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ABSTRACT: A prey−predator model with weak Allee effect in prey growth,

Holling type−III functional response in predator growth is proposed and its dynam-

ical behaviors are studied in detail. The existence, boundness and stability of the

equilibria are qualitatively discussed. Hopf bifurcation analysis are also taken into

account. We present some numerical simulations to illustrate our theoretical analysis.

Through computer simulation, we found the position of each equilibrium point in the

phase diagram that we drew. In the bifurcation diagram we found the threshold for

undergoing Hopf bifurcation.
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1. INTRODUCTION

Dynamical complexity of interacting prey−predator models are extensively studied

by several researchers to understand the long time behavior of the species. A wide

variety of nonlinear coupled ordinary differential equation models are proposed and

analyzed for the interaction between prey and their specialist predators. All these

models are based upon the classical Lotka−Volterra formalism, however, some of

them belong to a specific class known as Gause type models[1], [2], [3]. Researches

on predation systems are always a popular issue in contemporary theoretical ecology

and applied mathematics [1], [2], [4], [5], [6], [7], [8], [9], [10], [11].There have been
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extensive studies and applications in the prey-predator system with different types of

functional response to describe the stability and other dynamics[12], [13], [14].There

are also lots of people do researches on the predator-prey interaction within homo-

geneous environment with Allee effect in prey growth [4], [8], [11]. We consider the

predator−prey interaction within homogeneous environment with weak Allee effect

in prey growth, Holling type−III functional response in predator growth is governed

by [4] as follows:










dN

dT
=Ng(N)− p(N)P,

dP

dT
=cp(N)− q(P )P,

(1)

where g(N) = r(1 − N
K
)(N + L) and p(N)= bN2

a+N2 , and subjected to positive initial

conditionsN(0), P (0) > 0. N is the prey population and P is the predator population,

q(P ) is the per capita depletion rate of predators, c is the conversion efficiency from

prey to predator, K is the carrying capacity, g(N) is the per capita prey growth rate,

r is the intrinsic growth rate of prey, L is the Allee effect threshold, p(N) is the

prey dependent functional response, and c is the prey capture rate by their specialist

predators. So we get:















dN

dT
=Nr(1− N

K
)(N + L)− bN2

a+N2
P,

dP

dT
=c(

bN2

a+N2
)P −mP,

(2)

where a,b,c and m are all positive parameters. m is the intrinsic death rate of preda-

tors.

2. WEAK ALLEE EFFECT

In order to reduce the number of parameters in forthcoming calculations, we can

rewrite the model in terms of dimensionless variables and parameters as follows:















dx

dt
=x(1 − x)(x + β)− αx2

γ + x2
y,

dy

dt
=

δx2

γ + x2
y − σy.

(3)

Here x = N
K
, y = P , t = KrT , α = b

K2r
, β = L

K
, γ = a

K2 , σ = m
Kr

and δ = cb
Kr

.

It’s easy to see 0 ≤ x ≤ 1. The dimensionless Allee threshold is β and satisfies the

restriction 0 < β < 1 for strong Allee effect and −1 < β < 0 for weak Allee effect by

[4].
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3. BOUNDNESS,EQUILIBRIA AND EXISTENCE

In order to obtain the equilibria of system (3), we consider the prey nullcline and

predator nullcline of this system (3), which are given by:

x(1 − x)(x + β)− αx2

γ + x2
y = 0,

δx2

γ + x2
y − σy = 0.

.

We easily see that system (3) exhibits four equilibrium pointsE0 = (0, 0), E1 = (1, 0),

E∗ = (x∗, y∗). Here x∗ =
√

σγ
δ−σ

, y∗ =
(1−

√
σγ
δ−σ

)(
√

σγ
δ−σ

+β)(γ+ σγ
δ−σ

)

α
√

σγ
δ−σ

. And for the

positive equilibrium point(s), we have σγ
δ−σ

< 1 and δ > σ.

Theorem 1. All the solutions of system which start in R2
+ are uniformly bounded.

