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1. INTRODUCTION

Nonlinear differential equations occur naturally as mathematical models in various

branches of Science and Engineering. See [2], [10], [12], [13], [14], [21], [28], [29], [30]

for some examples. In the past several decades, it has been well established that

the study of the fractional differential equations has gained importance due to it’s

applications. See [5], [6], [15], [16], [18], [20], [24], [25], [26], [27], [32], [34] and the

references therein for some applications. It is known that the fractional differential

equations represent better and more economical models compared with the counter-
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part of integer models. Explicit solution of nonlinear fractional differential equation

is rarely possible. In [22], Picard’s iterative method for Caputo fractional ordinary

differential equation has been developed using the usual Lipschitz condition. This is

an improvement on the Picard’s method developed in [24], where they have assumed

local form of Lipchitz condition. In this work, we develop Picard’s iterative method

for Caputo fractional reaction diffusion equation assuming the solution u is bounded

a priori. The method we have developed here is referred to as existence in the large by

Picard’s approximations, since the existence and uniqueness of the solution is guaran-

teed as long as the solution is bounded. See [8] for details on integer order first order

initial value problem. In addition, we have exploited the convergence of the series

of Mittag-Leffler functions [4] from the expression of the Green’s function involved.

The method of coupled lower and upper solutions developed together with generalized

monotone method in [33] guarantees the interval of existence, when the nonhomoge-

neous term is the sum of an increasing and decreasing functions. In Picard’s iterates,

we do not have any restrictions on the nature of the nonlinear term. However, the

order of convergence by Picard’s iterative method as well as generalized monotone

method are linear. In addition, the Picard’s method does not guarantee the interval

of existence. In order to develop faster convergence methods, such as generalized

quasilinearization method as in [6], [20] we need the nonlinear nonhomogeneous term

to be a sum of convex and concave functions. In the generalized quasilinearization

method, the corresponding linear approximations are linear equations with variable

coefficients. If we demonstrate that the solution of the linear approximations are

bounded and satisfy the Lipschitz condition, then we can show that the solution of

these linear approximations exist and unique on the interval where the solutions are

bounded. We can show the solutions are bounded by using coupled lower and upper

solutions. In addition the interval of existence is guaranteed. This was the moti-

vation for us to develop Picard’s iterative method. The Picard’s iterative method

can be easily extended to Caputo fractional diffusion system with initial and Direch-

let’s homogeneous boundary conditions. We have developed Picard’s iterates when

the nonlinear nonhomogeneous term is Lipschitzian. Hence the method yields the

existence of a unique solution. We have provided a detailed proof for the scalar Ca-

puto fractional reaction diffusion equation. One can easily extend Picard’s iterative

method to system of Caupto reaction diffusion equation with initial and boundary

conditions, by using an appropriate norm ||.|| in place of |.| of the scalar equation.

2. PRELIMINARY RESULTS

In this section, we recall definitions and some known results which will be useful to

develop our main result.
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Definition 2.1. The Gamma Function, Γ(q), is defined by Γ(q) =
∫

∞

0
sq−1e−sds.

Definition 2.2. The Beta Function, β(p, q), is defined by β(p, q) = Γ(p)Γ(q)
Γ(p+q) .

See [23] for more information.

Definition 2.3. The Caputo (left-sided)fractional derivative of u(t) of order q, n−

1 ≤ q ≤ n, is given by the equation:

cDqu(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1un(s)ds, t ∈ [0,∞), t > t0. (2.1)

In particular, if q = n, an integer, then cDqu = u(n)(x) and cDqu = u
′

(x) if q = 1.

Definition 2.4. The Riemann-Liouville fractional integral of order q defined by

D−qu(t) =
1

Γ(q)

∫ t

0

(t− s)q−1u(s)ds, (2.2)

where 0 < q ≤ 1.

Definition 2.5. The Riemann-Liouville (left-sided) fractional derivative of u(t),

when 0 < q < 1, is defined as:

Dqu(t) =
1

Γ(1− q)

d

dt

∫ t

0

(t− s)q−1u(s)ds, t > 0. (2.3)

Note that the Caputo integral of order q for any function is same as the Riemann-

Liouville integral. See more in [10], [11], [14], [28], [29].

