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ABSTRACT: We consider a family of random maps where each of the component

maps is from a family of piecewise, linear and Markov maps on a class of infinite

partitions of the state space. We investigate the existence of infinite absolutely con-

tinuous invariant measures of the random maps. In a more general setting, our study

establishes a positive answer to the question in discrete time dynamical system: can

two chaotic systems give rise to order, namely can they be combined into another

dynamical system which does not behave chaotically? This question is analogous to

Parrondo’s paradox [5] which states that two losing gambling games when combined

one after the other (either deterministically or randomly) can result in a winning

game: that is, a losing game followed by a losing game = a winning game.

AMS Subject Classification: 37A05, 37H10

Key Words: family of random maps, piecewise, linear and Markov maps, Par-

rondo’s paradox

Received: March 16, 2018 ; Accepted: August 22, 2018 ;
Published: September 6, 2018. doi: 10.12732/dsa.v27i4.3

Dynamic Publishers, Inc., Acad. Publishers, Ltd. https://acadsol.eu/dsa

1. INTRODUCTION

The existence of infinite absolutely continuous invariant measures (acim) for ran-

dom maps is one of the important and challenging problems in ergodic theory and

dynamical systems. For deterministic maps, the existence of finite absolutely con-

tinuous invariant measures is well studied by many authors (see, for example [9] and

the references therein). Farey map is an infinite measure preserving transformation

which is defined on an infinite partition α (see [3, 4]). Infinite ergodic theory for
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deterministic maps and properties of infinite measure preserving transformations are

studied by J. Aaronson in [1]. The main objective of this paper is to study infinite

acims for random maps. We consider a family of random maps of piecewise linear

and Markov maps on a class of infinite partitions of the state space. The existence of

infinite acim for the random maps is established via the study of the corresponding

Frobenius-Perron operators of the random maps.

Let (X,B, λ) be a measure space, where B is a σ-algebra on X and λ is the

Lebesgue measure on B. Let Ω = {1, 2, 3, . . . ,K}{0,1,2,...} = {ω = {ωi}∞i=0 : ωi ∈
{1, 2, 3, . . . ,K}} be the set of set of all one sided infinite sequences. Let τk : X →
X, k = 1, 2, . . . ,K be nonsingular piecewise one-to-one transformations and p1, p2, . . .,

pK be constant probabilities such that
∑K

i=1 pi = 1. The topology on Ω is the product

of the discrete topology on {1, 2, 3, . . . , n} and the Borel probability measure µp on Ω

is defined as µp ({ω : ω0 = i0, ω1 = i1, . . . , ωn = in}) = pi0pi1 . . . pin . Let σ : Ω → Ω

be the left shift. Consider the skew product S : Ω×X → Ω×X defined by

S(ω, x) = (σ(ω), τω0(x)) , ω ∈ Ω, x ∈ X.

Now,

S2(ω, x) =
(

σ2(ω), τω1 ◦ τω0(x)
)

and for any integer N ≥ 1,

SN (ω, x) =
(

σN (ω), τωN−1 ◦ τωN−2 ◦ . . . ◦ τω1 ◦ τω0(x)
)

.

A random map

T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK},

with constant probabilities p1, p2, . . . , pK is defined as follows: for any x ∈ X,T (x) =

τk(x) with probability pk and for any non-negative integer N , TN(x) = τkN
◦ τkN−1 ◦

. . . ◦ τk1(x) with probability ΠN
j=1pkj

. TN (x) can be viewed as the second component

of the SN of the skew product S. A measure µ is invariant under the random map T

if

µ(E) =

K
∑

k=1

pkµ(τ
−1
k (E)), (1.1)

for any measurable set E ∈ B. It can be easily shown that a measure µ is T− invariant

if and only if the measure µp × µ is S−invariant. The Perron-Frobenius operator PT

for the random map T is given by

PT f =

K
∑

k=1

pkPτkf, (1.2)

where Pτk is the Frobenius–Perron operator of the transformation τk. For random

maps with constant probabilities where the component maps are Lasota-Yorke maps
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[6], Pelikan [7] proved the following sufficient condition for the existence of an acim:

∑

k

pk
|τ ′k(x)|

≤ α < 1,

for all x ∈ I.

