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1. INTRODUCTION

A very good kinetic interpretation of Log–logistic dose–time response curves can be

found in [5]. We will follow a brief statement from the cited article. In the context
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of kinetics mechanisms yielding Verhulst model [1]–[3] (see, also [7]–[9]), the logistic

equation is defined as:
dM∗(t)

dt
= kM∗(t)(1 −M∗(t)) (1)

where k is the rate constant. The general solution is

1−M∗(t) =
1

1 + ek(t−t∗0)
.

At time t = 0 we have

1−M∗

0 =
1

1 + e−kt∗0
; M∗

0 = M∗(0),

i.e.

t∗0 =
1

k

(

ln

(

1

M∗

0

− 1

))

.

We consider the following generalization of logistic model. Let the function M(t) is

defined my the following nonlinear equation:

(

M

1−M

)
1
β

= 1 +
k(t− t0)

β
. (2)

After differentiation of both sides of Eq. (2), and after simple calculation we get the

following differential equation for the new Log–logistic function M(t):

dM(t)

dt
= kM1− 1

β (1 −M)1+
1
β , (3)

where β is a shape parameter. For β → ∞ the equation (3) reduces to equation (1).

The Eq. (3) provides a parametric interpolation formula between the predictions of

the logistic equation (β → ∞) and second order kinetics (β = 1). The equation (2)

can be rewritten as:

1−M =
1

1 +
(

1 + k(t−t0)
β

)β
.

For 0 < 1
β
it is possible to force M = 0 at t = 0 by setting t0 = 0. With this condition

the equation reduces to the simple form

1−M =
1

1 +
(

t
α

)β
,

where the time constant, defined by α = β
k
is a scale parameter.

The Log–logistic equation can be written as:

M(t) =
tβ

αβ + tβ
. (4)
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In this article we study the Hausdorff approximation of the shifted Heaviside func-

tion ht0(t) by Log–logistic and quadratic transmuted Log–logistic cumulative distri-

bution functions (see, for instance [20]).

We give a software modules within the programming environment CAS Mathemat-

ica for illustrating the results. Some applications in the field of biochemical processes

and debugging theory have also explored.

2. PRELIMINARIES

Definition 1. [20] Let T be a random variable with cumulative distribution function

(c.d.f.) C(t).

Then a general transmuted family (called k– transmuted family) is defined as:

M(t) = C(t) + (1− C(t))

k
∑

i=1

λi (C(t))
i

(5)

with λi ∈ [−1, 1] for i = 1, 2, . . . , k and −k ≤

k
∑

i=1

λi < 1.

For the quadratic transmuted family, see Shaw et Buckley [10]. Shaw et al. [10],

Gupta et al. [12] study a new model which generalizes the Log–logistic function [13].

The Log–logistic distribution (also known as the Fisk distribution [11]) is a widely

used lifetime distribution. For other results, see [21].

The distribution is used to model in fields such as biostatistics, population dy-

namic, medical research [6] and economics.

The (c.d.f.) of Log–logistic distribution is given by:

C(t) =
tβ

αβ + tβ
, t ∈ [0,∞).

Definition 2. The (c.d.f.) of quadratic transmuted Log–logistic family is defined

by:

M1(t) =
tβ

αβ + tβ

(

1 + λ− λ
tβ

αβ + tβ

)

. (6)

Remark. From (5) we have

M1(t) = C(t) + (1− C(t))
(

λ1C(t) + λ2C
2(t)

)
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If λ2 = 0 and λ1 = λ we have

M1(t) = C(t) + (1− C(t))λC(t)

= tβ

αβ+tβ
+
(

1− tβ

αβ+tβ

)

λ tβ

αβ+tβ

= tβ

αβ+tβ

(

1 + λ− λ tβ

αβ+tβ

)

.

(7)

Definition 3. The shifted interval Heaviside function is defined as [17]:

ht0(t) =











0, if t < t0,

[0, 1], if t = t0,

1, if t > t0 .

(8)

We will note that the determination of compulsory in area of the Software Relia-

bility Theory components, such as confidence intervals and confidence bounds, should

also be accompanied by a serious analysis of the value of the best Hausdorff approxi-

mation of the function ht0(t) by cumulative functions of type (4) and (6) - the subject

of study in the present paper.