Definition 2.6. A function f(x, t, u) ∈ C[[0, T ]× R,R] is said to be a Lipschitzian

in u if for any u1, u2, there exists an L > 0 such that

|f(x, t, u1)− f(x, t, u2)| ≤ L|u1 − u2|.

Next we define the two parameter Mittag Leffler functions which will be useful in

solving the linear Caputo fractional differential equations.

Definition 2.7. The two parameter Mittag-Leffler function is defined as

Eq,r(λ(t
q)) =

∞
∑

k=0

(λtq)k

Γ(qk + r)
, (2.4)

where q, r > 0, and λ is a constant. Furthermore, for r = q,(2.4) reduces to

Eq,q(λt
q) =

∞
∑

k=0

(λtq)k

Γ(qk + q)
. (2.5)



840 P.G. CHHETRI AND A.S. VATSALA

If r = 1 in (2.4), then we have:

Eq,1(λt
q) =

∞
∑

k=0

(λtq)k

Γ(qk + 1)
. (2.6)

If q = 1, then

E1,1(λt) = eλt, (2.7)

where eλt is the usual exponential function. See for details in [9], [11], [14], [17], [25],

[29].

The following Lemmas are useful in establishing the convergence of the solution.

Lemma 2.1. Let Eq,1(−λtq) be the Mittag-Leffler function of order q, where 0 <

q ≤ 1. Then,
Eq,1(−λ1t

q)
Eq,1(−λ2tq)

< 1 where λ1, λ2 > 0 such that λ1 = λ2 + k, for k > 0.

Lemma 2.2. Let Eq,q(−λtq) be the Mittag-Leffler function of order q, where 0 <

q ≤ 1. Then
Eq,q(−λ1t

q)
Eq,q(−λ2tq)

< 1, where λ1, λ2 > 0, such that λ1 = λ2 + k, for k > 0.

See [4] for details of the proof.

Next we recall the following improved version of Gronwall’s Lemma which will

be useful in our main result. The version of Belmann-Gronwall Inequality in two

variables has been discussed in [1] where the following unpublished Wendroff result

was given:

If

u(x, y) ≤ a(x) + b(y) +

∫ x

0

∫ y

0

v(r, s)u(r, s)drds, (2.8)

where a(x), b(y) > 0, a′(x), b′(y) ≥ 0, u(x, y), v(x, y) ≥ 0, then

u(x, y) ≤
(a(0) + b(y))(a(x) + b(0))

a(0) + b(0)
exp(

∫ x

0

∫ y

0

v(r, s)drds). (2.9)

The Wendroff inequality (2.8) was generalized by Bainov and Simeonov [1]:

Theorem 2.1. Let u(x, y), a(x, y), k(x, y) be the nonnegative continuous functions

for x ≥ x0, y ≥ y0, and let a(x, y) is nondecreasing in each of the variables for

x ≥ x0, y ≥ y0. Suppose that

u(x, y) ≤ a(x, y) +

∫ x

x0

∫ y

y0

k(s, t)u(s, t)dtds, x ≥ x0, y ≥ y0. (2.10)

Then

u(x, y) ≤ a(x, y)exp(

∫ x

x0

∫ y

y0

k(s, t)dtds), x ≥ x0, y ≥ y0. (2.11)

See [1], [3] for proofs. This is the version we are going to use in our main result.
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3. MAIN RESULT

In this section, we develop Picard’s iterative method to prove the existence and

uniqueness of the solution of the scalar Caputo fractional reaction diffusion equa-

tion on one dimensional space with initial and Direchlet boundary conditions. For

that purpose we will define the region

S = {(x, t, u)| 0 ≤ t ≤ T, 0 ≤ x ≤ a and |u(x, t)| < M < ∞, T > 0}.