2. A FAMILY OF RANDOM MAPS WHICH ADMITS AN INFINITE

ABSOLUTELY CONTINUOUS INVARIANT MEASURE

Let

α := {I(1)n : n ∈ N} (2.1)

be a countable infinite partition of [0, 1
2 ) where each I

(1)
n , n = 1, 2, · · · is a non-empty

interval of of the form [a, b). We assume that the elements of α are ordered from left

to right and the interval I
(1)
n approaches to the point 1

2 as n → ∞. Similarly, let

β := {I(2)n : n ∈ N} (2.2)

be a countable infinite partition of [ 12 , 1], where each I
(2)
n , n = 1, 2, · · · is a non-empty

interval of the form [c, d). We assume that the elements of β are ordered from left to

right and the interval I
(2)
n approaches to the point 1 as n → ∞. Consider the partition

P = {α, β} of [0, 1]. We construct families of piecewise linear Markov maps τ1,α,β and

τ2,α,β (w. r. t. P) on [0, 1] into itself as follows: let

an = λ(I(1)n ), sn =

n
∑

k=1

ak, n = 1, 2, · · · . (2.3)

bn = λ(I(2)n ), tn =
1

2
+

n
∑

k=1

bk, n = 1, 2, · · · . (2.4)

Fix integers i∗ ≥ 1, k∗ ≥ 1,m∗ ≥ 1, n∗ ≥ 1. Define τ1,α,β , τ2,α,β : [0, 1] → [0, 1] by



732 MD S. ISLAM

τ1,α,β(x) =































































ti∗+1−ti∗

s1
x+ ti∗ , x ∈ A1;

ti∗+k−ti∗+k−1

sk−sk−1
(x − sk−1) + ti∗+(k−1) , x ∈ Ak, k ≥ 2;

1 , x = 1
2 ;

1
2 (x−

1
2 )

1
2−t1

+ 1 , x ∈ B1;
1
2−tk∗

t1−t2
(x− t1) +

1
2 , x ∈ B2;

tk∗+k−1−tk∗+(k−2)

t1+k−tk
(x− tk) + tk∗+k−2 , x ∈ B1+k, k ≥ 2;

1 , x = 1.

τ2,α,β(x) =































































− 1
2

s1
x+ 1

2 , x ∈ A1;

sm∗

s2−s1
(x− s1) , x ∈ A2;

sm∗+k−1−sm∗+k−2

s1+k−sk
(x− sk) + sm∗+k−2 , x ∈ A1+k, k ≥ 2;

1
2 , x = 1

2 ;
sn∗+1−sn∗

t1−
1
2

(x− 1
2 ) + sn∗ , x ∈ B1;

sn∗+k+1−sn∗+k

tk+1−tk
(x− tk) + sn∗+k , x ∈ Bk+1, k ≥ 1;

1
2 , x = 1.

(2.5)

For any partition P = {α, β} defined above and any probability p, consider the family

{Tα,β} of random maps

Tα,β = {τ1,α,β , τ2,α,β; p, 1− p}, (2.6)

where τ1,α,β and τ2,α,β are defined in (2.5). It is easy to see that each of maps

{τ1,α,β, τ2,α,β} admits a finite acim. The map τ1,α,β preserves Lebesgue measure on

[1/2, 1] and τ2,α,β preserves Lebesgue measure on [0, 1/2]. The composition τ1,α,β ◦
τ2,α,β has an attracting fixed point 1 as a global attractor and the other composition

τ2,α,β◦τ1,α,β has an attracting fixed point 1/2 as a global attractor. Thus, the periodic

switching of these maps leads to completely regular dynamics. We can describe the

periodic switching of τ1,α,β and τ2,α,β as ”trap-rescue” dynamics : iteration of τ1,α,β

traps trajectory in [1/2, 1] and iteration of τ2,α,β traps trajectory in [0, 1/2]. Then,

periodic application of the these maps rescues the trajectory consecutively from each

of these intervals creating different, nearly ordered dynamics.

Example 2.1. Let

α = {[ 1
2
− 1

2k−1
,
1

2
− 1

2k
]}, k = 2, 3, 4, . . .

and

β = {[1− 1

2k−1
, 1− 1

2k
]}, k = 2, 3, 4, . . . .
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Figure 1: The graphs of τ1 and τ2.