Proof. We define a function χ = (η + δ − σ)x + αy. Therefore, the time derivative

of the above equation along the solution of system (3) is

dχ

dt
= (η + δ − σ)

dx

dt
+ α

dy

dt

= (η + δ − σ)[−x3 + (1− β)x2 + βx]− (η + δ − σ)αx2

γ + x2
y +

αδx2

γ + x2
y − ασy.

Now for each 0 < η < σ and 0 ≤ x ≤ 1, we have

dχ

dt
+ ηχ =(η + δ − σ)[−x3 + (1− β)x2 + βx] + η(η + δ − σ)x− (η + δ − σ)αx2

γ + x2
y

+
αδx2

γ + x2
y − ασγ + ασx2

γ + x2
y +

αηγ + αηx2

γ + x2
y

=(η + δ − σ)[−x3 + (1− β)x2 + βx] + η(η + δ − σ)x

− (η + δ − σ)αx2 − αδx2 + ασx2 − αηx2

γ + x2
y − ασγ − αηγ

γ + x2
y

≤(1− β)(η + δ − σ) + η(η + δ − σ)− ασγ − αηγ

γ + x2
y

≤(1− β)(η + δ − σ) + η(η + δ − σ)

=(η + 1− β)(η + δ − σ).

Hence we can find ω > 0 such that

dχ

dt
+ ηχ = ω.

From the above equation, we have dχ
dt

≤ −ηχ+ ω, which implies that

χ(t) ≤ e−ηtχ(0) +
ω

η
(1− e−ηt) ≤ max(χ(0),

ω

η
).



946 H. LIU, Y. YE, Y. WEI, M. MA, AND J. YE

Moreover, we have lim supχ(t) ≤ ω
η
< M̄(say) as t → ∞, which is independent of the

initial condition.

4. STABILITY ANALYSIS

In this section, we deal with local, global stability analysis of system(3).

Theorem 2. (i) Trivial equilibrium point E0 is always a saddle point.

(ii)E1 is stable for δ < σ(γ + 1) and is a saddle point otherwise. E1 = (1, 0)is

globally stable when σ > α+ δ.

(iii) Coexistence equilibrium E∗ is locally asymptotically stable for

β >

[

2γ(1−x∗)x∗

γ+x∗

2 − 2x∗ + 3x∗

2
]

(γ + x∗

2)(δ − σ)

−2σγx∗ − δγ

and is unstable node otherwise.

Proof. Let

f(x, y) = x(1 − x)(x + β)− αx2

γ+x2 y

g(x, y) = δx2

γ+x2 y − σy
.

So, we get the Jacobian matrix:

J =

(

∂f(x,y)
∂x

∂f(x,y)
∂y

∂g(x,y)
∂x

∂g(x,y)
∂y

)

.

∂f(x, y)

∂x
= (1 − x)(x + β) + x(1− x) − x(x+ β)− 2αγxy

(γ + x2)
2 ,

∂f(x, y)

∂y
= − αx2

γ + x2
,

∂g(x, y)

∂x
=

2δγxy

(γ + x2)2
,

∂g(x, y)

∂y
=

δx2

γ + x2
− σ.

So, the Jacobian matrix for the system (3) evaluated at E0 is given by

J0 =

[

β 0

0 −δ

]

.
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E0 is always a saddle point. The Jacobian matrix for the system (3) evaluated at E1,

we find

J1 =

[

−β − 1 −α
γ+1

0 δ
γ+1 − σ

]

.

First eigenvalue λ1 = −β − 1 is negative, hence E1 is stable if δ
γ+1 − σ < 0 implying

δ < σ(γ + 1), and E1 is a saddle point when δ > σ(γ + 1). The Jacobian matrix for

the system (3) evaluated at E∗ is given by

J∗ =

[

(1 − x∗)(x∗ + β) + x∗(1− x∗)− x∗(x∗ + β)− 2αγx∗y∗

(γ+x∗
2)2

− αx∗

2

γ+x∗

2

2δγx∗y∗

(γ+x∗

2)2
0

]

,

where x∗ =
√

σγ
δ−σ

and y∗ =
(1−

√
σγ
δ−σ

)(
√

σγ
δ−σ

+β)(γ+ σγ
δ−σ

)

α
√

σγ
δ−σ

. The characteristic polyno-

mial is

H(λ) = λ2 − Tλ+D.