Note that M here can be very large number but finite. This implies that if f(x, t, u) is

a continuous function defined on S, then |f(x, t, u)| is bounded by some M1, where M1

can be very large number but finite. Using special case of the generalized Belmann-

Gronwall inequality namely Theorem 2.1, we prove that the solution which exists

is also unique. For that purpose, consider the Caputo fractional reaction diffusion

equation of the form:
c∂

q
t u− kuxx = f(x, t, u), on QT ,

u(0, t) = 0, u(a, t) = 0, in ΓT ,

u(x, 0) = u0(x), x ∈ Ω.

(3.1)

where f ∈ C[[0, a] × [0, T ] × R,R], u0(x) ∈ C[[0, a] × R,R], Ω = [0, a], J = (0, T ],

QT = J × Ω, k > 0 and ΓT = (0, T ) × ∂Ω. Here we have taken q as 0.5 ≤ q ≤ 1.

Although we have taken homogeneous Dirichlet’s boundary conditions in (3.1), the

method can be extended to nonhomogeneous Dirichlet’s boundary conditions. Using

the eigen function expansion method, we can represent the solution u(x, t) of (3.1)

treating f(x, t, u) as the nonhomogeneous term as follows:

u(x, t) =

∫ a

0

[

∞
∑

n=1

Eq,q(−kλn(t
q))φn(x)φn(y)]u0(y)dy (3.2)

+

∫ t

0

∫ a

0

[

∞
∑

n=1

(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)φn(y)]f(y, s, u)dyds.

See [31] for details. It should be noted that u(x, t) is well defined when the initial

condition u0(x), and the nonhomogeneous term f(x, t, u) are bounded.

If we prove the existence and uniqueness of the solution of (3.2), then it is equivalent

to proving the existence of the solution of (3.1). We will prove in our main result, the

existence and uniqueness of solution of (3.2). Since f(x, t, u) is a continuous function

on the closed bounded set S, it is bounded. We will use this fact in our next main

result.

Theorem 3.1. Consider the Caputo fractional reaction diffusion equation (3.1),

where f(x, t, u) is continuous on the set S and Lipschitzian in u on the set S. Then

there exists a sequence {un(x, t)} defined by
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un(x, t) =

∫ a

0

[

∞
∑

n=1

Eq,q(−kλn(t
q))φn(x)φn(y)]u0(y)dy

+

∫ t

0

∫ a

0

[

∞
∑

n=1

(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)φn(y)]f(y, s, un−1)dyds (3.3)

satisfying u0(x, t) = u0(x), the initial condition of (3.1). The sequence {un(x, t)}

converges uniformly to the unique solution u(x, t) of (3.2).

Proof. Our aim is to prove that the sequences {un(x, t)} defined by (3.3) converge

uniformly to u(x, t), the solution of (3.2). Further, the solution which exists is unique

solution of (3.2). We prove our main result in three different stages. We will prove that

(i) The sequence {un(x, t)} given by (3.3) is well defined on the set S. We prove

that un(x, t) ∈ S, for each n, n = 1, 2, 3, ....

(ii) The sequence {un(x, t)} converges uniformly to a function u(x, t) on the set

S, where u(x, t) satisfies (3.2).

(iii) The solution of (3.2) which exists is unique on QT .

In the next result we prove that un(x, t) are well defined for each n, n = 1, 2, 3....

Lemma 3.1. Let the hypothesis of Theorem 3.1 hold. Then un(x, t) defined by (3.3)

are in the set S for each n, n = 1, 2, 3, .......

Proof. It is easy to see that u0(x, t) = u0(x), the initial condition of (3.1) is bounded.

That is u0(x, t) = u0(x) is a continuous function on a closed bounded set S and hence

bounded. That is |u0(x) ≤ M (large enough). Since f(x, t, u0(x)) is defined in the

set S, |f(x, t, u0(x))| ≤ M1. Using Lemma 2.2, it is easy to observe that

|

∞
∑

n=1

Eq,q(−kλnt
qφn(x)φn(y)| ≤ K1 (3.4)

and

|

∞
∑

n=1

Eq,q(−kλn(t− s)qφn(x)φn(y)| ≤ K2. (3.5)

Using (3.4) and (3.5) in u1(x, t), we get

|u1(x, t)| ≤ MaK1 +M1K2Ta ≤ M1(say).