Then:

ak−1 =
1

2k
, k = 2, 3, · · · , i.e., a1 =

1

4
, a2 =

1

8
, a3 =

1

16
, · · · ,

bk−1 =
1

2k
, k = 2, 3, · · · , i.e., b1 =

1

4
, b2 =

1

8
, b3 =

1

16
, · · · .

s1 =
1

4
, s2 =

3

8
, s3 =

7

16
, · · · ,

t1 =
3

4
, t2 =

7

8
, t3 =

15

16
, · · · .

Fix i∗ = 2, k∗ = 1,m∗ = 1, n∗ = 2. Then the random map in (2.6) reduces to the

random map T = {τ1, τ2; p1, p2}, where τ1, τ2 : [0, 1] → [0, 1] (see Fig. 1 and [2]) are

defined by

τ1(x) =







































1
4x+ 7

8 , for 0 ≤ x < 1
2 ;

1 , for x = 1
2 ;

2− 2x , for 1
2 ≤ x < 3

4 ;

2x− 1 , for 3
4 ≤ x < 1;

1 , for x = 1.

(2.7)

τ2(x) =







































1
2 − 2x , for 0 ≤ x < 1

4 ;

2x− 1
2 , for 1

4 ≤ x < 1
2 ;

1
2 , for x = 1

2 ;

1
4x+ 1

4 , for 1
2 < x < 1;

1
2 , for x = 1.

(2.8)
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Theorem 2.2. Let P = {α, β} be a partition of [0, 1], where α and β are de-

fined in (2.1) and (2.2) respectively. Let an, bn are sequences defined in (2.3) –

(2.4) such that an = bn for each n = 1, 2, . . . . Let τ1,α,β , τ2,α,β are maps defined

in (2.5) satisfying i∗ = n∗ and k∗ = m∗. Then for any probability p, the random map

Tα,β = {τ1,α,β, τ2,α,β ; p, 1−p} in (2.6) admits an ergodic infinite absolutely continuous

invariant measure and it has no finite absolutely continuous invariant measure.

Proof. The Perron-Frobenius operators of τ1,α,β and τ2,α,β can be represented as
matrices [9, Chapter 9]:

M1 =

































































0 0 . . . 0 0 . . . 0
︸ ︷︷ ︸

i∗−times

s1
ti∗+1−ti∗

0 0 0 . . .

0 0 . . . 0 0 . . . 0
︸ ︷︷ ︸

i∗−times

0
s2−s1

ti∗+2−ti∗+1
0 0 . . .

0 0 . . . 0 0 . . . 0
︸ ︷︷ ︸

i∗−times

0 0
s3−s2

ti∗+3−ti∗+2
0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . 2(t1 −

1

2
) 2(t1 −

1

2
) . . . 2(t1 −

1

2
)

︸ ︷︷ ︸

i∗−times

2(t1 −
1
2
) 2(t1 −

1
2
) 2(t1 −

1
2
) 2(t1 −

1
2
) . . .

0 0 . . .
t1 − t2

1
2

− tk∗

0 . . . 0

︸ ︷︷ ︸

i∗−times

0 0 0 0 . . .

0 0 . . . 0
t2 − t3

tk∗ − tk∗+1

0 . . .

︸ ︷︷ ︸

i∗−times

0 0 0 0 . . .

0 0 . . . 0 0
t3 − t4

tk∗+1 − tk∗+2

0 . . .

︸ ︷︷ ︸

i∗−times

0 0 0 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

































































,

and

M2 =





















































s1

1
2

s1

1
2

s1

1
2

. . .
s1

1
2

︸ ︷︷ ︸

m∗
−times

s1
1
2

s1
1
2

s1
1
2

s1
1
2

. . . 0 0 . . .

s2 − s1

sm∗

s2 − s1

sm∗

s2 − s1

sm∗

. . .
s2 − s1

sm∗

︸ ︷︷ ︸

m∗
−times

0 0 0 0 . . . 0 0 . . .

0 0 0 . . . 0
︸ ︷︷ ︸

m∗
−times

s3−s2
sm∗+1−sm∗

0 0 0 . . . 0 0 . . .

