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1. INTRODUCTION

A strong motivation for studying fractional differential equations comes from that fact

that fractional order derivatives and integrals have extensive applications in viscoelas-

ticity, analytical chemistry, electromagnetic, neuron modeling and biological sciences.

There has been a significant development in fractional differential equations in recent

years, see, for example, the books of Kilbas et al. [3], Miller and Ross [7], Podlubny

[9], Tarasov [10], Lakshmikantham et al. [4] and the references therein.
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Integro-differential equations can arise from many physical processes in which it

is necessary to take into account the effects of memory due to the deficiency. For

example, it can serve as a model in some gas diffusion problems and in some heat

transfer problems with memory. As we all know, integro-differential equations provide

a continuous analogue to countable systems of ordinary differential equations. When

one end of an extensible beam whose ends are a fixed distance apart, is hinged while

the other end is attached with a load, the mathematical model describing the vibra-

tions of this beam contains a nonlinearity with the dynamical boundary condition;

this always remains a very popular application in engineering.

Optimal control theory plays an important role in the design of modern control

systems. Since the end of last century, optimal control problems have attracted much

attention [5, 17]). Until now optimal control problems on Banach spaces have been

considered in many papers(see e.g.[1, 8, 14, 11, 12]). However, up to now optimal feed-

back control of fractional integrodifferential equations of mixed type have not been

considered in the literature. In order to fill this gap, this paper investigate the opti-

mal feedback control problems of a system governed by fractional integrodifferential

equations of mixed type via a compact semigroup in Banach spaces.

In [15], J.R. Wang, Y. Zhou and W. Wei investigated optimal feedback control of

a system governed by the following semilinear fractional evolution equations:
{

cDqx(t) = Ax(t) + f(t, x(t), u(t)), t ∈ J = [0, T ], 0 < q < 1,

x(0) = x0,

where cDq is the Caputo fractional derivative of order q and A : D(A) → X is the

infinitesimal generator of a compact C0-semigroup {T (t), t ≥ 0} in a reflexive Banach

spaceX . The control function u(.) takes values in the Polish space U . f : J×X×U →

X is a given function satisfying some assumptions.

Strongly inspired by the above work, in this paper, we shall be concerned with

the existence theorems for optimal feedback control problems of systems governed by

the following fractional evolution equation:




cDqx(t) = Ax(t) + f (t, x(t), (Sx)(t), (Tx)(t), u(t)) , t ∈ J = [0, b],

0 < q < 1,

x(0) = x0,

(1.1)

where cDq is the Caputo fractional derivative of order q. A : D(A) ⊆ X → X is

the infinitesimal generator of a compact C0-semigroup {T (t)(t ≥ 0)} in a reflexive

Banach space X . J = [0, b]. S is a nonlinear integral operator given by

(Sx)(t) =

∫ t

0

K(t, τ)g(τ, x(τ))dτ,

g : J×X → X and K ∈ C(J×J,R) are given functions satisfying some assumptions.

The control u ∈ U [0, b], U [0, b] is a control set which we will introduce in Section 2.
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The rest of this paper is organized as follows. In section 2, some notations and

preparation results are given. In section 3, the existence of mild solutions and feasible

pairs for fractional impulsive evolution equations are presented. We introduce an

existence result of optimal feedback controls for Lagrange problem (P) in section 4.

2. PRELIMINARIES

In this section, we introduce the notations, definitions, and preliminary facts that will

be used in the remainder of this paper.

Throughout this paper, let X be a reflexive Banach space with the norm ‖.‖ and

U be a Polish space. Let C(J,X) denotes the Banach space of all X-value continuous

functions from J into X with the norm ‖x‖C(J,X) = supt∈J ‖x(t)‖.

Throughout this paper, we suppose M := supt∈[0,∞) ‖T (t)‖ < ∞. Let U [0, b] =

{u : J → U |u(.) is measurable}. Any element in U [0, b] is called a control on J .

Define ‖xτ‖B = sup0≤s≤τ ‖x(s)‖, Or(x) = {y ∈ X |‖y − x‖ < r}.

Firstly, let us recall the following known definitions. For more details, see [3, 7, 9].

Definition 2.1 The fractional integral of order q with the lower limit zero for a

function f is defined as

I
q

0+f(t) =
1

Γ(q)

∫ t

0

f(s)

(t− s)1−q
ds, t > 0, q > 0, (2.1)

provided the right side is point-wise defined on [0,∞), where Γ(.) is the gamma

function.