Now we prove that |un(x, t)| ≤ Mn for all n, n=1,2,3.... We achieve this by the method

of mathematical induction. Let the result be true for n=k. That is |uk(x, t)| ≤ Mk
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for some Mk, Mk large enough but finite which confirms that uk(x, t) is in the set S.

We will prove the result for uk+1(x, t). From (3.3), we have

|uk+1(x, t)| = |

∫ a

0

(

∞
∑

n=1

Eq,q(−kλn(t
q))φn(x)φn(y)

)

u0(y)dy

+

∫ t

0

∫ a

0

[

∞
∑

n=1

(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)φn(y)
]

f(y, s, uk(y, s))dyds|. (3.6)

Now using (3.4), (3.5) and |f(x, t, uk(x, t)| ≤ Mk+1, we get,

uk+1 ≤ MaK1 +Mk+1K2Ta < Mk+1.

This proves the result is true for k+1. Hence,it is true for all n. This proves that the

elements of the sequences are well defined. That is un(x, t) belongs to the set S.

Note that we have not used the Lipschitzian nature of f(x, t, u) . Lipschitzian in

f(x, t, u) in u is essential for our next result. Now in our next result we will prove

that the sequence {un(x, t)} converges uniformly on the set S.

Lemma 3.2. Let the hypothesis of Theorem 3.1 hold. Then the sequence {un(x, t)}

defined in (3.2), converge uniformly.

Proof. We consider the series

u0(x, t) +

∞
∑

k=1

uk(x, t)− uk−1(x, t). (3.7)

In order to prove the sequence {un(x, t)} converges uniformly, it is enough to prove

the partial sum of the series (3.7) converges uniformly.

Let,

uN (x, t) = u0(x, t) +

N
∑

k=1

uk(x, t)− uk−1(x, t), (3.8)

be the partial sum of the series (3.7). We will prove that the positive series (3.7)

converges absolutely and uniformly to some function u(x, t). We will establish that

u(x, t) obtained satisfies (3.2). In order to prove the positive series converges uni-

formly, we prove that the absolute series is majorized by a convergent constant series.

For this, we first find

|u1(x, t)− u0(x, t)|

= |

∫ t

0

∫ a

0

(t− s)q−1

Γ(q)

∞
∑

n=1

Γ(q)Eq,q(−kλ(t− s)q)f(y, s, u0)dyds|. (3.9)
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Using (3.5) and |f(x, t, u0(x))| ≤ M1 in (3.9), we get,

|u1(x, t)− u0(x, t)| ≤
∫ t

0

∫ a

0
(t−s)q−1

Γ(q) K1M1dyds

≤
∫ t

0
(t−s)q−1

Γ(q) K1M1ads

≤ K1M1a
T q

Γ(q+1) . (3.10)

Next we find,

|u2(x, t)− u1(x, t)| = |

∫ t

0

∫ a

0

(t− s)q−1

Γ(q)

∞
∑

n=1

Eq,q(−kλn(t− s)q)φn(x)φn(y)

[f(y, s, u1(x, t))− f(y, s, u0(x, t)]dyds|. (3.11)

Using the Lipschitz condition on f(x, t, u) and (3.5) in (3.11), we get,

|u2(x, t)− u1(x, t)| ≤
∫ t

0

∫ a

0
(t−s)q−1

Γ(q) K1L|u1(x, t)− u0(x, t)|dyds

≤
∫ t

0
(t−s)q−1

Γ(q) K1LaK1M1a
sq

Γ(q+1)ds

≤ M1K
2
1a

2L T 2q

Γ(2q+1) . (3.12)

Now by the induction process, let us assume that it is true for n = k,

|uk(x, t)− uk−1(x, t)| ≤ M1L
k−1akKk

1

T qk

Γ(kq + 1)
. (3.13)