Definition 4. [16] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

3. MAIN RESULTS

3.1. A NOTE ON THE LOG–LOGISTIC FAMILY (4)

We see that M(α) = 1
2 . The one–sided Hausdorff distance d between the function

hα(t) and the function (4) satisfies the relation

M(α+ d) = 1− d. (9)

The following theorem gives upper and lower bounds for d

Theorem 1. For the one–sided Hausdorff distance d = d(α, β) between hα(t) and

the sigmoid (4) the following inequalities hold for β
α
≥ 2:

dl =
1

1 + β
α

< d <
ln
(

1 + β
α

)

1 + β
α

= dr. (10)
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Figure 1: The functions F (d) and G(d).

Proof. Let us examine the function:

F ∗(d) = M(α+ d)− 1 + d. (11)

From (9) we find

ln
1− d

d
= β ln

α+ d

α
= β ln

(

1 +
d

α

)

Consider the function

F (d) = β ln

(

1 +
d

α

)

− ln(1− d)− ln
1

d
.

From

F ′(d) =
β

α

1

1 + d
α

+
1

1− d
+

1

d
> 0

we conclude that function F is increasing.

Consider the function

G(d) =

(

1 +
β

α

)

d− ln
1

d
. (12)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d→ 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0.

Further, for β
α
≥ 2 we have

G

(

1

1 + β
α

)

= 1− ln

(

1 +
β

α

)

< 0,
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Figure 2: The model (4) for β = 8.2, α = 0.5; H–distance d = 0.130267,

dl = 0.0574713, dr = 0.164165.

Figure 3: The model (4) for β = 15, α = 0.6; H–distance d = 0.0964897,

dl = 0.0384615, dr = 0.125311.

G





ln
(

1 + β
α

)

1 + β
α



 = ln ln

(

1 +
β

α

)

> 0.

This completes the proof of the theorem.

The model (4) for β = 8.2, α = 0.5 is visualized on Fig. 2.

From the nonlinear equation (9) and inequalities (10) we have: d = 0.130267,

dl = 0.0574713, dr = 0.164165.

The model (4) for β = 15, α = 0.6 is visualized on Fig. 3.

We prove more precise bounds for d. Using the same notations as in Theorem 1,
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we state the following

Theorem 2. For α, β ∈ R

d̃l =
ln(1+ β

α
)

1+ β

α

−
ln ln(1+ β

α
)

(1+ β

α
)

(

1+ 1

ln(1+
β
α

)

) < d <
ln(1+ β

α
)

1+ β

α

+
ln ln(1+ β

α
)

(1+ β

α
)

(

ln ln(1+
β
α

)

1−ln(1+
β
α

)
−1

) = d̃r.
(13)

Proof. Evidently, the second derivative of (12)

G′′(d) = −
1

d2
< 0

has a constant sign on [ 1

1+ β

α

,
ln(1+ β

α
)

1+ β

α

].

The straight line, defined by the points
(

1
1+ β

α

, G
(

1
1+ β

α

))

,
(

ln(1+ β

α
)

1+ β
α

, G
(

ln(1+ β

α
)

1+ β
α

))

,

and the tangent to G(d) at the point
(

ln(1+ β
α
)

1+ β

α

, G
(

ln(1+ β
α
)

1+ β

α

))

, cross the abscissa at

the points
ln(1 + β

α
)

1 + β
α

+
ln ln(1 + β

α
)

(1 + β
α
)
(

ln ln(1+ β

α
)

1−ln(1+ β

α
)
− 1
) ,

ln(1 + β
α
)

1 + β
α

−
ln ln(1 + β

α
)

(1 + β
α
)
(

1 + 1

ln(1+ β

α
)

) ,

respectively.

This completes the proof of the Theorem 2.

We note that the improved bounds (13) are more precise than (10).

3.2. A NOTE ON THE QUADRATIC TRANSMUTED

LOG–LOGISTIC CUMULATIVE SIGMOID (5)

We consider the following family:

M∗

1 (t) =
tβ

αβ + tβ

(

1 + λ− λ
tβ

αβ + tβ

)

. (14)

Let t0 is the positive root of the nonlinear equation

M∗

1 (t0)−
1

2
= 0. (15)

The one–sided Hausdorff distance d1 between the function ht0(t) and the function

(14) satisfies the relation

M∗

1 (t0 + d1) = 1− d1. (16)
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Figure 4: The model (14) for λ = 0.96, α = 0.5, β = 10, t0 = 0.459127;

H–distance d1 = 0.0891484, dl1 = 0.0649963, dr1 = 0.177663.

Let

p1 =
αβ(−tβ0 − αβ + λt

β
0 )

(αβ + t
β
0 )

2
,

q1 =1 +
2βλt3β−1

0

(αβ + t
β
0 )

3
−

β(1 + 3λ)t2β−1
0

(αβ + t
β
0 )

2
+

β(1 + λ)tβ−1
0

αβ + t
β
0

.