0 0 0 . . . 0
︸ ︷︷ ︸

m∗
−times

0
s4−s3

sm∗+2−sm∗+1
0 0 . . . 0 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

0 0 0 0 . . . 0
︸ ︷︷ ︸

n∗
−times

0
t2−t1

sn∗+2−sn∗+1
0 0 . . . 0 0 . . .

0 0 0 0 . . . 0
︸ ︷︷ ︸

n∗
−times

0 0
t3−t2

sn∗+2−sn∗+2
0 . . . 0 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.





















































.

Without the loss of generality and for the convenience of the calculation, we fix
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i∗ = 2, k∗ = 1,m∗ = 1 and n∗ = 2. Then, the above matices reduce to

M1 =













































0 0 . . . 0 0 s1
ti∗+1−ti∗

0 0 0 . . .

0 0 . . . 0 0 0 s2−s1
ti∗+2−ti∗+1

0 0 . . .

0 0 . . . 0 0 0 0 s3−s2
ti∗+3−ti∗+2

0 . . .

...
...

...
...

...
...

...
...

...

0 0 . . . 2(t1 −
1

2
) 2(t1 −

1

2
) 2(t1 −

1

2
) 2(t1 −

1

2
) 2(t1 −

1

2
) 2(t1 −

1

2
) . . .

0 0 . . .
t1−t2
1
2
−tk∗

0 0 0 0 0 . . .

0 0 . . . 0 t2−t3
tk∗−tk∗+1

0 0 0 . . .

0 0 . . . 0 0 t3−t4
tk∗+1−tk∗+2

0 0 0 . . .

...
...

...
...

...
...

...
...

...













































,

M2 =













































s1
1
2

s1
1
2

s1
1
2

s1
1
2

s1
1
2

s1
1
2

. . . 0 0 0 . . .

s2−s1
sm∗

0 0 0 0 0 . . . 0 0 0 . . .

0 s3−s2
sm∗+1−sm∗

0 0 0 0 . . . 0 0 0 . . .

0 0 s4−s3
sm∗+2−sm∗+1

0 0 0 . . . 0 0 0 . . .

...
...

...
...

...
...

...
...
...
...

0 0
t1−

1
2

sn∗+1−sn∗

0 0 0 . . . 0 0 0 . . .

0 0 0 t2−t1
sn∗+2−sn∗+1

0 0 . . . 0 0 0 . . .

0 0 0 0 t3−t2
sn∗+2−sn∗+2

0 . . . 0 0 0 . . .

...
...

...
...

...
...

...
...
...
...













































.

Let the invariant density of the random map Tα,β = {τ1,α,β, τ2,α,β ; p, 1 − p} be

piecewise constant on the elements of the partition P and represented by an infinite

vector f = [xi∗, xi∗+1, xi∗+2, . . . , yn∗, yn∗+1, yn∗+2, . . . , ] . Then,

f = (pf) ·M1 + ((1 − p)f) ·M2. (2.9)
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From equation (2.9), we get:

xi∗+1 =
sm∗

s2 − s1
· 1− 2s1 + 2s1p

1− p
· xi∗ ,

xi∗+2 =
sm∗+1 − sm∗

s3 − s2
·
[

sm∗

s2 − s1
· 1− 2s1 + 2s1p

(1− p)2
− 2s1

]

· xi∗ ,

xi∗+3 =
sm∗+2 − sm∗+1

s4 − s3
·
[

1

1− p
· xi∗+2 −

t1 − 1
2

sn∗+1 − sn∗

· yn∗ − 2s1 · xi∗

]

,

xi =
sm∗+i−3 − sm∗+i−4

si−1 − si−2
·
[

1

1− p
· xi−1 −

ti−3 − ti−4

sn∗+i−4 − sn∗+i−5
· yi−3 − 2s1 · xi∗

]

,

i = i∗ + 4, i∗ + 5, . . . .

yn∗+1 =
1
2 − tk∗

t1 − t2

[

1

p
− 2(t1 −

1

2
)

]

· yn∗ ,

yn∗+2 =
tk∗ − tk∗+1

t2 − t3
·
[ 1

2 − tk∗

t1 − t2
·
(

1

p2
− 2(t1 − 1

2 )

p
− 2(t1 −

1

2
)

)]

yn∗ ,

yn∗+3 =
tk∗+1 − tk∗+2

t3 − t4
·
[

1

p
· yn∗+2 −

s2 − s1
ti∗+1 − ti∗

xi∗ − 2(t1 −
1

2
)yn∗

]

,

yi =
tk∗+i−4 − tk∗+i−3

ti−2 − ti−1
·
[

1

p
· yi−1 −

si−4 − si−5

ti∗+i−3 − ti∗+i−4
xi−3 − 2(t1 −

1

2
)yn∗

]

,

i = n∗ + 4, n∗ + 5, . . . .