Definition 2.2 The Riemann-Liouville derivative of order q with the lower limit zero

for a function f : [0,∞) → R can be written as

LD
q
0+f(t) =

1

Γ(n− q)
(
d

dt
)n

∫ t

0

f(s)

(t− s)q−n+1
ds, t > 0, n− 1 < q < n. (2.2)

Definition 2.3 The Caputo derivative of order q for a function f : [0,∞) → R can

be written as

cD
q

0+f(t) =
L Dq[f(t)−

n−1∑

k=0

tk

k!
f (k)(0)], t > 0, n− 1 < q < n. (2.3)

Remark 2.4

(i) If f(t) ∈ Cn[0,∞), then

cD
q

0+f(t) =
1

Γ(n− q)

∫ t

0

f (n)(s)

(t− s)q+1−n
ds

= I
n−q

0+ f (n)(t), t > 0, n− 1 < q < n.
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(ii) The Caputo derivative of a constant is equal to zero.

(iii) If f is an abstract function with values in X , then integrals which appear in

Definition 2.1 and 2.2 are taken in Bochner’s sense.

Definition 2.5. [6] Let X and Y be two metric spaces. A multifunction Γ : X → 2Y

ia said to be pseudo-continuous at t ∈ X if

⋂

ε>0

Γ(Oε(t)) = Γ(t).

Based on [13, 18], we give the following definition of mild solutions for the system

(1.1).

Definition 2.6. By a mild solution of the system (1.1) we mean that a function

x ∈ C(J,X) which satisfies the following integral equation

x(t) = Sq(t)x0 +
∫ t

0 (t− τ)q−1Tq(t− τ)f (τ, x(τ), (Sx)(τ), u(τ)) dτ, t ∈ J (2.4)

where

Sq(t) =

∫ ∞

0

ξq(θ)T (t
qθ)dθ, Tq(t) = q

∫ ∞

0

θξq(θ)T (t
qθ)dθ,

and

ξq(θ) =
1

q
θ−(1+ 1

q
)ωq(θ

− 1
q ) ≥ 0,

ωq(θ) =
1

π

∞∑

n=1

(−1)n−1θ−nq−1Γ(nq + 1)

n!
sin(nπq), θ ∈ (0,∞),

ξq is a probability density function defined on (0,∞), that is

ξq(θ) ≥ 0, θ ∈ (0,∞) and

∫ ∞

0

ξq(θ)dθ = 1.

Definition 2.7. A pair (x(.), u(.)) is said to be feasible if x is satisfied (2.4) and

u(t) ∈ Γ(t, x(t)), a.e. t ∈ [0, b].

Define

P = {(x(.), u(.)) ∈ PC(J,X)× U [0, b]| (x(.), u(.)) is feasible},

P [s, v] = {(x(.), u(.)) ∈ C([s, v], X)× U [s, v]| (x(.), u(.)) is feasible},

for any interval [s, v].

Lemma 2.8. (Lemma 3.2-3.4 [18]) The operators Sq(t) and Tq(t) have the following

properties:

(i) for any fixed t ≥ 0, Sq(t) and Tq(t) are linear and bounded operators, i.e., for any

x ∈ X ,

‖Sq(t)x‖ ≤ M‖x‖ and ‖Tq(t)x‖ ≤
qM

Γ(q + 1)
‖x‖;
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(ii) {Sq(t), t ≥ 0} and {Tq(t), t ≥ 0} are strongly continuous;

(iii) for every t > 0, Sq(t) and Tq(t) are also compact operators if T (t) is compact.

Lemma 2.9.[15] Assume that T (t) is a compact operator for every t > 0. Then the

operator N1 : Lp(J,X) → C(J,X), for some 1 > q > 1
p
, p > 1, given by

(N1h)(.) =

∫ .

0

(.− τ)q−1Tq(.− τ)h(τ)dτ,

is compact for h ∈ Lp(J,X).

Let us recall the generalized Gronwall inequality with caputo singularity which

can be found in [16].

Lemma 2.10. Suppose β > 0, a(t) is a nonnegative function locally integrable

on [0, b] and b(t) is a nonnegative, nondecreasing continuous function defined on

[0, b], b(t) ≤ M(constant) and suppose y(t) is nonnegative and locally integrable

on [0, b] with

y(t) ≤ a(t) + b(t)

∫ t

0

(t− s)β−1y(s)ds, t ∈ [0, b].

Then

y(t) ≤ a(t) +

∫ t

0

[
∞∑

n=1

[b(t)Γ(β)]n

Γ(nβ)
(t− s)nβ−1a(s)

]
ds, t ∈ [0, b].

Furthermore, if a(t) is a nondecreasing function on [0, b], then

y(t) ≤ a(t)Eβ

(
b(t)Γ(β)tβ

)
,

where Eβ is the Mittag-Leffler function defined by

Eβ(z) =

∞∑

k=0

zk

Γ(kβ + 1)
.

Lemma 2.11. (Schaefer’s fixed point theorem) Let X be a Banach spaces and

F : X → X be a completely continuous operator. If the set

E(F ) = {y ∈ X : y = λFy for some λ ∈ [0, 1]}.

is bounded, then F has at least a fixed point.

3. EXISTENCE OF FEASIBLE PAIRS FOR FRACTIONAL

IMPULSIVE EVOLUTION EQUATIONS

In this section, we present the existence of feasible pairs for system (1.1). To establish

our results, we introduce the following hypotheses.