Then we will prove for n = k + 1,

|uk+1(x, t)− uk(x, t)| ≤ M1L
kak+1Kk+1

1
T (k+1)q

Γ((k+1)q+1) . (3.14)

For this,

|uk+1(x, t) − uk(x, t)| = |

∫ t

0

∫ a

0

(t− s)q−1

Γ(q)

∞
∑

n=1

Eq,q(−kλn(t− s)q)φn(x)φn(y)

[f(y, s, uk(x, t))− f(y, s, uk−1(x, t)]dyds|

≤

∫ t

0

(t− s)q−1

Γ(q)
K1aL|uk − uk−1|ds

≤

∫ t

0

(t− s)q−1

Γ(q)
K1LaK

k
1M1a

kLk−1 skq

Γ(kq + 1)
ds

≤ M1L
kak+1Kk+1

1

T (k+1)q

Γ((k + 1)q + 1)
. (3.15)

Hence we obtain,

|uk(x, t)− uk−1(x, t)| ≤ M1L
k−1akKk

1

T kq

Γ(kq + 1)
, (3.16)
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is true for all n.

From this, it follows that,

|u0(x, t) +
∞
∑

k=1

uk(x, t)− uk−1(x, t)| ≤ |u0(x)| +
∞
∑

k=1

|uk(x, t)− uk−1u(x, t)|

≤
M1

L
(

∞
∑

k=1

(aLKT q)k

Γ(kq + 1)
− 1)

≤
M1

L
[Eq,1(LaKT q)− 1]

≤
M1

L
Eq,1(LaKT q), (3.17)

which means the series (3.7) is majorized by the convergent constant seriesEq,1(aLKT q)

which converges. This proves that limn→∞un(x, t) = u(x, t) converges uniformly.

Now we will prove u(x, t) is the solution of (3.2). Consider the equation (3.3),

un(x, t) =

∫ a

0

∞
∑

n=1

Eq,q(−kλn(t
q))φn(x)φn(y)u0(y)dy (3.18)

+

∫ t

0

∫ a

0

∞
∑

n=1

Eq,q(−kλn)(t− s)q)φn(x)φn(y)f(y, s, un−1(y, s))dyds.

Taking the limn→∞ on both sides and using the fact that the sequence {un(x, t)}

converges uniformly and Lebegue dominated convergence theorem, we get,

u(x, t) =

∫ a

0

∞
∑

n=1

Eq,q(−kλn(t
q))φn(x)φn(y)u0(y)dy (3.19)

+

∫ t

0

∫ a

0

∞
∑

n=1

(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)φn(y)f(y, s, u(y, s))dyds.

This concludes the proof of Lemma 3.2. Lemma 3.1 and 3.2 together prove the

existence of the solution of (3.2) on QT .

Next we will prove that the solution u(x, t) which satisfies (3.2) is unique. This is

precisely what we will prove in our next result.

Lemma 3.3. Let the hypothesis of the Theorem 3.1 hold. Then the solution u(x, t)

in (3.2) is unique.

Proof. Let u1(x, t) and u2(x, t) be such that

u1(x, t) = u01(x) +

∫ t

0

∫ a

0

[

∞
∑

n=1

(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)φn(y)]

f(y, s, u)dyds, (3.20)
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u2(x, t) = u02(x) +

∫ t

0

∫ a

0

[

∞
∑

n=1

(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)φn(y)]

f(y, s, u)dyds. (3.21)

Let m(x, t) = |u1(x, t) − u2(x, t)|, m(x, 0) = |u1(x, 0) − u2(x, 0)| = |m0(x)| (say).

