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1. INTRODUCTION

Consider the stochastic process {x(t), t ≥ 0} described by a semilinear Itô-McKean-

Vlasov stochastic evolution equation in a real separable Hilbert space:

dx(t) = [Ax(t) + f(x(t), µ(t))]dt + g(x(t))dw(t), t > 0, (1)

µ(t) = probability distribution of x(t),

x(0) = x0, (2)

where w(t) is a given Y - valued Q- Wiener process; A is the infinitesimal generator
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of a strongly continuous semigroup {S(t) : t ≥ 0} of bounded linear operators on

X ; f is an appropriate X-valued function defined on X ×Mγ2(X), where Mγ2(X)

denotes a proper subset of probability measures on X ; g is a L(Y,X)-valued function

on X ; and x0 is F0- measurable X-valued random variable. If the drift term f in

equation (1) does not depend on the probability distribution µ(t) of the process x at

time t, then the solution process x(t) of equation (1) is a standard Markov process,

and such equations are well studied, see Da Prato and Zabczyk [2] and the references

there in. On the other hand, there are situations where the nonlinear drift term f

depends not only on the state of the process at time t but also on the probability

distribution of the process {x(t), t ≥ 0} at that time as indicated in equation (1), we

refer to McKean [11], Ahmed and Ding [1], Govindan and Ahmed [5] and Govindan

[7, 8] for details. In this case, more precisely, the solution process x(t) of equation

(1) with the law L(x) = µ depends also on the probability distribution µ(t), namely,

x(t) = xµ(t) = x(t, x0, µ(t)).

Ahmed and Ding [1] investigated the existence and uniqueness of a mild solution

and other interesting problems of a stochastic evolution equation that is related to a

Mckean-Vlasov type measure-valued evolution equation, namely, an equation of the

form (1) with a constant additive diffusion term, that is, g(x) =
√
Q. Subsequently,

Govindan [7] considered the same equation as in Ahmed and Ding [1], introduced

and studied Trotter-Kato approximations. Recently, Govindan [6] studied Trotter-

Kato approximations of the equation of the type (1) with the time-varying drift term

f(t, x) that does not depend upon µ; while Govindan and Ahmed [5] studied Yosida

approximations of the equation (1). However, to the best of our knowledge, Trotter-

Kato approximations for equation (1) has not been considered in the literature. This,

therefore is the motivation of the paper to study Trotter-Kato approximations and

its version, so called the zeroth-order approximations, see Kannan and Barucha-Reid

[10] and Govindan [4], of mild solutions of equation (1). Using the latter, we shall

provide an estimate of the error in the approximation. As an application, we shall

also investigate a classical limit theorem on the dependence of equation (1) on a

parameter, see Gikhman and Skorokhod [3, pp. 50-54].

The rest of the paper is organized as follows: In Section 2, we give the preliminar-

ies. The Trotter-Kato approximation results are presented in Section 3. In Section

4, we study the dependence of such equations on a parameter. Lastly, we give an

example in Section 5.

2. PRELIMINARIES

Let X,Y be a pair of real separable Hilbert spaces and L(Y,X) the space of bounded

linear operators mapping Y into X . For convenience, we shall use the notations | · |
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and (·, ·) for norms and scalar products for both the Hilbert spaces. We write L(X)

for L(X,X). Let (Ω,F , P ) be a complete probability space. A map x : Ω → X is a

random variable if it is strongly measurable. Let x : Ω → X be a square integrable

random variable, that is, x ∈ L2(Ω,F , P ;X). The covariance operator of the random

element x is Cov[x] = E[(x− Ex) ◦ (x− Ex)], where E denotes the expectation and

g ◦h ∈ L(X) for any g, h ∈ X is defined by (g ◦h)k = g(h, k), k ∈ X. Then Cov[x] is

a selfadjoint nonnegative trace class (or nuclear) operator and trCov[x] = E|x−Ex|2,
where tr denotes the trace. The joint covariance of any pair {x, y} ⊂ L2(Ω,F , P ;X),

is defined as Cov[x, y] E[(x− Ex) ◦ (y − Ey)].

Let I be a subinterval of [0,∞). A stochastic process {x} with values in X is

a family of random variables {x(t), t ∈ I}, taking values in X. Let Ft, t ∈ I, be

a family of increasing sub σ- algebras of the sigma algebra F . A stochastic process

{x(t), t ≥ 0}, is adapted to Ft if x(t) is Ft- measurable for all t ∈ I.