(2.10)

Consider the following change of variables

ui = xi−1, vi = yi−1, wi = ui−1, pi = vi−1, ai = wi−1, bi = pi−1.

Then (2.10) reduces to

xj =
sm∗+j−3 − sm∗+j−4

sj − sj−1
·
[

1

1− p
· xj−1 −

tj−4 − tj−5

sn∗+j−4 − sn∗+j−5
· pj−1 − 2s1 · xi∗

]

,

j = i∗ + 4, i∗ + 5, . . . ,

yj =
tk∗+j−4 − tk∗+j−3

tj−1 − tj
·
[

1

p
· yj−1 −

sj−4 − sj−5

ti∗+j−4 − ti∗+j−5
wj−1 − 2(t1 −

1

2
)yn∗

]

,

j = n∗ + 4, n∗ + 5, . . . ,

uj = xj−1,

vj = yj−1,

wj = uj−1,

pj = vj−1

(2.11)

Let Xi = (xj , yj, uj , vi, wj , pj) ,
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A =










sm∗+j−3−sm∗+j−4
(sj−1−sj−2)(1−p)

0 00 0 −

(sm∗+j−3−sm∗+j−5)(tj−4−tj−5)

(s
−1j−sj−2)(sn∗+j−4−sn∗+j−5)

0
tk∗+j−4−tk∗+j−3

p(tj−2−tj−1)
00−

(tk∗+j−4−tk∗+j−3)(sj−4−sj−5)

(tj−2−tj−1)(ti∗+j−4−ti∗+j−5)

1 0 00 0 0

0 1 00 0 0

0 0 10 0 0

0 0 01 0 0











and b =
(

−2s1

(

sm∗+j−3−sm∗+j−4

sj−1−sj−2

)

· x∗
i ,−2(t1 − 1

2 ) ·
tk∗+j−4−tk∗+j−3

tj−1−tj
· y∗n, 0, 0, 0, 0

)

. If

i∗ = n∗ and k∗ = m∗ then the matrix A and the vector b is constant for each j. In

particular, i∗ = n∗ = 2 and k∗ = m∗ = 1, then

A =





















2
(1−p) 0 0 0 0 −8

0 2
p

0 0 −8 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0





















and b = (−x2,−y2, 0, 0, 0, 0) . Then, the system (2.11) reduces to

Xj = AXj−1 + b. (2.12)

The system (2.12) has the following form of solution [10]:

Xj = AjX0 +

j
∑

k=0

Aj−kb.

Note that one of the eigenvalues of the matrix A in the system (2.12) is exactly 2.

Hence, the maximal eigenvalue γ is larger than 2. Thus, xj and yj in (2.10) are of

the form constant · γi and the densities blow up in the ǫ−neighborhood of 1
2 and 1.

Moreover,
∑∞

i=2

∑

k=1,2 x
(k)
i λ(I

(k)
i ) = ∞. In particular, and

∞
∑

i=2

∑

k=1,2

x
(k)
i λ(I

(k)
i ) =

[

x2 ·
1

22
+ x3 ·

1

23
+ x4 ·

1

24
+ x5 ·

1

25
. . .

]

+

[

y2 ·
1

22
+ y3 ·

1

23
+ y4 ·

1

24
+ y5 ·

1

25
. . .

]

= ∞.

This means that the random map has an infinite acim m = f · λ.
Now, we prove that the measure m = f · λ is ergodic. It is enough to show that

the induced Frobenius-Perron matrix is irreducible [8]. The transition graph of the

induced Frobenius-Perron matrix of the random map T in Example 2 is shown in Fig

2. It is easy to see that the graph is strongly connected, i.e., every state communicates

with every other. Thus, the matrix M is irreducible and the measure m is ergodic.
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Figure 2: The transition graph of the induced Frobenius-Perron operator of

the random map T .

