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1. INTRODUCTION

In this work, we are concerned with the following higher-order nonlinear mixed neutral

differential equation with variable coefficients

[

r(t) [x(t) + P1(t)x(t − τ1) + P2(t)x(t + τ2)]
(n−1)

]′

+ (−1)n [Q1(t)g1(x(t− σ1))−Q2(t)g2(x(t + σ2))− f(t)] = 0, (1)

where n > 2 is a positive integer, Pi ∈ C([t0,∞),R),

Qi ∈ C([t0,∞), [0,∞)), τi > 0, σi > 0, gi ∈ C(R,R), i=1,2, r ∈ C([t0,∞), (0,∞)),

f ∈ C([t0,∞),R). We assume that gi, i = 1, 2, satisfy local Lipschitz condition and

gi(x)x > 0, i = 1, 2, for x 6= 0.
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Recently, many results have been obtained on the nonoscillatory solutions of first,

second and higher order neutral differential and difference equations; see [1, 2, 3, 4,

5, 6, 7, 8, 9, 10] and the references contained therein. The nonoscillatory behavior of

solutions to first-order mixed neutral differential equation

d

dt
[x(t) + P1(t)x(t − τ1) + P2(t)x(t+ τ2)] +Q1(t)x(t− σ1)−Q2(t)x(t+ σ2)

= 0, (2)

where Pi ∈ C([t0,∞),R), Qi ∈ C([t0,∞), [0,∞)), τi > 0 and σi > 0 for i = 1, 2, was

studied in [11].

The aim of this paper is to present some new sufficient conditions ensuring the

existence of nonoscillatory solutions of (1) which is generalization of (2). To set up

our main results, we consider different cases for the ranges of the coefficients P1(t)

and P2(t).

Let m = max{τ1, σ1}. By a solution of (1) we mean a function x ∈ C([t1 −

m,∞),R), for some t1 > t0, such that x(t) + P1(t)x(t − τ1) + P2(t)x(t + τ2) is n− 1

times continuously differentiable and r(t)(x(t) + P1(t)x(t− τ1) + P2(t)x(t+ τ2))
(n−1)

continuously differentiable on [t1,∞) and such that (1) is satisfied for t > t1.

As it is customary, a solution of (1) is said to be oscillatory if it has arbitrarily

large zeros and nonoscillatory if it is eventually positive or eventually negative.

We use the following theorem to prove our main results.

Theorem 1. (Banach’s Contraction Mapping Principle) A contraction mapping on

a complete metric space has exactly one fixed point.

2. MAIN RESULTS

Theorem 2. Assume that 0 6 P1(t) 6 p1 < 1, 0 6 P2(t) 6 p2 < 1− p1 and
∫

∞

t0

∫ s

t0

sn−2

r(s)
Qi(u)duds < ∞,

∫

∞

t0

∫ s

t0

sn−2

r(s)
|f(u)|duds < ∞, (3)

where i=1,2. Then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with the

sup norm. Set

Ω = {x ∈ Λ : M1 6 x(t) 6 M2, t > t0},

where M1 and M2 are positive constants such that

(p1 + p2)M2 +M1 < M2.
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Let Li, i = 1, 2 denote Lipschitz constants of functions gi, i = 1, 2 on the set Ω,

respectively and L = max{L1, L2}, βi = maxx∈Ω{gi(x)}, i=1,2, respectively and let

α ∈
(

(p1 + p2)M2 +M1,M2

)

. From (3), one can choose a t1 > t0,

t1 > t0 +max{τ1, σ1} (4)

sufficiently large such that

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u)β1 + |f(u)|
)

duds 6 M2 − α, (5)

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q2(u)β2 + |f(u)|
)

duds 6 α−M1 − (p1 + p2)M2 (6)

and

p1 + p2 +
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q1(u) +Q2(u)
)

duds = q1 < 1. (7)

Consider the operator S : Ω −→ Λ defined by

(Sx)(t) =























α− P1(t)x(t − τ1)− P2(t)x(t+ τ2)

+ 1
(n−2)!