(H1): T (t) is a compact operator for every t > 0.
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(H2): X is a reflexive Banach space and U is a Polish space.

(H3): g : J ×X → X satisfies:

(1) For each x ∈ X, t → g(t, x) is measurable;

(2) g satisfies local Lipschitz continuity with respect to x, i.e., for arbitrary x1, x2 ∈ X

satisfying ‖x1‖, ‖x2‖ ≤ ρ, there exists a constant L(ρ) > 0 such that

‖g(t, x1)− g(t, x2)‖ ≤ L(ρ)‖x1 − x2‖, for all t ∈ J ;

(3) There exists a constant c > 0 such that

‖g(t, x)‖ ≤ c(1 + ‖x‖), for all t ∈ J.

(H4): K ∈ C(J × J,R).

(H5): f : J ×X ×X × U → X satisfies:

(1) f is Borel measurable in (t, y, z, u) and is continuous in (y, z, u);

(2) f satisfies local Lipschitz continuity with respect to (y, z), i.e., for any ρ > 0, there

is a constant Mρ > 0 such that

‖f(t, y1, z1, u)− f(t, y2, z2, u)‖ ≤ Mρ(‖y1 − y2‖+ ‖z1 − z2‖),

for any y1, y2, z1, z2 ∈ X, t ∈ J and uniformly u ∈ U provided with ‖y1‖, ‖y2‖, ‖z1‖,

‖z2‖ ≤ ρ;

(3) There exists a constant H > 0 such that

‖f(t, y, z, u)‖ ≤ H(1 + ‖y‖+ ‖z‖),

for arbitrary t ∈ J, u ∈ U ;

(4) For almost all t ∈ J , the set f(t, y, z,Γ(t, y)) satisfies the following:

⋂

δ>0

cof(t, Oδ(y), Oδ(z),Γ(Oδ(t, y))) = f(t, y, z,Γ(t, y)).

(H6):

(H7): Γ : J ×X → 2U is pseudo-continuous.

Lemma 3.1.[14] Under assumptions (H3) and (H4), the operator S has the following

properties:

(1)∀x1, x2 ∈ C(J,X), let ‖x1‖C(J,X), ‖x2‖C(J,X) ≤ ρ, then

‖(Sx1)(t)− (Sx2)(t)‖ ≤ L(ρ)t‖K‖‖(x1)t − (x2)t‖B.

(2) For any δ > 0, if y(t) ∈ Oδ(x(t)) for all t ∈ J , then (Sy)(t) ∈ OM ′δ ((Sx)(t)) for

all t ∈ J , where M ′ > 0 is a constant independent on t.

(3) For x ∈ C(J,X)

‖(Sx)(t)‖ ≤ cb‖K‖(1 + ‖xt‖B).
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Consider the following fractional evolution system without impulsive

{
cDqx(t) = Ax(t) + f (t, x(t), (Sx)(t), u(t)) , 0 < q < 1, t ∈ J = [0, b],

x(0) = x0.
(3.1)

Based on [13, 18], a mild solution x(.) ∈ C(J,X) of (3.1) is defined as a solution of

the following integral equation:

x(t) = Sq(t)x0 +

∫ t

0

(t− τ)q−1Tq(t− τ)f (τ, x(τ), (Sx)(τ), u(τ)) dτ, t ∈ J.

Theorem 3.2. Assume that the conditions (H1), (H2), (H3), (H4), and (H5)(1)(3)

are satisfied, then system (3.1) has at least a fixed point x ∈ C(J,X) and

‖x‖C(J,X) ≤ ζ

for some constant ζ > 0. Moreover, (H5)(2) holds, the solution of (3.1) is unique.

Proof. Consider the operator F : C(J,X) → C(J,X) defined by

(Fx)(t) = Sq(t)x0 +

∫ t

0

(t− τ)q−1Tq(t− τ)f (τ, x(τ), (Sx)(τ), u(τ)) dτ, t ∈ J.

It is obvious that F is well defined due to Lemma 2.8. For the sake of convenience,

we subdivide the proof into several steps.

Step 1: Fx ∈ C(J,X) for every x ∈ C(J,X).

Taking into account the imposed assumptions and Lemma 2.8, one can easily show

that, Fx ∈ C(J,X) for every x ∈ C(J,X). So we omit the proof here.

Step 2: F is a continuous operator on C(J,X).

Let {xn} ⊆ C(J,X) with xn → x on C(J,X). Then there exists a constant ρ >

0(dependently of {xn}) such that ‖xn‖C(J,X), ‖x‖C(J,X) ≤ ρ. From (H5)(2) and

Lemma 3.1, we have

‖(Fxn)(t) − (Fx)(t)‖

≤

∫ t

0

(t− τ)q−1‖Tq(t− τ)‖‖f (τ, xn(τ), (Sxn)(τ), u(τ)) −

f (τ, x(τ), (Sx)(τ), u(τ)) ‖dτ

≤
MMρ

Γ(q)

∫ t

0

(t− τ)q−1 (‖xn(τ) − x(τ)‖ + ‖(Sxn)(τ) − (Sx)(τ)‖) dτ

≤
MMρb

q(1 + L(ρ)b‖K‖)

Γ(q + 1)
‖xn − x‖C(J,X) → 0, as n → +∞.

which implies that F is continuous.