Since m is supported on all of [0,1], there is no other acim. In particular, this random

map does not admit a finite acim.

3. EXAMPLE

Example 3.1. Let

α = {[ 1
2
− 1

2k−1
,
1

2
− 1

2k
]}, k = 2, 3, 4, . . .

and

β = {[1− 1

2k−1
, 1− 1

2k
]}, k = 2, 3, 4, . . . .

Then,

ak−1 =
1

2k
, k = 2, 3, · · · , i.e., a1 =

1

4
, a2 =

1

8
, a3 =

1

16
, · · · ,

bk−1 =
1

2k
, k = 2, 3, · · · , i.e., b1 =

1

4
, b2 =

1

8
, b3 =

1

16
, · · · .

s1 =
1

4
, s2 =

3

8
, s3 =

7

16
, · · · ,

t1 =
3

4
, t2 =

7

8
, t3 =

15

16
, · · · .

Fix i∗ = 3, k∗ = 1,m∗ = 1, n∗ = 3. Then the random map in (2.6) reduces to the

random map T = {τ1, τ2; 1
2 ,

1
2}, where τ1, τ2 : [0, 1] → [0, 1] (see Fig. 1) are defined by

τ1(x) =







































1
8x+ 15

16 , for 0 ≤ x < 1
2 ;

1 , for x = 1
2 ;

2− 2x , for 1
2 ≤ x < 3

4 ;

2x− 1 , for 3
4 ≤ x < 1;

1 , for x = 1.

(3.1)
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τ2(x) =







































1
2 − 2x , for 0 ≤ x < 1

4 ;

2x− 1
2 , for 1

4 ≤ x < 1
2 ;

1
2 , for x = 1

2 ;

1
8x+ 3

8 , for 1
2 ≤ x < 1;

1
2 , for x = 1.

(3.2)

The Perron-Frobenius operators of τ1 and τ2 can be represented as matrices [9,

Chapter 9]:

M1 =







































0 0 . . . 0 0 0 8 0 0 0 . . .

0 0 . . . 0 0 0 0 8 0 0 . . .

0 0 . . . 0 0 0 0 0 8 0 . . .
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 1
2

1
2

1
2

1
2

1
2

1
2

1
2 . . .

0 0 . . . 1
2 0 0 0 0 0 0 . . .

0 0 . . . 0 1
2 0 0 0 0 0 . . .

0 0 . . . 0 0 1
2 0 0 0 0 . . .

...
...

...
...

...
...

...
...

...
...

...







































,

M2 =







































1
2

1
2

1
2

1
2

1
2

1
2 . . . 0 0 0 . . .

1
2 0 0 0 0 0 . . . 0 0 0 . . .

0 1
2 0 0 0 0 . . . 0 0 0 . . .

0 0 1
2 0 0 0 . . . 0 0 0 . . .

...
...

...
...

...
...

...
...

...
...

...

0 0 0 8 0 0 . . . 0 0 0 . . .

0 0 0 0 8 0 . . . 0 0 0 . . .

0 0 0 0 0 8 . . . 0 0 0 . . .
...

...
...

...
...

...
...

...
...

...
...







































.

An invariant density f of the random map T = {τ1, τ2; 12 , 12} satisfies the following

Perron-Frobenius equation:

f =
1

2
{fM1 + fM2}. (3.3)
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Let

M = M1 +M2 =



































1
2

1
2

1
2

1
2

1
2 . . . 0 0 0 8 0 . . .

1
2 0 0 0 0 . . . 0 0 0 0 8 . . .

0 1
2 0 0 0 . . . 0 0 0 0 0 . . .

...
...

...
...

...
...

...
...

...

0 0 0 8 0 . . . 1
2

1
2

1
2

1
2 . . .

0 0 0 0 8 . . . 1
2 0 0 0 0 . . .

0 0 0 0 0 . . . 0 1
2 0 0 0 . . .

...
...

...
...

...
...

...
...

...
...

...
...



































