g(x(s))] dw(s) \right|^2 \to 0 \quad \text{as} \quad n \to \infty.$$

Finally, by (7) and hypothesis, it can be shown as before that

$$\sup_{0 \le t \le T} E \left| \int_0^t [S_n(t-s) - S(t-s)]g(x(s))dw(s) \right|^2 \to 0 \quad \text{as} \quad n \to \infty$$

This completes the proof.

Corollary 2. Assume that the coefficients in equation (18) depend on a parameter θ which varies through some set of numbers G_1 :

$$dx_{\theta}(t) = [A_{\theta}x_{\theta}(t) + f_{\theta}(x_{\theta}(t), \mu_{\theta}(t))]dt + g_{\theta}(x_{\theta}(t))dw(t), \quad t \in [0, T], \quad (21)$$
$$x_{\theta}(0) = x_{0}, \quad (22)$$

where A_{θ} is the infinitesimal generator of a strongly continuous semigroup $\{S_{\theta}(t) : t \geq 0\}$ of bounded linear operators on X. Assume further that for each N > 0,

$$\sup_{|x| \le N} |f_{\theta}(x,\mu) - f_{\theta_0}(x,\mu)| \to 0 \quad and \quad \sup_{|x| \le N} |g_{\theta}(x) - g_{\theta_0}(x)| \to 0 \quad as \quad \theta \to \theta_0,$$

uniformly in μ . Furthermore, let $A_{\theta}, A_{\theta_0} \in G(M, \alpha), \theta \in G_1$ with $D(A_{\theta}) = D(A_{\theta_0})$ and $S_{\theta}(t) \to S_{\theta_0}(t)$ as $\theta \to \theta_0$, uniformly in $t \in [0, T]$ for each T > 0. Lastly, let $A_{\theta}, f_{\theta}(t, x)$ and $g_{\theta}(t, x)$ for each θ satisfy the hypothesis of Theorem 1 with the same constants L_i , i = 1, 2, 3, 4. Then equation (21) has a unique mild solution $x_{\theta}(t)$ and satisfies for each T > 0:

$$\sup_{0 \le t \le T} E|x_{\theta}(t) - x_{\theta_0}(t)|^2 \to 0 \quad as \quad \theta \to \theta_0.$$

Proof. The proof follows immediately from an application of Theorem 5 to the sequence $\{x_{\theta_n}(t)\}$, where $\theta_n \to \theta$.

5. AN EXAMPLE

Consider the stochastic heat equation:

$$dx(t,z) = \left[\frac{\partial^2}{\partial z^2} x(t,z) - \frac{x(t,z) + \mu(t)}{1 + |x(t,z)|}\right] dt + \frac{\sigma x(t,z)}{1 + |x(t,z)|} d\beta(t), \quad t \in [0,T],$$
(23)
$$x_z(t,0) = x_z(t,\pi) = 0, \quad x(0,z) = x_0(z),$$

where $\beta(t)$ is a real standard Wiener process and σ is a real number. Take Y = R, the real line. Define $A : X \to X$, where $X = L^2[0, \pi]$ by $A = \frac{\partial^2}{\partial z^2}$ with domain $D(A) = \{x \in X | x, x' \text{ are absolutely continuous with } x', x'' \in X, x(0) = x(\pi) = 0\}$. Then

$$Ax = \sum_{n=1}^{\infty} n^2(x, x_n) x_n, \qquad x \in D(A),$$

where $x_n(z) = \sqrt{2/\pi} \sin nz$, n = 1, 2, 3, ..., is the orthonormal set of eigenvectors of A. It is well known that A is the infinitesimal generator of a C_0 - semigroup $\{S(t) : t \ge 0\}$ in X, and is given by (see Govindan [7] and the references therein)

$$S(t)x = \sum_{n=1}^{\infty} \exp\left(-n^2 t\right)(x, x_n)x_n, \qquad x \in X,$$

that satisfies $||S(t)|| \leq \exp(-\pi^2 t), t \geq 0$, and hence is a contraction semigroup. Take

$$f(x,\mu) = -\frac{x+\mu}{1+|x|}, \quad g(x) = \frac{\sigma x}{1+|x|}, \quad x \in X,$$

and $\mu \in C([0,T], (M_{\gamma^2}(X), \rho))$. Hence equation (23) can be written in the abstract form as equation (1).

Define now $A_{\varepsilon}(\varepsilon > 0)$ by $A_{\varepsilon} = (1 + \varepsilon)\partial^2/\partial z^2$ which is the infinitesimal generator of a of a C_0 - semigroup $\{S_{\varepsilon}(t) : t \ge 0\}(\varepsilon > 0)$ in X, and is given by

$$S_{\varepsilon}(t)x = \sum_{n=1}^{\infty} \exp\left(-(1+\varepsilon)n^2t\right)(x,x_n)x_n, \qquad x \in X,$$

that satisfies $||S_{\varepsilon}(t)|| \leq \exp(-(1+\varepsilon)\pi^2 t), t \geq 0, \varepsilon > 0$ and hence is a contraction semigroup. Clearly,

$$\lim_{\varepsilon \downarrow 0} S_{\varepsilon}(t)x = S(t)x, \qquad x \in X,$$

uniformly in $t \in [0, T]$. Under the setup of this example, one can introduce equations (11) and (13) analogously. Hence, by Theorem 4,

$$E|x_{\varepsilon}(t) - x(t)|^2 \le \psi(\varepsilon)\phi(t), \qquad t \in [0,T].$$

ACKNOWLEDGEMENTS

This research is partially supported by SIP from IPN, Mexico.

REFERENCES

- N. U. Ahmed and X. Ding, A semilinear McKean-Vlasov stochastic evolution equation in Hilbert space, *Stochastic Proc. Appl.*, 60 (1995), 65-85.
- [2] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge (1992).
- [3] I. I. Gikhman and A. V. Skorokhod, *Stochastic Differential Equations*, Springer-Verlag, Berlin (1972).
- [4] T. E. Govindan, Autonomous semilinear stochastic Volterra integrodifferential equations in Hilbert spaces, *Dynamic Systems Appl.*, 3 (1994), 51-74.
- [5] T. E. Govindan and N. U. Ahmed, On Yosida approximations of McKean-Vlasov type stochastic evolution equations, *Stochastic Anal. Appl.*, **33** (2015), 383-398.
- [6] T. E. Govindan, On Trotter-Kato approximations of semilinear stochastic evolution equations in infinite dimensions, *Statis. Probab. Letters* 96 (2015), 299-306.
- [7] T. E. Govindan, Trotter-Kato approximations of semilinear stochastic evolution equations, *Boletin Soc. Matemat. Mexicana* **12** (2006), 109-120.
- [8] T. E. Govindan, Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications, Springer, Switzerland (2016).
- [9] A. Ichikawa, Stability of semilinear stochastic evolution equations, J. Math. Anal. Appl., 90 (1982), 12-44.
- [10] D. Kannan and A. T. Bharucha-Reid, On a stochastic integrodifferential evolution equation of Volterra type, J. Integral Eqns., 10 (1985), 351-379.

- [11] H. P. McKean, A class of Markov processes associated with nonlinear parabolic equations, Proc. N.A.S., 56 (1966), 1907-1911.
- [12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin (1983).