A stochastic process {w(t), t ≥ 0}, in a real separable Hilbert space Y is a

Q- Wiener process if a) w(t) ∈ L2(Ω,F , P ;Y ) and Ew(t) = 0 for all t ≥ 0, b)

Cov[w(t) − w(s)] = (t − s)Q, Q ∈ L+
1 (Y ) is a nonnegative nuclear operator, c) w(t)

has continuous sample paths, and d) w(t) has independent increments. The operator

Q is called the incremental covariance (operator) of the Wiener process w(t). Then

w has the representation w(t) =
∑∞

n=1 βn(t)en, where {en}(n = 1, 2, 3, . . .) is an or-

thonormal set of eigenvectors of Q, βn(t), n = 1, 2, 3, . . . are mutually independent

real-valued Wiener processes with incremental covariance λn > 0, Qen = λnen and

trQ =
∑∞

n=1 λn.

In the sequel, we will use the notation A ∈ G(M,α) for an operator A which is the

infinitesimal generator of a C0- semigroup {S(t) : t ≥ 0} of bounded linear operators

on X satisfying ||S(t)|| ≤M exp(αt), t ≥ 0 for some positive constants M ≥ 1 and α,

where ||.|| denotes the operator norm.

Let B(X) denote the Borel σ-algebra of subsets of X and let M(X) denote the

space of probability measures on B(X) carrying the usual topology of weak conver-

gence. C(X) denotes the space of continuous functions on X . The notation (µ, ϕ)

means
∫

X
ϕ(x)µ(dx) whenever this integral makes sense. Throughout this paper we

let γ(x) ≡ 1 + |x|, x ∈ X , and define the Banach space

Cρ(X) =

{

ϕ ∈ C(X) : ||ϕ||Cρ(X) ≡ sup
x∈X

|ϕ(x)|
γ2(x)

+ sup
x 6=y

|ϕ(x) − ϕ(y)|
|x− y| <∞

}

.

For p ≥ 1, let M s
γp(X) be the Banach space of signed measures m on X satisfying

||µ||γp ≡
∫

X
γp(x)|m|(dx) < ∞, where |m| = m+ + m− and m = m+ − m− is the

Jordan decomposition of m. LetMγ2(X) =M s
γ2(X)∩M(X) be the set of probability

measures on B(X) having second moments. We put on Mγ2(X) a topology induced
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by the following metric:

ρ(u, v) = sup{(ϕ, µ− ν) : ||ϕ||ρ = sup
x∈X

|ϕ(x)|
γ2(x)

+ sup
x 6=y

|ϕ(x) − ϕ(y)|
|x− y| ≤ 1}.

Then (Mγ2(X), ρ) forms a complete metric space. We denote by

C([0, T ], (Mγ2(X), ρ)) the complete metric space of continuous functions from [0, T ]

to (Mγ2(X), ρ) with the metric:

DT (µ, ν) = sup
t∈[0,T ]

ρ(µ(t), ν(t)), for µ, ν ∈ C([0, T ], (Mγ2(X), ρ)).

Let C([0, T ];L2(Ω;X)) (0 < T < ∞) be the Banach space of continuous maps from

[0, T ] into L2(Ω;X) satisfying the condition supt∈[0,T ]E|x(t)|2 < ∞. Let Λ2 be the

closed subspace of C([0, T ];L2(Ω;X)) consisting of measurable and Ft-adapted pro-

cesses x = {x(t) : t ∈ [0, T ]}. Then, Λ2 is a Banach space with the norm topology

given by ||x||Λ2
= (supt∈[0,T ]E|x(t)|2)1/2.

From now on all stochastic processes considered in this paper are assumed to be

based on the complete filtered probability space (Ω,F , {Ft}t≥0, P ).

Let us define a mild solution concept.

Definition 1. A stochastic process x : [0, T ] → X defined on the probability space

(Ω,F , P ) is called a mild solution of the system (1)-(2), or simply equation (1) if

i) x is jointly measurable and Ft- adapted and its restriction to the interval [0, T ]

satisfes
∫ T

0 |x(t)|2dt <∞, P − a.s., and

ii) x(t) satisfies the integral equation

x(t) = S(t)x0 +

∫ t

0

S(t− s)f(x(s), µ(s))ds

+

∫ t

0

S(t− s)g(x(s))dw(s), t ∈ [0, T ], P − a.s..