Step 3: F maps bounded sets into bounded sets in C(J,X).

Indeed, it is enough to show that for any r > 0 there exists a l > 0 such that for each
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x ∈ Br = {x ∈ C(J,X) : ‖x‖C(J,X) ≤ r}, we have ‖Fx‖C(J,X) ≤ l. For each t ∈ J ,

we have

‖(Fx)(t)‖ ≤ ‖Sq(t)x0‖

+

∫ t

0

(t− τ)q−1‖Tq(t− τ)‖‖f (τ, x(τ), (Sx)(τ), u(τ)) ‖dτ

≤ M‖x0‖

+
M

Γ(q)

∫ t

0

(t− τ)q−1H (1 + ‖x(τ)‖ + ‖(Sx)(τ)‖) dτ

≤ M‖x0‖+
Mbq

Γ(q + 1)
H [1 + r + cb‖K‖(1 + r)] := l.

Step 4: F maps bounded sets into equicontinuous sets of C(J,X).

For any x ∈ Br, let 0 = t1 < t2 ≤ b, we get

‖(Fx)(t2)− (Fx)(0)‖

≤ ‖Sq(t2)x0 − Sq(0)x0‖

+‖

∫ t2

0

(t2 − τ)q−1Tq(t2 − τ)f (τ, x(τ), (Sx)(τ), u(τ)) dτ‖

≤ ‖Sq(t2)x0 − Sq(0)x0‖+
Mt

q
2

Γ(q + 1)
H [1 + r + cb‖K‖(1 + r)]

→ 0, as t2 → 0+.

For 0 < t1 < t2 ≤ b, selecting ε > 0 sufficiently small, we have

‖(Fx)(t2)− (Fx)(t1)‖

≤ ‖Sq(t2)x0 − Sq(t1)x0‖

+‖

∫ t2

t1

(t2 − τ)q−1Tq(t2 − τ)f (τ, x(τ), (Sx)(τ), u(τ)) dτ‖

+‖

∫ t1

0

[
(t2 − τ)q−1 − (t1 − τ)q−1

]
Tq(t2 − τ)f (τ, x(τ), (Sx)(τ), u(τ)) dτ‖

+‖

∫ t1

0

(t1 − τ)q−1 [Tq(t2 − τ) − Tq(t1 − τ)] f (τ, x(τ), (Sx)(τ), u(τ)) dτ‖

≤ ‖Sq(t2)x0 − Sq(t1)x0‖+
M

Γ(q)
H [1 + r + cb‖K‖(1 + r)]

∫ t2

t1

(t2 − τ)q−1dτ

+
M

Γ(q)
H [1 + r + cb‖K‖(1 + r)]

∫ t1

0

[
(t1 − τ)q−1 − (t2 − τ)q−1

]
dτ

+‖

∫ t1

0

(t1 − τ)q−1 [Tq(t2 − τ) − Tq(t1 − τ)] f (τ, x(τ), (Sx)(τ), u(τ)) dτ‖

≤ I1 + I2 + I3 + I4,

where

I1 = ‖Sq(t2)x0 − Sq(t1)x0‖,
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I2 =
M(t2 − t1)

q

Γ(q + 1)
H [1 + r + cb‖K‖(1 + r)] ,

I3 =
MH [1 + r + cb‖K‖(1 + r)]

Γ(q + 1)
[tq1 + (t2 − t1)

q − t
q
2] ,

I4 ≤ ‖

∫ t1−ε

0

(t1 − τ)q−1 [Tq(t2 − τ) − Tq(t1 − τ)] f (τ, x(τ), (Sx)(τ), u(τ)) dτ‖

+‖

∫ t1

t1−ε

(t1 − τ)q−1 [Tq(t2 − τ)− Tq(t1 − τ)] f (τ, x(τ), (Sx)(τ), u(τ)) dτ‖

≤ sup
τ∈[0,t1−ε]

‖Tq(t2 − τ)− Tq(t1 − τ)‖
1

q
H [1 + r + cb‖K‖(1 + r)](tq1 − εq)

+
2Mεq

Γ(q + 1)
H [1 + r + cb‖K‖(1 + r)].

According to Lemma 2.8(ii), it is easy to see that I1 → 0 as t2 → t1. It is obviously

that I2, I3 tend to 0 independently of x ∈ Br. Since (H1) and Lemma 2.8 imply

that the continuity of Tq(t)(t > 0) in t in the uniform operator topology, it is easy

to see that I4 tends to zero independently of x ∈ Br as t2 → t1, ε → 0. Thus,

‖(Fx)(t2)− (Fx)(t1)‖ tends to zero independently of x ∈ Br as t2 → t1, which means

that {Fx : x ∈ Br} is equicontinuous.