∫

∞

t

(s−t)n−2

r(s)

∫ s

t1

(

Q1(u)g1(x(u − σ1))

−Q2(u)g2(x(u + σ2))− f(u)
)

duds, t > t1

(Sx)(t1), t0 6 t 6 t1.

(8)

Clearly Sx is continuous. For t > t1 and x ∈ Ω, using (5) we have

(Sx)(t) 6 α+
1

(n− 2)!

∫

∞

t

(s− t)n−2

r(s)

∫

s

t1

(

Q1(u)g1(x(u − σ1))− f(u)
)

duds

6α+
1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q1(u)β1 + |f(u)|
)

duds

6M2

and taking (6) into account, we have

(Sx)(t) >α− P1(t)x(t − τ1)− P2(t)x(t+ τ2)

−
1

(n− 2)!

∫

∞

t

(s− t)n−2

r(s)

∫

s

t1

(

Q2(u)g2(x(u + σ2)) + f(u)
)

duds

>α− (p1 + p2)M2

−
1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q2(u)β2 + |f(u)|
)

duds > M1.
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These imply that SΩ ⊂ Ω. Since Ω is a bounded, closed, convex subset of Λ, in order

to apply the contraction principle the remaining is to show that S is a contraction

mapping on Ω. For x1, x2 ∈ Ω and t > t1,

|(Sx1)(t)− (Sx2)(t)| 6P1(t)|x1(t− τ1)− x2(t− τ1)|

+ P2(t)|x1(t+ τ2)− x2(t+ τ2)|+
1

(n− 2)!

∫

∞

t

(s− t)n−2

r(s)

×

∫ s

t1

(

Q1(u)|g1(x1(u− σ1)) − g1(x2(u − σ1))|

+Q2(u)|g2(x1(u+ σ2))− g2(x2(u + σ2))|
)

duds

or using (7)

|(Sx1)(t)− (Sx2)(t)|

6 ||x1−x2||
(

p1+p2+
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u)+Q2(u)
)

duds
)

= q1||x1−x2||.

This means with the sup norm that

||Sx1 − Sx2|| 6 q1||x1 − x2||,

where in view of (7), q1 < 1, which shows that S is a contraction mapping on Ω.

Thus, there exists a unique solution, obviously a positive solution of (1), x ∈ Ω of

Sx = x. The proof is complete.

Theorem 3. Assume that 0 6 P1(t) 6 p1 < 1, p1 − 1 < p2 6 P2(t) 6 0 and (3)

holds, then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with the

sup norm. Set

Ω = {x ∈ Λ : N1 6 x(t) 6 N2, t > t0},

where N1 and N2 are positive constants such that

N1 + p1N2 < (1 + p2)N2.

Let Li, i = 1, 2 denote Lipschitz constants of functions gi, i = 1, 2 on the set Ω,

respectively and L = max{L1, L2}, βi = maxx∈Ω{gi(x)}, i=1,2, respectively and let

α ∈ (N1 + p1N2, (1 + p2)N2). Because of (3), one can choose a t1 > t0 sufficiently

large satisfying (4) such that

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q1(u)β1 + |f(u)|
)

duds 6 (1 + p2)N2 − α,
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1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q2(u)β2 + |f(u)|
)

duds 6 α− p1N2 −N1

and

p1 − p2 +
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q1(u) +Q2(u)
)

duds = q2 < 1.

By defining the operator S by (8), the remaining part of the proof follows similar

lines as that of Theorem 2.

Theorem 4. Assume that 1 < p1 6 P1(t) 6 p10 < ∞, 0 6 P2(t) 6 p2 < p1 − 1 and

(3) holds, then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with the

sup norm. Set

Ω = {x ∈ Λ : M3 6 x(t) 6 M4, t > t0},

where M3 and M4 are positive constants such that

p10M3 + (1 + p2)M4 < p1M4.