The second integral in the last equality is defined in the sense of Itô. For the

definition and properties of these integrals, we refer to Ichikawa [9], Da Prato and

Zabczyk [2] and Govindan [8].

3. TROTTER-KATO APPROXIMATIONS

In this section, we shall establish the Trotter-Kato approximation results. But, first,

we state a result concerning the existence and uniqueness of a mild solution of the

system (1)-(2).

For this we introduce the following assumptions:

Hypothesis (H1)
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(i) A ∈ G(M,α), and

(ii) For p ≥ 2, f : X × (Mγ2(X), ρ) → X and g : X → L(Y,X) satisfy the following

Lipschitz and linear growth conditions:

|f(x, µ)− f(y, ν)| ≤ L1(|x− y|+ ρ(µ, ν)),

|g(x)− g(y)| ≤ L2|x− y|,
|f(x, µ)|p ≤ L3(1 + |x|p + ||µ||pγ),

|g(x)|p ≤ L4(1 + |x|p),

for all x, y ∈ X and µ, ν ∈Mγ2(X), where Li, i = 1, 2, 3, 4 are positive constants.

Theorem 1. Suppose that the Hypothesis (H1) hold. Then, for every F0- measurable

X- valued random variable x0 ∈ L2(Ω, X),

(a) The system (1)-(2) has a unique mild solution x = {x(t), t ∈ [0, T ]} in Λ2 with

the associated probability distribution µ = {µ(t) = L(x(t)), t ∈ [0, T ]} belonging

to C([0, T ], (Mγ2(X), ρ)).

(b) For any p ≥ 1 and F0- measurable x0 ∈ L2p(Ω, X), we have

sup
t∈[0,T ]

E|x(t)|2p ≤ kp,T (1 + E|x0|2p),

where kp,T is a positive constant.

Proof. See Govindan and Ahmed [5].

Consider the family of stochastic evolution equations

dxn(t) = [Anxn(t) + f(xn(t), µn(t))]dt + g(xn(t))dw(t), t > 0, (3)

xn(0) = x0, (4)

where An, n = 1, 2, 3,..., is the infinitesimal generator of a strongly continuous semi-

group {Sn(t) : t ≥ 0} of bounded linear operators on X .

For each n = 1, 2, 3,..., by Theorem 1 (a), the system (3)-(4) has a unique mild

solution xn ∈ C([0, T ], L2(Ω, X)). Hence, xn(t) satisfies the stochastic integral equa-

tion

xn(t) = Sn(t)x0 +

∫ t

0

Sn(t− s)f(xn(s), µn(s))ds

+

∫ t

0

Sn(t− s)g(xn(s))dw(s), t ∈ [0, T ], P − a.s..

We now make the following assumptions:

Hypothesis (H2)
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i) Let An ∈ G(M,α) for each n = 1, 2, 3, ...,

ii) As n→ ∞, Anx→ Ax for every x ∈ D, where D is a dense subset of X , and

iii) There exists a γ with Re γ > α for which (γI − A)D is dense in X , then the

closure A of A is in G(M,α).

A somewhat different consequence of the Trotter-Kato theorem is the following.

Theorem 2. (Pazy [12, Theorem 4.5, p. 88]) Let the Hypothesis (H2) hold. If Sn(t)

and S(t) are the C0- semigroups generated by An and A, respectively, then

lim
n→∞

Sn(t)x = S(t)x, x ∈ X, (5)

for all t ≥ 0, and the limit in (5) is uniform in t for t in bounded intervals.

Theorem 3. Suppose that the Hypotheses (H1) and (H2) are satisfied. Let x(t) and

xn(t) be the mild solutions of equations (1) and (3), respectively. Then, for each

T > 0,

sup
0≤t≤T

E|xn(t)− x(t)|2 → 0 as n→ ∞.