Step 5: For any t ∈ J , Ω(t) = {(Fx)(t), x ∈ Br)} is relatively compact in X .

This is trivial for t = 0, since Ω(0) = {x0}. So it is only necessary to consider

0 < t ≤ b. Let 0 < t ≤ b be fixed. For ∀ε ∈ (0, t), ∀δ > 0, define

(Fε,δx)(t)

=

∫ ∞

δ

ξq(θ)T (t
qθ)x0dθ

+q

∫ t−ε

0

∫ ∞

δ

(t− s)q−1θξq(θ)T ((t− s)qθ)f (s, x(s), (Sx)(s), u(s)) dθds

≤ T (εqδ)

{∫ ∞

δ

ξq(θ)T (t
qθ − εqδ)x0dθ

+q

∫ t−ε

0

∫ ∞

δ

(t− s)q−1θξq(θ)T ((t− s)qθ − εqδ)f (s, x(s), (Sx)(s), u(s)) dθds

}
.

Then from the compactness of T (εqδ)(εqδ > 0), we obtain that the set

Ωε,δ(t) = {(Fε,δx)(t), x ∈ Br}

is relatively compact in X for ∀ε ∈ (0, t) and ∀δ > 0.

Moreover, we have

‖(Fx)(t)− (Fε,δx)(t)‖
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≤ ‖

∫ δ

0

ξq(θ)T (t
qθ)x0dθ‖

+

∥∥∥∥∥q
∫ t

0

∫ δ

0

(t− s)q−1θξq(θ)T ((t− s)qθ)f (s, x(s), (Sx)(s), u(s)) dθds

∥∥∥∥∥

+

∥∥∥∥q
∫ t

t−ε

∫ ∞

δ

(t− s)q−1θξq(θ)T ((t− s)qθ)f (s, x(s), (Sx)(s), u(s)) dθds

∥∥∥∥

≤ M‖x0‖

∫ δ

0

ξq(θ)dθ +MbqH [1 + r + cb‖K‖(1 + r)]

∫ δ

0

θξq(θ)dθ

+
MH [1 + r + cb‖K‖(1 + r)] εq

Γ(1 + q)
→ 0, as ε → 0, δ → 0.

Therefore, there are relatively compact sets arbitrarily close to the set Ω(t), t > 0.

Hence the set Ω(t), t > 0 is also relatively compact in X .

As a consequence of Step 3-Step 5 together with the Arzola-Ascoli theorem, we

can conclude that {Fx : x ∈ Br} ⊆ C(J,X) is relatively compact set.

Step 6: A priori bounds.

Now it remains to show that the set

E(F ) = {x ∈ C(J,X) : x = λFx, for some λ ∈ [0, 1]}

is bounded.

Let x ∈ E(F ), then x = λFx for some λ ∈ [0, 1]. For any t ∈ J , we have

‖x(t)‖ = ‖(λFx)(t)‖

≤ ‖Sq(t)x0‖+ ‖

∫ t

0

(t− τ)q−1Tq(t− τ)f (τ, x(τ), (Sx)(τ), u(τ)) dτ‖

≤ M‖x0‖+
M

Γ(q)

∫ t

0

(t− τ)q−1‖f (τ, x(τ), (Sx)(τ), u(τ)) ‖dτ

≤ M‖x0‖+
MbqH(1 + cb‖K‖)

Γ(q + 1)

+
MH(1 + cb‖K‖)

Γ(q)

∫ t

0

(t− τ)q−1‖x(τ)‖dτ.

Let W (t) = ‖x(t)‖, using Lemma 2.10, we can deduce that there exists a constant

ξ > 0 such that ‖x‖C(J,X) ≤ ξ.

As a consequence of Lemma 2.11, we deduce that F has a fixed point x ∈ C(J,X)

which is a solution of the problem (3.1) and ‖x‖C(J,X) ≤ ξ.

Let x be another solution of system (1.1). From the above discussion, we obtain

that there exists a constant ξ > 0 such that ‖x‖C(J,X) ≤ ξ, ‖x‖C(J,X) ≤ ξ. By

(H5)(2) and (H3)(2), we have

‖x(t)− x(t)‖
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≤
M

Γ(q)

∫ t

0

(t− τ)q−1‖f (τ, x(τ), (Sx)(τ), u(τ))

−f (τ, x(τ), (Sx)(τ), u(τ)) ‖dτ

≤
M

Γ(q)

∫ t

0

(t− τ)q−1Mρ (‖x(τ) − x(τ)‖ + ‖(Sx)(τ) − (Sx)(τ)‖) dτ

≤
1

Γ(q)
MMρ(1 + bL(ρ)‖K‖)

∫ t

0

(t− τ)q−1‖x(τ) − x(τ)‖dτ.