Let Li, i = 1, 2 denote Lipschitz constants of functions gi, i = 1, 2 on the set Ω,

respectively and L = max{L1, L2}, βi = maxx∈Ω{gi(x)}, i=1,2, respectively and let

α ∈
(

p10M3 + (1 + p2)M4, p1M4

)

. In view of (3), we can choose a t1 > t0,

t1 + τ1 > t0 + σ1 (9)

sufficiently large such that

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q1(u)β1 + |f(u)|
)

duds 6 p1M4 − α, (10)

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q2(u)β2 + |f(u)|
)

duds

6 α− p10M3 − (1 + p2)M4 (11)

and

1

p1

(

1 + p2 +
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u) +Q2(u)
)

duds

)

= q3 < 1. (12)
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Define a mapping S : Ω −→ Λ as follows

(Sx)(t) =











































1
P1(t+τ1)

(

α− x(t+ τ1)− P2(t+ τ1)x(t + τ1 + τ2)

+ 1
(n−2)!

∫

∞

t+τ1

(s−t−τ1)
n−2

r(s)

∫ s

t1+τ1

(

Q1(u)g1(x(u − σ1))

−Q2(u)g2(x(u + σ2))− f(u)
)

duds

)

, t > t1

(Sx)(t1), t0 6 t 6 t1.

(13)

Clearly Sx is continuous. For t > t1 and x ∈ Ω, using (10) we have

(Sx)(t) 6
1

P1(t+ τ1)

(

α+
1

(n− 2)!

∫

∞

t+τ1

(s− t− τ1)
n−2

r(s)

×

∫ s

t1+τ1

(

Q1(u)g1(x(u − σ1))− f(u)
)

duds

)

6
1

p1

(

α+
1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q1(u)β1 + |f(u)|
)

duds

)

6 M4

and taking (11) into account, we have

(Sx)(t) >
1

P1(t+ τ1)

(

α− x(t+ τ1)− P2(t+ τ1)x(t + τ1 + τ2)

−
1

(n− 2)!

∫

∞

t+τ1

(s− t− τ1)
n−2

r(s)

×

∫ s

t1+τ1

(

Q2(u)g2(x(u + σ2)) + f(u)
)

duds

)

>
1

p10

(

α− (1 + p2)M4

−
1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q2(u)β2 + |f(u)|
)

duds

)

> M3.

These show that SΩ ⊂ Ω. Since Ω is a bounded, closed, convex subset of Λ, in order

to apply the contraction principle we have to show that S is a contraction mapping

on Ω. For x1, x2 ∈ Ω and t > t1, from (12)

|(Sx1)(t) − (Sx2)(t)| 6
||x1 − x2||

p1

×

(

1 + p2 +
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u) +Q2(u)
)

duds

)

= q3||x1 − x2||.
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This means with the sup norm that

||Sx1 − Sx2|| 6 q3||x1 − x2||,

where in view of (12), q3 < 1, which shows that S is a contraction mapping on Ω.

Consequently there exists a unique positive solution of (1), x ∈ Ω of Sx = x. Thus

the proof of Theorem 3 is complete.

Theorem 5. Assume that 1 < p1 6 P1(t) 6 p10 < ∞, 1 − p1 < p2 6 P2(t) 6 0 and

(3) holds, then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with the

sup norm. Set

Ω = {x ∈ Λ : N3 6 x(t) 6 N4, t > t0},

where N3 and N4 are positive constants such that

p10N3 +N4 < (p1 + p2)N4.

Let Li, i = 1, 2 denote Lipschitz constants of functions gi, i = 1, 2 on the set Ω,

respectively and L = max{L1, L2}, βi = maxx∈Ω{gi(x)}, i=1,2, respectively and let

α ∈
(

p10N3 + N4, (p1 + p2)N4

)

. By using (3), one can choose a t1 > t0 sufficiently

large satisfying (9) such that

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q1(u)β1 + |f(u)|
)

duds 6 (p1 + p2)N4 − α,

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q2(u)β2 + |f(u)|
)

duds 6 α− p10N3 −N4

and

1

p1

(

1− p2 +
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u) +Q2(u)
)

duds

)

= q4 < 1.

By defining the operator S by (13), the remaining part of the proof is similar to that

of Theorem 4, therefore it is omitted.

Theorem 6. Assume that −1 < p1 6 P1(t) 6 0, 0 6 P2(t) 6 p2 < 1 + p1 and (3)

holds, then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with the

sup norm. Set

Ω = {x ∈ Λ : M5 6 x(t) 6 M6, t > t0},
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where M5 and M6 are positive constants such that

M5 + p2M6 < (1 + p1)M6.