The following theorem gives upper and lower bounds for d1

Theorem 3. For the one–sided Hausdorff distance d1 between ht0(t) and the sigmoid

(14) the following inequalities hold for:

2.1q1 > e1.05

dl1 =
1

2.1q1
< d1 <

ln(2.1q1)

2.1q1
= dr1 . (17)

The proof follows the ideas given in this note and will be omitted.

The model (14) for λ = 0.96, α = 0.5, β = 10, t0 = 0.459127 is visualized on Fig.

4.
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4. SOME APPLICATIONS

1. The Hill’s function is used frequently to study biochemical processes in the living

cell (see, e.g. [14], [15]). Hill’s model is concerned with the reaction network:

C + βT ←→ Cβ ,

where C denotes a protein that binds up to β molecules of ligand T and Cβ is a

ligand–protein complex. The coefficient β describes the number of binding sites on

the protein.

All ligands bind simultaneously. Assuming that both the forward and backward

reactions are allowed applying the mass action law we obtain for the rate of the ligand

concentration a simple expression.

We may assume that this expression equals zero, because the ligand concentration

is much bigger than the protein concentration and thus dot change in time. From the

latter equation one easily derive the expression for the dose response curve (the Hill’s

function) which relates the amount of free ligands, t, to the fraction of ligand–bound

proteins (e.g. receptors) in the system, ϕ.

In biochemistry, the proportion of the bound macromolecules is often described

by Hill’s equation [4]:

ϕ =
tβ

K

1 + tβ

K

,

where K denotes the dissociation constant.

When β is an integer, this formula can be explained by chemical kinetics. In

many cases, the value of β is not an integer. For example, for the binding of oxygen

to haemoglobin, we have β ≈ 2.8 [14].

In the case K = αβ we have the Log–logistic function

M(t) =
tβ

αβ + tβ
.

The function M(t) is the general Hill time–response equation

1−M(t) =
1

1 +
(

t
α

)β

that describes the temporal transformation of the population mechanism [15].

Now it is clear how important is the study of the phenomenon ”super saturation”,

to which we devoted the Theorems 1–2.

2. The research of each new model in the field of debugging and test theory compul-

sory passes through the experimental phase with imposed in practice databases.
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Month In-

dex

System Days

(Days)

System Days (Cu-

mulative)

Failures Cumulative

Failures

1 961 961 7 7

2 4170 5131 3 10

3 8789 13,920 14 24

4 11,858 25,778 8 32

5 13,110 38,888 11 43

6 14,198 53,086 8 51

7 14,265 67,351 7 58

8 15,175 82,526 19 77

9 15,376 97,902 17 94

10 15,704 113,606 6 100

11 18,182 131,788 11 111

12 17,760 149,548 4 115

13 18,352 167,900 0 115

Table 1: Field failure data [18].

One of them is the data provided in [18]. The operating time of the software is

167,900 days. 115 failures are detected for these days which contain 71 unique failures.

Table 1 shows the failures data which are united for each of the 13 months.

Dataset included [19] Year 2000 compatibility modifications, operating system

upgrade, and signaling message processing.

Below, we will illustrate the fitting of this data, for example, with the M(t) model,

and will show the connection to discussed in this article - approximate task.

The fitted model

M(t) = N
tβ

αβ + tβ

based on the data of Table 1 for the estimated parameters: N = 115; α = 5.93046; β =

3.15179 is plotted on Fig. 5.

The example results show a good fit by the presented model M(t).

The fitted model

M1(t) = N
tβ

αβ + tβ

(

1 + λ− λ
tβ

αβ + tβ

)

based on the Dataset for the estimated parameters: N = 115; α = 17.8094; β =

1.71172; λ = 2.92657 is plotted on Fig. 6.

The approximation of these data by quadratic transmuted function provides very

good results.
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Figure 5: Approximation solution by M(t).

Figure 6: Approximation solution by model M∗

1 (t).

The given comparison shows that in some cases the quadratic transmuted Log–

logistic software reliability model is better than that of Log–logistic software reliability

model (see, Fig. 7).

Obviously, studying of phenomenon ”super saturation” is mandatory element

along with other important components - ”confidence bounds” and ”confidence inter-

vals” when dealing with questions from Software Reliability Models domain.

For some software reliability models, see [22]–[39].

We hope that the results will be useful for specialists in this scientific area.
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Figure 7: Comparison between Log-logistic (red) and quadratic transmuted

Log–logistic (green) models.
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