By singular version Gronwall inequality(see Lemma 2.10) again, we get

‖x(t)− x(t)‖ ≤ 0,

which yields the uniqueness of x(.). The proof is completed.

Theorem 3.3. If the hypotheses H(1)-H(7) are satisfied, then for any x0 ∈ X , the

set P 6= ∅.

Proof. For the sake of convenience, we subdivide the proof into several steps.

Step 1: We consider the feasible pairs in the interval [0, t1]. For any k ≥ 0, let

tj =
j
k
t1, 0 ≤ j ≤ k − 1. We set

uk(t) =

k−1∑

j=0

ujχ[tj ,tj+1)(t), t ∈ [0, t1],

where χ[tj ,tj+1] is the character function of interval [tj , tj+1). The sequence {uj} is

constructed as follows.

Firstly, take u0 ∈ Γ(0, x0). By Theorem 3.2 there exists an unique xk(.) which is

given by

xk(t) = Sq(t)x0 +

∫ t

0

(t− τ)q−1Tq(t− τ)f
(
τ, xk(τ), (Sxk)(τ), u

0(τ)
)
dτ,

t ∈ [0, t1
k
].

Then, take u1 ∈ Γ( t1
k
, xk(

t1
k
)). We can continue this procedure to obtain xk on

[ t1
k
, 2t1

k
], ect. By induction, we end up with the following equation:





xk(t) = Sq(t)x0

+
∫ t

0
(t− τ)q−1Tq(t− τ)f

(
τ, xk(τ), (Sxk)(τ), u

k(τ)
)
dτ, t ∈ [0, t1],

uk(t) ∈ Γ
(
jt1
k
, xk(

jt1
k
)
)
, t ∈ [ jt1

k
,
(j+1)t1

k
), 0 ≤ j ≤ k − 1.

(3.2)

By (H3), (H5) and Lemma 2.10, we can deduce that there exists a constant ξ > 0

such that

‖xk(t)‖ ≤ ξ, t ∈ [0, t1],

and

‖f
(
t, xk(t), (Sxk)(t), u

k(t)
)
‖ ≤ H [1 + ξ + cb‖K‖(1 + ξ)] , a.e. t ∈ [0, t1].
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From Lemma 2.9, there is a subsequence of {xk}, denoted by {xk} again, such that

xk → x̃ in C([0, t1], X), for some x̃ ∈ C([0, t1], X). (3.3)

And

f
(
., xk(.), (Sxk)(.), u

k(.)
)
⇀ f̃(.) in Lp([0, t1], X)(1 > q >

1

p
),

for some f̃ ∈ Lp([0, t1], X). (3.4)

According to Lemma 2.9 and (3.2), we have

x̃(t) = Sq(t)x0 +

∫ t

0

(t− τ)q−1Tq(t− τ)f̃(τ)dτ, t ∈ [0, t1].

In virtue of (3.3), for any δ > 0, there exists a k1 > 0 such that

xk(t) ∈ Oδ (x̃(t)) , ∀t ∈ [0, t1], k ≥ k1.

From lemma 3.1, we know that (Sxk)(t) ∈ OM ′δ ((Sx̃)(t)) , ∀t ∈ [0, t1], k ≥ k1.

Since M ′ > 0 is a fixed constant then

(Sxk)(t) → (Sx̃)(t), ∀t ∈ [0, t1], as k → +∞.

Thus , for this δ > 0, there is a constant k2 ≥ k1 such that

(Sxk)(t) ∈ Oδ ((Sx̃)(t)) ∀t ∈ [0, t1], k ≥ k2. (3.5)

In virtue of (3.4) and (3.5), we know that, for any δ > 0, there is a constant k0 > 0

such that

xk(t) ∈ Oδ (x̃(t)) and (Sxk)(t) ∈ Oδ ((Sx̃)(t)) ∀t ∈ [0, t1] and k ≥ k0. (3.6)

Moreover, by the definition of uk(t), for k large, we have

uk(t) ∈ Γ(tj , xk(tj)) ⊂ Γ (Oδ(t, x̃(t))) , ∀t ∈ [
jt1

k
,
(j + 1)t1

k
), 0 ≤ j ≤ k − 1. (3.7)

By (3.4) and Mazur Theorem, we may let αij ≥ 0 and
∑

j≥0 αij = 1 such that

ηl(.) ≡
∑

i≥1

αilf
(
., xi+l, (Sxi+l)(.), u

i+l(.)
)
→ f̃(.) in Lp([0, t1], X).

Thus, there is a subsequence of {ηl}, denoted {ηl} again, such that

ηl(t) → f̃(t) in X, a.e. t ∈ [0, t1].