Proof. Considering the difference

xn(t)− x(t) = [Sn(t)− S(t)]x0

+

∫ t

0

[Sn(t− s)f(xn(s), µn(s))− S(t− s)f(x(s), µ(s))]ds

+

∫ t

0

[Sn(t− s)g(xn(s))− S(t− s)g(x(s))]dw(s), P − a.s.,

for t ∈ [0, T ], we obtain

|xn(t)− x(t)|2 ≤ 5

{

|Sn(t)x0 − S(t)x0|2

+

∣

∣

∣

∣

∫ t

0

Sn(t− s)[f(xn(s), µn(s))− f(x(s), µ(s))]ds

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫ t

0

[Sn(t− s)− S(t− s)]f(x(s), µ(s))ds

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫ t

0

Sn(t− s)[g(xn(s))− g(x(s))]dw(s)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫ t

0

[Sn(t− s)− S(t− s)]g(x(s))dw(s)

∣

∣

∣

∣

2}

, P − a.s., (6)

for t ∈ [0, T ].

We shall now estimate each term on the RHS of (6):
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Since An ∈ G(M,α) for each n = 1, 2, 3,..., and A ∈ G(M,α),

E|[Sn(t) − S(t)]x0| ≤ 2M exp(αt)E|x0|, uniformly in n and t ∈ [0, T ], where {S(t) :
t ≥ 0} is the C0- semigroup generated by A. Therefore, by Theorem 2, we have

sup
0≤t≤T

E|Sn(t)x0 − S(t)x0|2 → 0 as n→ ∞, (7)

for all t ≥ 0, x0 ∈ X, and the limit in (7) is uniform in t for t in bounded intervals.

By Hypothesis (H1),

sup
0≤s≤t

E

∣

∣

∣

∣

∫ s

0

Sn(s− r)[f(xn(r), µn(r)) − f(x(r), µ(r))]dr

∣

∣

∣

∣

2

≤ T

∫ t

0

||Sn(t− r)||2E|f(xn(r), µn(r)) − f(x(r), µ(r))|2dr

≤ TL2
1M

2 exp(2αT )

∫ t

0

[E|xn(s)− x(s)|2 + ρ2(µn(s), µ(s))]ds

≤ 2TL2
1M

2 exp(2αT )

∫ t

0

E|xn(s)− x(s)|2ds, (8)

where ρ2(µn(s), µ(s)) ≤ E|xn(s)− x(s)|2 has been used.

Next, by Proposition 1.9 from Ichikawa [9], we have

sup
0≤s≤t

E

∣

∣

∣

∣

∫ s

0

Sn(s− r)[g(xn(r)) − g(x(r))]dw(r)

∣

∣

∣

∣

2

≤ trQ

∫ t

0

||Sn(t− r)||2E|g(xn(r)) − g(x(r))|2dr

≤ trQL2
2M

2 exp(2αT )

∫ t

0

E|xn(s)− x(s)|2ds. (9)

Using the estimates (7)-(9), inequality (6) reduces to

sup
0≤s≤t

E|xn(s)− x(s)|2 ≤ β(n, T )

+ 5M2 exp(2αT )(2TL2
1 + trQL2

2)

∫ t

0

E|xn(s)− x(s)|2ds,

where

β(n, T ) = 5 sup
0≤s≤t

E|Sn(t)x0 − S(t)x0|2

+ 5 sup
0≤s≤t

E

∣

∣

∣

∣

∫ s

0

[Sn(s− r)− S(t− r)]f(x(r), µ(r))dr

∣

∣

∣

∣

2

+ 5 sup
0≤s≤t

E

∣

∣

∣

∣

∫ s

0

[Sn(s− r)− S(t− r)]g(x(r))dw(r)

∣

∣

∣

∣

2

. (10)
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An application of Bellman-Gronwall’s lemma yields

sup
0≤s≤t

E|xn(s)− x(s)|2 ≤ β(n, T ) exp{5M2 exp(2αT )(2TL2
1 + trQL2

2)t}, t ∈ [0, T ].

The first term on the RHS of (10) tends to zero as n → ∞ by (7). By Hypothesis

(H1) and Theorem 1 (b), we now have

sup
0≤s≤t

E

∣

∣

∣

∣

∫ s

0

[Sn(s− r) − S(t− r)]f(x(r), µ(r))dr

∣

∣

∣

∣

2

≤ T

∫ t

0

||Sn(t− r) − S(t− r)||2E|f(x(r), µ(r))|2dr

≤ TL3

∫ t

0

||Sn(t− r) − S(t− r)||2(1 + E|x(r)|2 + ||µ(r)||2γ)dr

≤ 2TL3M
2 exp (2αT )(1 + ||µ||2γ + kp,T (1 + E|x0|2)) <∞.