Here T = (1−x∗)(x∗+β)+x∗(1−x∗)−x∗(x∗+β)− 2αγx∗y∗

(γ+x∗

2)2
andD = ( αx∗

2

γ+x∗

2 )
2δγx∗y∗

(γ+x∗

2)2
.

Thus, we have the following conclusions.

(1) If T < 0 and β >

[

2γ(1−x∗)x∗

γ+x∗
2 −2x∗+3x∗

2
]

(γ+x∗

2)(δ−σ)

−2σγx∗−δγ
, then the positive equilibrium

is locally asymptotically stable.

(2) If T > 0 and β <

[

2γ(1−x∗)x∗

γ+x∗
2 −2x∗+3x∗

2
]

(γ+x∗

2)(δ−σ)

−2σγx∗−δγ
, then the positive equilibrium

is unstable.

Next, we proof the conclusions.

Let

T =(1− x∗)(x∗ + β) + x∗(1 − x∗)− x∗(x∗ + β)− 2αγx∗y∗

(γ + x∗

2)2

=− 3x∗

2 − 2βx∗ + 2x∗ + β − 2αγx∗y∗

(γ + x∗

2)
2

=− 3x∗

2 − 2βx∗ + 2x∗ + β − 2γ(1− x∗)(x∗ + β)

γ + x∗

2

=− 3x∗

2 − 2βx∗ + 2x∗ + β − 2γ(1− x∗)x∗

γ + x∗

2
− 2γ(1− x∗)β

γ + x∗

2

=− 2βx∗ + β − 2γ(1− x∗)β

γ + x∗

2
− 2γ(1− x∗)x∗

γ + x∗

2
+ 2x∗ − 3x∗

2

=[−2x∗ + 1− 2γ(1− x∗)

γ + x∗

2
]β − 2γ(1− x∗)x∗

γ + x∗

2
+ 2x∗ − 3x∗

2

=(
−2x∗

3 + x∗

2 − γ

γ + x∗

2
)β − 2γ(1− x∗)x∗

γ + x∗

2
+ 2x∗ − 3x∗

2

=





−2σγ
√

σγ
δ−σ

− δγ

(γ + x∗

2)(δ − σ)



β − 2γ(1− x∗)x∗

γ + x∗

2
+ 2x∗ − 3x∗

2 = 0.
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We easily see that

β =

[

2γ(1−x∗)x∗

γ+x∗

2 − 2x∗ + 3x∗

2
]

(γ + x∗

2)(δ − σ)

−2σγx∗ − δγ
.

Finally, we proof E1 = (1, 0) is globally stable when σ > α+ δ.

Consider the Lyapunov function:

V (x, y) =
1

2
(x− 1)2 + y.

The derivative of V along the solution of the system (3) is

V̇ =(x− 1)[x(1− x)(x+ β) − αx2

γ + x2
y] +

δx2

γ + x2
y − σy

=− x(1 − x)2(x+ β)− αx2

γ + x2
y(x− 1) +

δx2

γ + x2
y − σy

=− x(1 − x)2(x+ β)− αx2

γ + x2
y(x− 1) +

δx2

γ + x2
y − γ + x2

γ + x2
σy

=− x(1 − x)2(x+ β)− αx2y(x− 1)− δx2y + (γ + x2)σy

γ + x2

=− x(1 − x)2(x+ β)− αx2y(x− 1)− δx2y + (γ + x2)σy

γ + x2

=− x(1 − x)2(x+ β)− (αx3 − αx2 − δx2 + σx2)y + σγy

γ + x2
.

If αx3 − αx2 − δx2 + σx2 > 0 then V̇ < 0. So σ > α+ δ.