Due to (3.6) and (3.7), for l large enough, we have

ηl(t) ∈ cof (t, Oδ(x̃(t)), Oδ(Sx̃(t)),Γ(Oδ(t, x̃(t)))) , a.e. t ∈ [0, t1].
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Hence, for any δ > 0,

f̃(t) ∈ cof (t, Oδ(x̃(t)), Oδ(Sx̃(t)),Γ(Oδ(t, x̃(t)))) , a.e. t ∈ [0, t1].

In virtue of (H7) and Corollary 2.18[6], we know that Γ(., x̃(.)) is Souslin measurable.

By Fillippove theorem [2], there exists a ũ ∈ U [0, t1] such that

ũ(t) ∈ Γ(t, x̃(t)), t ∈ [0, t1],

and

f̃(t) = f (t, x̃(t), (Sx̃)(t), ũ(t)) , t ∈ [0, t1].

Thus, (x̃, ũ) is a feasible pair in [0, t1]. We use the notation
(
x(1)(.), u(1)(.)

)
to denote

it. In virtue of (H6), the jump is uniquely determined by the expression

x(t+1 ) = x(t−1 ) + I1(x(t1)) ≡ x(t1) + I1(x(t1)) ≡ x1.

Step 2: For the interval [t1, t2], we get

x(t) = Sq(t− t1)x1 +

∫ t

t1

(t− τ)q−1Tq(t− τ)f (τ, x(τ), (Sx)(τ), u(τ)) dτ

= Sq(t− t1)x(t1) +

∫ t

t1

(t− τ)q−1Tq(t− τ)f (τ, x(τ), (Sx)(τ), u(τ)) dτ

+Sq(t− t1)I1(x(t1)).

Repeat the procedure as Step 1 and note that I1 is continuous, we obtain that there

is a feasible pair
(
x(2)(.), u(2)(.)

)
∈ P [t1, t2].

Step by steps, let tm+1 = b repeat the procedures till the time interval which is

expanded. There is a pair
(
x(m+1)(.), u(m+1)(.)

)
∈ P [tm, tm+1].

Define

x(t) =
m∑

i=0

x(i+1)(t)χ[ti,ti+1)(t), t ∈ J,

and

u(t) =

m∑

i=0

u(i+1)(t)χ[ti,ti+1)(t), t ∈ J.

Then (x(.), u(.)) ∈ P which implies that P 6= ∅. The proof is completed.

4. EXISTENCE OF OPTIMAL FEEDBACK CONTROL PAIRS

In this section, we consider the following Lagrange problem (P) : Find a pair

(x0, u0) ∈ P such that

J (x0, u0) ≤ J (x, u), for all (x, u) ∈ P,
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where J (x, u) =
∫ b

0
L (t, x(t), u(t))dt. We introduce the following assumptions.

(H8) The function L satisfies:

(1) L : J ×X × U → R ∪ {∞} is Borel measurable in (t, x, u).

(2) L (t, ., .) is sequentially lower semicontinuous on X × U for almost all t ∈ J and

there is a constant L1 > 0 such that

L (t, x, u) ≥ −L1, for all (t, x, u) ∈ J ×X × U.

For any (t, x) ∈ J ×X , let

ε(t, x, y) = {(z0, z) ∈ R×X |z0 ≥ L (t, x, u), z = f(t, x, y, u), u ∈ Γ(t, x)}.

We make the following assumption.

(H9): For almost all t ∈ J , the map ε(t, ., .) : X × X → 2R×X has the Cesari

properties, i.e.,

⋂

δ>0

coε(t, Oδ(x), Oδ(y)) = ε(t, x, y), for all (x, y) ∈ X ×X.

Theorem 4.1. Assume that assumptions (H1)-(H9) are satisfied. Then Lagrange

problem (P) admits at least one optimal control pair.

Proof. If inf{J (x, u)|(x, u) ∈ P} = +∞, then it is clear that the Lagrange problem

(P) has an optimal pair.

Without loss of generality, we assume that inf{J (x, u)|(x, u) ∈ P} = N < +∞.

By (H8), we have N > −∞. Thus there exists a sequence {xn, un} ⊂ P such that

J (xn, un) → N . We denote

J (xn, un) =

m∑

i=1

∫ ti

ti−1

L (t, xn(t), (Sxn)(t), un(t)) dt ≡
m∑

i=1

J i(xn, un),

and

lim
n→+∞

J i(xn, un) = Ni.

By (H5)(3) and boundedness of {xn}, we know that {f(., xn(.), (Sxn)(.), un(.))} is

bounded in Lp(J,X)(1 > q > 1
p
). We can assume without loss of generality that

fn(.) = f(., xn(.), (Sxn)(.), un(.)) ⇀ f̃(.) in Lp([0, t1], X)(1 > q >
1

p
),

for some f̃(.) ∈ Lp([0, t1], X). By Lemma 2.9 and Lemma 3.1, we have

xn(t) = Sq(t)x0 +

∫ t

0

(t− τ)q−1Tq(t− τ)f (τ, xn(τ), (Sxn)(τ), un(τ)) dτ

→ x̃(t) = Sq(t)x0 +

∫ t

0

(t− τ)q−1Tq(t− τ)f̃(τ)dτ, ∀t ∈ [0, t1],
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i.e.,

xn(.) → x̃(1)(.) in C([0, t1], X).