Hence, the second term of (10) also tends to zero in view of (7) together with the

Lebesgue’s dominated convergence theorem. Regarding the third term, note that

sup
0≤s≤t

E

∣

∣

∣

∣

∫ s

0

[Sn(s− r) − S(t− r)]g(x(r))dw(r)

∣

∣

∣

∣

2

≤ 2trQL4M
2 exp (2αT )(1 + kp,T (1 + E|x0|2)) <∞.

Finally, by Lebesgue’s dominated convergence theorem, this term also tends to zero.

Thus β(n, T ) → 0 as n→ ∞. This completes the proof.

Corollary 1. The sequence of probability laws {µn}∞n=1 corresponding to mild solu-

tions {xn}∞n=1 of equation (3) converges to the probability law µ of mild solutions x

of equation (1) in C([0, T ], (Mλ2(H), ρ)) as n→ ∞.

Proof. This follows from the fact that

DT (µn, µ) = sup
t∈[0,T ]

ρ(µn(t), µ(t)) ≤ sup
t∈[0,T ]

√

E|xn(t)− x(t)|2.

Let us next consider the zeroth-order approximations, that is, approximating a

stochastic evolution equation by a deterministic evolution equation.

Consider the stochastic evolution equation

dxε(t) = [Aεxε(t) + f(xε(t), µε(t))]dt+ εg(xε(t))dw(t), t ∈ [0, T ], (11)

xε(0) = x0 ∈ D(Aε), (12)

where Aε(ε > 0) is the infinitesimal generator of a strongly continuous semigroup

{Sε(t) : t ≥ 0} of bounded linear operators on X, along with the deterministic evolu-

tion equation

d

dt
x(t) = Ax(t) + f(x(t), µ(s)), t ∈ [0, T ], (13)
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x(0) = x0 ∈ D(A). (14)

The mild solutions of equation (11) and (13) are

xε(t) = Sε(t)x0 +

∫ t

0

Sε(t− s)f(xε(s), µε(s))ds

+ ε

∫ t

0

Sε(t− s)g(xε(s))dw(s), P − a.s., (15)

for t ∈ [0, T ], and

x(t) = S(t)x0 +

∫ t

0

S(t− s)f(x(s), µ(s))ds, t ∈ [0, T ], (16)

respectively. For each ε > 0, one can show by Theorem 1 (a) that equation (11) has

a unique mild solution xε ∈ C([0, T ];L2(Ω, X)), given by (15); and equation (13) also

has a unique mild solution given by (16) when g ≡ 0 as a special case.

We now make the following assumptions to consider the next result, see Kannan

and Bharucha-Reid [10]:

Hypothesis (H3)

Let A, Aε ∈ G(M,α)(ε > 0) with DAε
= D(A)(ε > 0); and Sε(t) → S(t) as ε ↓ 0,

uniformly in t ∈ [0, T ] for each T > 0.

In the following result, we shall estimate the error in the approximation. The

proof follows mimicking some arguments from Theorem 3.

Theorem 4. Suppose that the Hypotheses (H1) and (H3) hold. Let xε(t) and x(t) be

the mild solutions given by (15) and (16), respectively. Then

E|xε(t)− x(t)|2 ≤ ϕ(ε)φ(t),

where φ(t) is a positive exponentially increasing function and ϕ(ε) is a positive func-

tion decreasing monotonically to zero as ε ↓ 0.

Proof. Consider

xε(t)− x(t) = [Sε(t)− S(t)]x0

+

∫ t

0

Sε(t− s)[f(xε(s), µε(s))− f(x(s), µ(s))]ds

+

∫ t

0

[Sε(t− s)− S(t− s)]f(x(s), µ(s))ds

+ ε

∫ t

0

Sε(t− s)g(xε(s))dw(s), P − a.s., (17)

for t ∈ [0, T ].

We now estimate each term on the RHS of (17):
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Since Sε(t) → S(t) as ε ↓ 0, uniformly in t ∈ [0, T ], there exists an ε1 > 0 and

some constant K1 > 0 such that E|Sε(t)x0 − S(t)x0|2 ≤ K1a1(ε), for all t ∈ [0, T ],

where 0 < a1(ε) ↓ 0 as ε1 > ε ↓ 0.