5. BIFURCATION ANALYSIS

Hopf Bifurcation

From Theorem 2, system (3) undergoes bifurcation if

β =

[

2γ(1−x∗)x∗

γ+x∗

2 − 2x∗ + 3x∗

2
]

(γ + x∗

2)(δ − σ)

−2σγx∗ − δγ
.

The purpose of this section is to show that system (3) undergoes a Hopf bifurcation

if β =

[

2γ(1−x∗)x∗

γ+x∗
2 −2x∗+3x∗

2
]

(γ+x∗

2)(δ−σ)

−2σγx∗−δγ
. We analyze the Hopf bifurcation occurring

at E∗ = (x∗, y∗) by choosing β as the bifurcation parameter. Denote

β0 =

[

2γ(1−x∗)x∗

γ+x∗
2 − 2x∗ + 3x∗

2
]

(γ + x∗

2)(δ − σ)

−2σγx∗ − δγ
.
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when β=β0, we have T = (1−x∗)(x∗+β)+x∗(1−x∗)−x∗(x∗+β)− 2αγx∗y∗

(γ+x∗
2)2

= 0. Thus,

the Jacobian matrix J∗ has a pair of imaginary eigenvalues λ = ±i
√

( αx∗
2

γ+x∗

2 )
2δγx∗y∗

(γ+x∗
2)2

.

Let λ = A(β) ±B(β)i be the roots of λ2 − Tλ+D = 0, then

A2 −B2 −AT +D =0,

2AB − TB =0,

and

A =
T

2
,

B =

√
4D − T 2

2
,

dA

dβ

∣

∣

∣

∣

β=β0

=
x∗

2 − 2x∗

3 − γ

2(γ + x∗

2)
6= 0

By the Poincare-Andronov-Hopf Bifurcation Theorem, we know that system (3) un-

dergoes a Hopf bifurcation at E∗ = (x∗, y∗) when β = β0.

6. NUMERICAL SIMULATION

In this section we intend to find the position of the three equilibrium points of the

system (3) in the phase diagram by computer simulation.

We selected the parameters:

β = 0.2, α = 0.5, γ = 0.4, δ = 0.36, σ = 0.4.

Given three initial values, we find a stable equilibrium point E1 = (1, 0) in the phase

diagram as shown in Figure 1, and combined with the theoretical proof given earlier

in this paper, we find that the same conditions are met:0.36 < 0.4 ∗ (0.4 + 1) = 0.56.

We did not change the parameters and changed their initial values. We found two

equilibrium points E0 = (0, 0) and E1 = (1, 0) in the phase diagram. We also found

that the saddle point E0 is shown in Figure 2. E1 = (1, 0) is still in a stable state.

We change its parameters again:

β = 0.2, α = 0.5, γ = 0.4, δ = 0.36, σ = 0.2.

We found three equilibrium points on the phase diagram as shown in Figure 3.

Through the image we find that E∗ = (x∗, y∗) is in a stable state, and the equi-

librium points E0 = (0, 0) and E1 = (1, 0) are unstable. By calculating the parameter

values, we find that it also conforms to the theoretical proof we made earlier in this

article.
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Figure 1: One equilibrium point

Figure 2: Two equilibrium points

Next, we use the Allee item as a bifurcation parameter for numerical simulation,

and draw a hopf bifurcation diagram as shown in Figure 4. It is found that branching

occurs at β = −0.3, which is also in line with our inference.



DYNAMIC OF A PREDATOR-PREY MODEL 951

Figure 3: Three equilibrium points

Figure 4: Hopf bifurcation diagram

7. CONCLUSION

A kind of predator-prey model with Allee effect and Holling type−II functional re-

sponse is studied by [4]. We change its functional response, establish a predator−prey
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model with weak Allee effect and Holling type−III functional response. The dynamic

behavior of the system includes: the calculation of equilibrium point, the proof of

the stability of the equilibrium point, the existence proof of Hopf bifurcation, and

the critical value of Hopf bifurcation with Allee term as bifurcation parameter is ob-

tained. Finally, we verify our idea by computer simulation, give the position of three

equilibrium points and draw a bifurcation diagram.
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