Then m(x, t) is definitely positive by definition. Our aim is to show m(x, t) ≤ 0. By

using (3.20) and (3.21),we get,

m(x, t) = |u1(x, t) − u2(x, t)|

= |

∫ t

0

∫ a

0

(t− s)q−1
∞
∑

n=1

Eq,q(−kλn(t− s)q)φn(x)φn(y)

×[f(y, s, u0)− f(y, s, u1]dyds|. (3.22)

Using Lipschitz condition of f(x, t, u), Theorem 2.1, and the nature of the eigen

functions φn(x) for 0 ≤ x ≤ a, 0 < s < t < T , we can get,

m(x, t) = |u1(x, t)− u2(x, t)|

≤ m0(x) +

∫ t

0

∫ a

0

K(y, s)Lm(y, s)dyds. (3.23)

Here,

max|(t−s)q−1
∞
∑

n=1

Eq,q(−kλn(t−s)q)φn(x)φn(y)| ≤ K(y, s), on 0 ≤ x ≤ a, 0 ≤ t ≤ T.

Now using the generalized Wendroff inequality given by Bainov and Simeonov [1] from

Theorem 2.1, we get,

m(x, t) ≤ m0(x)exp(

∫ t

0

∫ a

0

K(y, s)Ldyds).

Sincem0(x) = |u0(x)−u0(x)| = 0 in our case, we get, m(x, t) ≤ 0. That ism(x, t) ≡ 0.

This concludes the proof of the Lemma 3.3.

Now using Lemma 3.1, Lemma 3.2 and Lemma 3.3, the conclusion of the Theorem

3.1 follows. This concludes the proof of Theorem 3.1.

Next, we extend our method to finite system of Caputo fractional reaction diffusion

equations. For that consider,

c∂
q
t ui − kiui,xx = fi(x, t, u1, u2, ..., uN), on QT ,

ui(0, t) = 0, ui(a, t) = 0, in ΓT , (3.24)

ui(x, 0) = u0i(x), x ∈ Ω,
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for i = 1, 2, ..., N. Here fi(x, t, u) ∈ C[[0, a]× [0, T ]× R
n,R], u0i(x) ∈ C[[0, a],R], for

i = 1, 2, ..., N, Ω = [0, a], J = (0, T ], QT = J × Ω, ki > 0 and ΓT = (0, T )× ∂Ω.

We will consider the following set

S := {(x, t, u)|0 ≤ x ≤ a, 0 ≤ t ≤ T, ||u(x, t)|| ≤ M (large enough) < ∞}.

||.|| is any appropriate norm. The representation form for the component ui(x, t), i =

1, 2, ..., N is given by

ui(x, t) =

∫ a

0

[
∞
∑

n=1

Eq,q(−kiλnt
q)φn(x)φn(y)]u0(y)dy

+

∫ a

0

∫ t

0

[

∞
∑

n=1

(t− s)q−1Eq,q(−kiλn(t− s)q)φn(x)φn(y)]fi(x, t, u1, u2, ..., uN)dyds.

(3.25)

See [7] for details. Here, the Green’s function is given for each i.

Theorem 3.2. Consider the Caputo fractional reaction diffusion system (3.24)

where fi(x, t, u1, u2, ..., uN) is continuous on S and Lipschitzian in u. Then there

exists a sequence which converges uniformly to the solution. Further the solution is

unique on its interval of existence.

Proof. The proof follows on the same lines as in the scalar case. We briefly provides

some basic steps of the proof for completeness. Construct the sequence {ui,n(x, t)} in

the following fashion;

ui,n(x, t) =

∫ a

0

[

∞
∑

n=1

Eq,q(−kλnt
q)φn(x)φn(y)]u0(y)dy

+

∫ a

0

∫ t

0

[
∞
∑

n=1

(t− s)q−1Eq,q(−kiλn(t− s)q)φn(x)φn(y)]

×fi(x, t, u1,N−1, u2,N−1, ..., uN,N−1)dyds, (3.26)

satisfying u0i(x) = (u01(x), u02(x), ..., u0N (x)).

We can show the following results.

(i) {ui,n(x, t)} are well defined on the set S.

(ii) The sequence {ui,n(x, t)} converges uniformly to a function ui(x, t) on the set S,

where ui(x, t) satisfies (3.25) for i = 1, 2, ..N. We can prove that the norm of the

sequence {ui,n}, is majorized by the convergent constant series. This will enable us

to prove that the sequence is uniformly convergent.
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(iii) Further assuming u1 and u2 be any two solutions, we can show that ||u1−u2|| = 0

to prove the uniqueness part.