From the proof of Theorem 3, we have

E

∣

∣

∣

∣

∫ t

0

Sε(t− s)[f(xε(s), µε(s))− f(x(s), µ(s))]ds

∣

∣

∣

∣

2

≤ TL2
1M

2 exp(2αT )

∫ t

0

[E|xε(s)− x(s)|2 + ρ2(xε(s), x(s))]ds

≤ 2TL2
1M

2 exp(2αT )

∫ t

0

E|xε(s)− x(s)|2ds.

Next, proceeeding as before,

E

∣

∣

∣

∣

∫ t

0

[Sε(t− s)− S(t− s)]f(x(s), µ(s))ds

∣

∣

∣

∣

2

≤ 2TL3M
2 exp(2αT )(1 + ||µ||2γ + kp,T (1 + E|x0|2)) <∞.

Therefore, by the Lebesgue’s dominated convergence theorem

E

∣

∣

∣

∣

∫ t

0

[Sε(t− s)− S(t− s)]f(x(s), µ(s))ds

∣

∣

∣

∣

2

→ 0 as ε ↓ 0.

Hence, there exist an ε2 > 0 and K2 > 0 such that

E

∣

∣

∣

∣

∫ t

0

[Sε(t− s)− S(t− s)]f(x(s), µ(s))ds

∣

∣

∣

∣

2

< K2a2(ε),

uniformly for t ∈ [0, T ], where 0 < a2(ε) ↓ 0 as ε2 > ε ↓ 0.

Finally, consider the stochastic integral term:

ε

∫ t

0

Sε(t− s)g(xε(s))dw(s) = ε

∫ t

0

Sε(t− s)[g(xε(s))− g(x(s))]dw(s)

+ ε

∫ t

0

Sε(t− s)g(x(s))dw(s)

= J1 + J2, say.

Using proposition 1.9 from Ichikawa [9], we have

E|J1|2 ≤ εtrQL2
2M

2 exp (2αT )

∫ t

0

E|xε(s)− x(s)|2ds,

and

E|J2|2 ≤ εtrQL4M
2 exp (2αT )(1 + kp,T (1 + E|x0|2)).

Hence, there exists an ε3 > 0 and some constant K3 > 0 such that E|J2|2 ≤ K3a3(ε),

where 0 < a3(ε) ↓ 0 as ε3 > ε ↓ 0.
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Set ϕ(ε) = 5{K1a1(ε)+K2a2(ε)+K3a3(ε)} for 0 < ε < ε0, where ε0 < min{εi, i =
1, 2, 3}. Consequently, for ε0 > ε > 0,

E|xε(t)− x(t)|2 ≤ ϕ(ε) + 5M2 exp(2αT )(2TL2
1 + εL2

2trQ)

×
∫ t

0

E|xε(s)− x(s)|2ds.

Invoking Bellman-Gronwall’s lemma, one obtains

E|xε(t)− x(t)|2 ≤ ϕ(ε)φ(t), t ∈ [0, T ],

where φ(t) = exp{5M2 exp(2αT )(2TL2
1 + εL2

2trQ)t}.

4. DEPENDENCE OF THE EQUATION ON A PARAMETER

In this section, as an application of the results in Section 3, we consider a classical limit

theorem on the dependence of the stochastic evolution equation (1) on a parameter.

For this, we shall follow Gikhman and Skorokhod [3, pp. 50-54].

Consider the family of stochastic evolution equations

dxn(t) = [Anxn(t) + fn(xn(t), µn(t))]dt+ gn(xn(t))dw(t), t ∈ [0, T ], (18)

xn(0) = x0, (19)

where An, n = 1, 2, 3,... is the infinitesimal generator of a strongly continuous semi-

group {Sn(t) : t ≥ 0} of bounded linear operators on X .

Let An, fn(x, µ) and gn(x) satisfy the conditions of Theorem 1 (a) for n = 1, 2, 3,...

with the same constants Li, i = 1, 2, 3, 4. Then equation (18) for each n = 1, 2, 3,... has

a unique mild solution xn ∈ C([0, T ];L2(Ω, X)). Hence, xn(t) satisfies the stochastic

integral equation

xn(t) = Sn(t)x0 +

∫ t

0

Sn(t− s)fn(xn(s), µn(t))ds

+

∫ t

0

Sn(t− s)gn(xn(s))dw(s), t ∈ [0, T ], P − a.s..