By virtue of Mazur Theorem, let αkl ≥ 0,
∑

k αkl = 1, such that

ϕl(.) =
∑

k

αklf(., xk+l(.), (Sxk+l)(.), uk+l(.)) → f̃ (1)(.) in Lp([0, t1], X).

Let

ϕ0
l (.) ≡

∑

k

αklL (., xk+l(.), uk+l(.)),

and

L 0(t) = lim
l→+∞

ϕ0
l (t) ≥ −L1 a.e. t ∈ [0, t1].

For any δ > 0 and l large enough, we get

(
ϕ0
l (t), ϕl(t)

)
∈ ε

(
t, Oδ

(
x̃(1)(t)

)
, Oδ

(
Sx̃(1)(t)

))
.

Using (H9), one can obtain

(L 0(t), f̃ (1)(t)) ∈ ε
(
t, x̃(1)(t), Sx̃(1)(t)

)
, a.e. t ∈ [0, t1].

This means 



L 0(t) ≥ L (t, x̃(1)(t), u), t ∈ [0, t1],

f̃ (1)(t) = f(t, x̃(1)(t), Sx̃(1)(t), u), t ∈ [0, t1],

u ∈ Γ(t, x̃(1)(t)).

(4.1)

According to Filippov Theorem [2], there is a measurable selection ũ(1)(.) of Γ(., x̃(1)(.))

such that
{

L 0(t) ≥ L (t, x̃(1)(t), ũ(1)(t))

f̃ (1)(t) = f(t, x̃(1)(t), Sx̃(1)(t), ũ(1)(t)), a.e. t ∈ [0, t1].
(4.2)

On the other hand,

x̃(1)(t) = Sq(t)x0

+

∫ t

0

(t− τ)q−1Tq(t− τ)f
(
τ, x̃(1)(τ), Sx̃(1)(τ), ũ(1)(τ)

)
dτ, t ∈ [0, t1],

and (
x̃(1), ũ(1)

)
∈ P [0, t1].

By using Fatou’s Lemma. we obtain that

∫ t1

0

L 0(t)dt =

∫ t1

0

limϕ0
l (t)dt ≤ lim

∫ t1

0

ϕ0
l (t)dt,
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i.e.,

J 1
(
x̃(1), ũ(1)

)
=

∫ t1

0

L
(
t, x̃(1), ũ(1)

)
dt = inf

(x,u)∈P [0,t1]
J 1(x, u) ≡ N1.

For the interval [t1, t2], since {xn, un} ∈ P , we have

xn(t) = Sq(t− t1)x
n(t+1 )

+

∫ t

t1

(t− τ)q−1Tq(t− τ)f (τ, xn(τ), (Sxn)(τ), un(τ)) dτ, ∀t ∈ [t1, t2],

and

xn(t+1 ) = I1(x
n(t−1 )) + xn(t−1 ).

By the definition of feasible pair and repeat the procedure in the interval [0, t1], we

know that there is
(
x̃(2), ũ(2)

)
∈ P [t1, t2], that is,

x̃(2)(t) = Sq(t)x0 +

∫ t

0

(t− τ)q−1Tq(t− τ)f
(
τ, x̃(2)(τ), Sx̃(2)(τ), ũ(2)(τ)

)
dτ

+ Sq(t− t1)I1(x̃(2)(t))

for all t ∈ [t1, t2] such that

J 2
(
x̃(2), ũ(2)

)
=

∫ t2

t1

L
(
t, x̃(2)(t), ũ(2)(t)

)
dt = inf

(x,u)∈P [t1,t2]
J 2(x, u) ≡ N2,

and

x̃(2)(t+1 ) = I1

(
x̃(2)(t−1 )

)
+ x̃(2)(t−1 ) = I1(x̃(2)(t1)) + x̃(2)(t1).

Step by steps, repeat the procedures, we obatin

J i(x̃, ũ) =

∫ ti

ti−1

L (t, x̃(t), ũ(t)) dt

= inf
(x,u)∈P [ti−1,ti]

J i(x, u)

≡ Ni, i = 1, 2, ...,m.

Thus,

N = lim
n→+∞

∫ b

0

L (t, xn(t), un(t))dt = lim
n→+∞

m∑

i=1

∫ ti

ti−1

L (t, xn(t), un(t))dt

≥
m∑

i=1

∫ ti

ti−1

lim
n→+∞

L (t, xn(t), un(t))dt =

m∑

i=1

Ni.

We denote (x̃, ũ) as
(
x̃(i), ũ(i)

)
whenever t ∈ [ti−1, ti), then (x̃, ũ) is an optimal pair.

The proof is completed.
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