We omit the proof since it is routine extension of our main result related to the

scalar Caputo fractional reaction diffusion equation. Here |.| of the scalar equation is

replaced by an appropriate norm ||.||.

4. CONCLUDING REMARKS

We have developed the Picard’s iterative method for Caputo fractional reaction diffu-

sion equation in one dimensional space. We have proved the existence of the solution

in the large, and also the uniqueness of the solution by assuming the solution is

bounded and the nonlinear term is Lipschitzian. From computational point of view

we have restricted the q value of the derivative such that 0.5 ≤ q ≤ 1 since Γ(q)

is unbounded near 0. The method can be easily extended to Caputo fractional re-

action diffusion systems. The rate of convergence in the Picard’s method is linear.

The Picard’s method we have developed here is useful in proving the existence of the

solution of linear reaction diffusion equation with variable coefficients together with

coupled lower and upper solution of the nonlinear problem. This will be needed in the

method of generalized quasilinearization. The advantage of the method of generalized

quasilinearization is that the rate of convergence of the iterates is quadratic.

REFERENCES

[1] D. Bainov, P. Simeonov, Integral Inequalities and Applications, Academic Pub-

lishers, Dordrecht, 1992.

[2] Dumitru Baleanu, Ziya Burhanettin G, New Trends in Nanotechnology and Frac-

tional Calculus Applications, Springer, New York, 2010.

[3] E.F. Beckenbach, R. Bellmann, Inequalities, Springer-Verlag, New York, 1961.

[4] P.G. Chhetri, A.S. Vatsala, The Convergence of the Solution of Caputo fractional

Reaction Diffusion Equation with Numerical Examples, Neural, Parallel, and

Scientific Computations, vol. 25, pp. 295306, 2017.

[5] Lokenath Debnath, Recent Applications of Fractional Calculus to Science and

Engineering, Hindawi Publishing Corp., 2003.

[6] Z.Denton, P.W.Ng, A.S.Vatsala, Quasilinearization Method Via Lower and Up-

per Solutions for Riemann-Liuoville Fractional Differential Equations, Nonlinear

Dynamics and System Theory 11(3)2011,239-251.



CAPUTO FRACTIONAL REACTION DIFFUSION EQUATION 849

[7] Z. Denton, A. S. Vatsala,Monotone Iterative Technique for Finite System of Non-

linear Riemann–Liouville Differential Equations, Opuscula Mathematica, 31(3):327-

339, (2011).

[8] S G Deo, V Lakshmikantham, V Raghavendra Textbook Of Ordinary Differential

Equations, Tata McGraw-Hill Publishing Company Limited, 1997.

[9] Erdelyi, A.; Magnus,W.;Oberhettinger,F.;Tricomi,F.G.Mittag-Leffler’s Function

Eα(z) and Related Functions ; g18.1 in Higher Transcendental Functions; Krieger:

New York, NY, USA, 1981; Volume 3, pp. 206-212.

[10] Glockle, W.G.; nonnenmacher, T.F. A Fractional calculus Approach to self sim-

ilar protein dynamics, Biophys.J. 1995,68, 46-53.

[11] Gorenflo, R., Kilbas, A.A.,Mainardi, F., Rogosin, S.V., Mittaf-Leffler functions,

Related topic and applications,Springer Monographs in Mathematics: 2014; 443

pages.

[12] Herrmann, Richard Fractional Calculus- An introduction For Physicists, World

Scientific Publishing Co.Pte. Ltd., 2011.

[13] Editoe R.Hilfer, Applications of Fractional Calculas in Physics,World Scientific,

Singapore, 2000.

[14] A.A.Kilbas, H.M.Srivastava and J.J.Trujillo, Theory and Applications of Frac-

tional Differential Equations, Elsevier, Amsterdam, 2006.