We now make the following further assumptions to consider our main result of the

section, see Gikhman and Skorokhod [3, p. 52].

Hypothesis (H4)

For each N > 0,

sup
|x|≤N

|fn(x, µ)− f(x, µ)| → 0 and sup
|x|≤N

|gn(x)− g(x)| → 0

as n→ ∞, uniformly in µ for each t ∈ [0, T ].

Theorem 5. Suppose that the hypotheses (H1), (H2) and (H4) hold. Let xn(t) and
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x(t) be the mild solutions of equations (18) and (1), respectively. Then, for each

T > 0,

sup
0≤t≤T

E|xn(t)− x(t)|2 → 0 as n→ ∞.

Proof. Consider

xn(t)− x(t) = ψ(t) +

∫ t

0

Sn(t− s)[fn(xn(s), µn(s))− fn(x(s), µ(s))]ds

+

∫ t

0

Sn(t− s)[gn(xn(s))− gn(x(s))]dw(s), P − a.s.,

t ∈ [0, T ], where

ψ(t) = [Sn(t)− S(t)]x0 +

∫ t

0

Sn(t− s)[fn(x(s), µ(s)) − f(x(s), µ(s))]ds

+

∫ t

0

[Sn(t− s)− S(t− s)]f(x(s), µ(s))ds

+

∫ t

0

Sn(t− s)[gn(x(s)) − g(x(s))]dw(s)

+

∫ t

0

[Sn(t− s)− S(t− s)]g(x(s))dw(s). (20)

By Hypothesis (H2) and Proposition 1.9 from Ichikawa [9], we get

E|xn(t)− x(t)|2 ≤ 3

{

E|ψ(t)|2

+ M2 exp(2αT )TL2
1

∫ t

0

[E|xn(s)− x(s)|2 + ρ2(µn(s), µ(s))]ds

+ M2 exp(2αT )trQL2
2

∫ t

0

E|xn(s)− x(s)|2ds
}

≤ 3E|ψ(t)|2 + L

∫ t

0

E|xn(s)− x(s)|2ds,

where L = 3M2 exp(2αT )(2TL2
1 + trQL2

2). Hence, by Lemma 1 from Gikhman and

Skorokhod [3, p. 41], we get

E|xn(t)− x(t)|2 ≤ 3E|ψ(t)|2 + L

∫ t

0

eL(t−s)E|ψ(t)|2ds.

Hence, to prove the theorem, it is sufficient to show that sup0≤t≤T E|ψ(t)|2 → 0.

First, sup0≤t≤T E|Sn(t)x0 −S(t)x0|2 → 0 as n→ ∞ as shown earlier in (7). To show

that the remaining terms in (20) also go to zero, consider first

E

∣

∣

∣

∣

∫ t

0

Sn(t− s)[fn(x(s), µ(s)) − f(x(s), µ(s))]ds

∣

∣

∣

∣

2
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≤ 2TL3M
2 exp(2αT )(1 + ||µ||2γ + kp,T (1 + E|x0|2)) <∞.

Hence, by Hypothesis (H4) and the Lebesgue’s dominated convergence theorem,

sup
0≤t≤T

E

∣

∣

∣

∣

∫ t

0

Sn(t− s)[fn(x(s), µ(s)) − f(x(s), µ(s))]ds

∣

∣

∣

∣

2

→ 0 as n→ ∞.

By Hypotheses (H1), (H2), (7) and the dominated convergence theorem, it can be

shown that

sup
0≤t≤T

E

∣

∣

∣

∣

∫ t

0

[Sn(t− s)− S(t− s)]f(x(s), µ(s))ds

∣

∣

∣

∣

2

→ 0 as n→ ∞.

Next, consider the stochastic integral term:

E

∣

∣

∣

∣

∫ t

0

Sn(t− s)[gn(x(s)) − g(x(s))]dw(s)

∣

∣

∣

∣

2

≤ 2trQL4M
2 exp (2αT )(1 + kp,T (1 + E|x0|2)) <∞,

by Proposition 1.9 from Ichikawa [9] and the hypothesis. Hypothesis (H4) and

Lebesgue’s dominated convergence theorem again yield

sup
0≤t≤T

E

∣

∣

∣

∣

∫ t

0

Sn(t− s)[gn(x(s)) − g(x(s))]dw(s)

∣

∣

∣

∣

2

→ 0 as n→ ∞.