Then (3.3) reduces to

2f = fM. (3.4)

If the value of the invariant density f on I
(i)
k is constant x

(i)
k and we assume that

x
(1)
k = x

(2)
k = xk, for all k = 2, 3, . . . , then the density f can be represented as an

infinite vector (x2, x3, . . . , x2, x3, . . .) and equation (3.4) can be written as:

2 (x2, x3, . . . , x2, x3, . . .) = (x2, x3, . . . , x2, x3, . . .)M. (3.5)

From equation (3.5), we get:

x3 = 3x2;

x4 = 11x2;

x5 = 43x2;

xi = 4xi−1 − 16xi−4 − x2, i = 6, 7, . . . .

(3.6)

From the above system we get

x3 = 3 · x2, x4 = 11 · x2, x5 = 43 · x2, x6 = 155 · x2, x7 = 571 · x2, . . . .

Now, we find a general solution of the system (3.6) of discrete difference equations.

Consider the homogeneous equation xi = 4xi−1 − 16xj−4. Let xi = βix2. Let

β1,2,3,4 be the roots of β4 − 4β3 + 16 = 0. The roots are β1 = 2, β2 = 3.67857,

β3 = −0.839287+ 1.21258i, β4 = β3, where β3 represents complex conjugation of β3.

The general solution of the difference equation will be

xi = (c1β
i
1 + c2β

i
2 + c3β

i
3 + c4β

i
4)x2.

Calculating c1,2,3,4 leads to the values c1 = 0, c2 = 0.0627625, c3 = 0.00708027 +

0.0585811
√
−1, c4 = c3. Since c1 = 0 we can omit the first term in the general form

of xi. We now show that each xi is a real number by using that c4β
i
4 = c3βi

3 and that

c3β
i
3 + c3βi

3 = 2Re(c3β
i
3) in order to write

xi = c2β
i
2 + 2Re(c3β

i
3).
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To show that the series
∑∞

j=2

∑

k=1,2 x
(k)
i λ(I

(k)
i ) we show that

∑∞
i=1

xi

2i+1 diverges.

We use the limit comparison test with the divergent geometric series
∑ βi

2

2i+1 . First

note the inequality

(c2β
i
2 − 2|c3βi

3|)x2 ≤ xi .

Since |β2| > |β3| and |c3| < 1 it follows that

lim
i→∞

(c2β
i
2 − 2|c3βi

3|)x2

β2
· 2

i+1

2i+1
= c2x2,

which isn’t 0 unless x2 = 0. Since x2 = 0 implies the trivial everywhere-zero measure

we can assume that the limit exists and doesn’t equal 0, which by the limit comparison

test shows that the series
∑∞

i=1
xi

2i+1 diverges. This means that the density of the

random map T blows up in the ǫ−neighborhoods of 1
2 and 1 and T has an infinite

acim m = f · λ. The measure m is supported on the whole interval [0, 1]. The

ergodicity of m can be proved as in the Theorem 2.2.

Using Maple, we prepared a program which produced a histogram, shown in Fig.

3, of the 500 000 iterations of random map T . It confirms that T -invariant density

has singularities at 1
2 and 1. The width of the histogram boxes used was 1/1000.

Figure 3: The histogram of 500 000 points of a trajectory of random map T .
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[2] A. Boyarsky, P. Góra, and M.S. Islam, Randomely chosen chaotic can give rice

to nearly ordered behavior, Pysica D, 210 (2005).



742 MD S. ISLAM

[3] G. Knight, S. Munday, Escape rates scaling in infinite measure preserving sys-

tems, J. Physics A: Math. Theor., 49, No. 085101 (2016).

[4] M. Kessebohmer, S. Munday, B.O. Stratmann, Strong renewal theorems and

lyapunov spectra for aα-Farey and α-Luroth systems, Ergodic Theory and Dy-

namical Systems, 32, No. 5 (2012), 989-1017.

[5] J.M.R. Parrondo, G.P. Harmer, D. Abbott, New paradoxical games based on

Brownian ratchets, Phys. Rev. Lett., 85 (2000), 5226-5229.

[6] A. Lasota, J.A. Yorke, On the existence of invariant measures for piecewise mono-

tonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.

[7] S. Pelikan, Invariant densities for random maps of the interval, Proc. Amer.

Math. Soc., 281 (1984), 813-825.
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