[15] A.Kilbas, H.M.Srivastava, J.T.Trujillo Theory and Applications of Fractional

Differential Equations, North-Holland Mathematical Studies, 204, Elsevier, 2006.

[16] G.S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Tech-

niques for Nonlinear Differential Equations, Pitman publishing Inc, 1985.

[17] V. Lakshmikantham, S. Leela, and D.J. Vasundhara Devi, Theory of Fractional

Dynamic Systems, Cambridge Scientific Publishers, 2009.

[18] V. Lakshmikantham, A. S. Vatsala, General Uniqueness and Monotone Iterative

Technique for Fractional Differential Equations, Applied Mathematics Letters,

vol. 21, no. 8, pp. 828834, 2008.

[19] V. Lakshmikantham, A. S. Vatsala, General Monotone Method For Fractional

Reaction Diffusion Equations, Communications in Applied Analysis, vol. 16, pp.

165174, 2012.

[20] V. Lakshmikantham, A.S. Vatsala Generalized Quasilinearization for Nonlinear

Problems, Springer-Science+Business Media, B.V. 1998.

[21] Bo Li, Wei Xie Adaptive Fractional Differential Approach and It’s Application

to Medical Image Enhancement, Computers and Electrical Engineering, Elsevier,

2015.



850 P.G. CHHETRI AND A.S. VATSALA

[22] Rainey Lyons, Aghalaya S. vatsala, Ross A. Chiquet Picard’s Iterative method for

Caputo Fractional Differential Equations with Numerical Results, Mathematics

2017,5,65.

[23] Abramowitz, M.; Stegun, I.A. (Eds.) Beta Function and Incomplete Beta Func-

tion; 6.2 and 6.6 in Handbook of Mathematical functions with Formulas, Graphs,

and Mathematical Tables,9th printing; Courier Corporation: Mineola, NY, USA,

1972; pp. 258-263.

[24] Ma, Ruyun, Positive solutions of a nonlinear three-point boundary-value problem,

Electron. J. Differential Equations, vol 34, (1999).

[25] FrancescoMainardi, On Some Properties Of The Mittag-Leffler Functions Eα(−tα),

Completely Monotone for t > 0 with 0 < α < 1; Discrete and Continuous Dy-

namical Systems Series B(DCDS-B), 2014, pp 2267-2278.

[26] F. Mainardi, The Fundamental Solutions for the Fractional Diffusion-Wave Equa-

tion, Appl. Math. Lett, 9(6), (1996),(23-28).

[27] R. Metzler, J.Klafter The Random Walk’s Guide to Anomalous Diffusion: A

Fractional Dynamic Approach, Phys Rep 339(1): 1-77.

[28] Keith B. Oldham, Jerome Spanier, The Fractional Calculus, Academic Press,

New York, 1974.

[29] I. Podlubny Fractional Differential Equations, Mathematics in Science and En-

gineering, Volume 198, Academic Press, 1999.

[30] Chen Qing-Li, Huang Guo, Zhang Xin-qiong A Fractional Differential Approach

to low contrast Image Enhancement, International Journal of Knowledge and

Language Processing, Volume 3, Number 2, 2012.

[31] Donna Stutson, A.S. Vatsala, A representation Solution is obtained for the One

Dimensional Caputo Fractional Reaction Diffusion Equation, Proceedings of Dy-

namic Systems and Applications 6(2012).

[32] Tong,P.; Feng, Y.Q.; Lv,H.J. Euler’s Method for Fractional Differential Equa-

tions, WSEAS Trans. Math. 2013, 12, 1146-1153.

[33] A.S.Vatsala, Donna Stutson Generalized Monotone Method for Fractional Reac-

tion Diffusion Equations, Communications in Applied Analysis 16 (2012), n0.2,

165-174.

[34] Yang, X.H.; Liu, Y.J. Picard Iterative process for Initial value Problems of Singu-

lar Fractional Differential equations, Adv. Differ. Equ. 2014, 1, 102. Available

online: http:// www.advancesindifferenceequation.com/content/2014/1/102.