Finally, by (7) and hypothesis, it can be shown as before that

sup
0≤t≤T

E

∣

∣

∣

∣

∫ t

0

[Sn(t− s)− S(t− s)]g(x(s))dw(s)

∣

∣

∣

∣

2

→ 0 as n→ ∞.

This completes the proof.

Corollary 2. Assume that the coefficients in equation (18) depend on a parameter θ

which varies through some set of numbers G1 :

dxθ(t) = [Aθxθ(t) + fθ(xθ(t), µθ(t))]dt + gθ(xθ(t))dw(t), t ∈ [0, T ], (21)

xθ(0) = x0, (22)

where Aθ is the infinitesimal generator of a strongly continuous semigroup {Sθ(t) :

t ≥ 0} of bounded linear operators on X. Assume further that for each N > 0,

sup
|x|≤N

|fθ(x, µ) − fθ0(x, µ)| → 0 and sup
|x|≤N

|gθ(x)− gθ0(x)| → 0 as θ → θ0,

uniformly in µ. Furthermore, let Aθ, Aθ0 ∈ G(M,α), θ ∈ G1 with D(Aθ) = D(Aθ0)

and Sθ(t) → Sθ0(t) as θ → θ0, uniformly in t ∈ [0, T ] for each T > 0. Lastly, let

Aθ, fθ(t, x) and gθ(t, x) for each θ satisfy the hypothesis of Theorem 1 with the same
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constants Li, i = 1, 2, 3, 4. Then equation (21) has a unique mild solution xθ(t) and

satisfies for each T > 0 :

sup
0≤t≤T

E|xθ(t)− xθ0(t)|2 → 0 as θ → θ0.

Proof. The proof follows immediately from an application of Theorem 5 to the

sequence {xθn(t)}, where θn → θ.

5. AN EXAMPLE

Consider the stochastic heat equation:

dx(t, z) =

[

∂2

∂z2
x(t, z)− x(t, z) + µ(t)

1 + |x(t, z)|

]

dt

+
σx(t, z)

1 + |x(t, z)|dβ(t), t ∈ [0, T ], (23)

xz(t, 0) = xz(t, π) = 0, x(0, z) = x0(z),

where β(t) is a real standard Wiener process and σ is a real number. Take Y = R,

the real line. Define A : X → X , where X = L2[0, π] by A = ∂2/∂z2 with domain

D(A) = {x ∈ X |x, x′ are absolutely continuous with x′, x′′ ∈ X, x(0) = x(π) = 0}.
Then

Ax =

∞
∑

n=1

n2(x, xn)xn, x ∈ D(A),

where xn(z) =
√

2/π sinnz, n = 1, 2, 3, ..., is the orthonormal set of eigenvectors of A.

It is well known that A is the infinitesimal generator of a C0- semigroup {S(t) : t ≥ 0}
in X , and is given by (see Govindan [7] and the references therein)

S(t)x =

∞
∑

n=1

exp (−n2t)(x, xn)xn, x ∈ X,

that satisfies ||S(t)|| ≤ exp (−π2t), t ≥ 0, and hence is a contraction semigroup. Take

f(x, µ) = − x+ µ

1 + |x| , g(x) =
σx

1 + |x| , x ∈ X,

and µ ∈ C([0, T ], (Mγ2(X), ρ)). Hence equation (23) can be written in the abstract

form as equation (1).

Define now Aε(ε > 0) by Aε = (1 + ε)∂2/∂z2 which is the infinitesimal generator

of a of a C0- semigroup {Sε(t) : t ≥ 0}(ε > 0) in X , and is given by

Sε(t)x =

∞
∑

n=1

exp (−(1 + ε)n2t)(x, xn)xn, x ∈ X,
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that satisfies ||Sε(t)|| ≤ exp (−(1 + ε)π2t), t ≥ 0, ε > 0 and hence is a contraction

semigroup. Clearly,

lim
ε↓0

Sε(t)x = S(t)x, x ∈ X,

uniformly in t ∈ [0, T ]. Under the setup of this example, one can introduce equations

(11) and (13) analogously. Hence, by Theorem 4,

E|xε(t)− x(t)|2 ≤ ψ(ε)φ(t), t ∈ [0, T ].
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