Let Li, i = 1, 2 denote Lipschitz constants of functions gi, i = 1, 2 on the set Ω,

respectively and L = max{L1, L2}, βi = maxx∈Ω{gi(x)}, i=1,2, respectively and let

α ∈ (M5 + p2M6, (1 + p1)M6). Because of (3), we can choose a t1 > t0 sufficiently

large satisfying (4) such that

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q1(u)β1 + |f(u)|
)

duds 6 (1 + p1)M6 − α (14)

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q2(u)β2 + |f(u)|
)

duds 6 α− p2M6 −M5 (15)

and

−p1 + p2 +
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u) +Q2(u)
)

duds

= q5 < 1. (16)

Define an operator S : Ω −→ Λ as follows

(Sx)(t) =























α− P1(t)x(t − τ1)− P2(t)x(t+ τ2)

+ 1
(n−2)!

∫

∞

t

(s−t)n−2

r(s)

∫ s

t1

(

Q1(u)g1(x(u − σ1))

−Q2(u)g2(x(u + σ2))− f(u)
)

duds, t > t1

(Sx)(t1), t0 6 t 6 t1.

(17)

Obviously Sx is continuous. For t > t1 and x ∈ Ω, from (14) and (15), respectively,

it follows that

(Sx)(t) 6 α− p1M6 +
1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u)β1 + |f(u)|
)

duds 6 M6

and

(Sx)(t) > α− p2M6 −
1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q2(u)β2 + |f(u)|
)

duds > M5.

These show that SΩ ⊂ Ω. Ω is a bounded, closed, convex subset of Λ. In order

to apply the contraction principle, the remaining is to show that S is a contraction

mapping on Ω. Thus, if x1, x2 ∈ Ω and t > t1, from (16)

|(Sx1)(t)− (Sx2)(t)| 6 ||x1 − x2||

(

− p1 + p2
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+
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u) +Q2(u)
)

duds

)

= q5||x1 − x2||.

This means with the sup norm that

||Sx1 − Sx2|| 6 q5||x1 − x2||,

where in view of (16), q5 < 1. S is a contraction mapping on Ω and S has a unique

fixed point which is a positive and bounded solution of (1). This completes the

proof.

Theorem 7. Assume that −1 < p1 6 P1(t) 6 0, −1− p1 < p2 6 P2(t) 6 0 and (3)

holds, then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with the

sup norm. Set

Ω = {x ∈ Λ : N5 6 x(t) 6 N6, t > t0},

where N5 and N6 are positive constants such that

N5 < (1 + p1 + p2)N6.

Let Li, i = 1, 2 denote Lipschitz constants of functions gi, i = 1, 2 on the set Ω,

respectively and L = max{L1, L2}, βi = maxx∈Ω{gi(x)}, i=1,2, respectively and let

α ∈ (N5, (1 + p1 + p2)N6). By using (3), one can choose a t1 > t0 sufficiently large

satisfying (4) such that

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u)β1 + |f(u)|
)

duds 6 (1 + p1 + p2)N6 − α,

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q2(u)β2 + |f(u)|
)

duds 6 α−N5

and

−p1 − p2 +
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u) +Q2(u)
)

duds = q6 < 1.

By defining the operator S by (17), the remaining part of the proof is similar to that

of Theorem 6, therefore it is omitted. Thus the proof is complete.

Theorem 8. Assume that −∞ < p10 6 P1(t) 6 p1 < −1, 0 6 P2(t) 6 p2 < −p1 − 1

and (3) holds, then (1) has a bounded nonoscillatory solution.
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Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with the

sup norm. Set

Ω = {x ∈ Λ : M7 6 x(t) 6 M8, t > t0},

where M7 and M8 are positive constants such that

−p10M7 < −(1 + p1 + p2)M8.

Let Li, i = 1, 2 denote Lipschitz constants of functions gi, i = 1, 2 on the set Ω,

respectively and L = max{L1, L2}, βi = maxx∈Ω{gi(x)}, i=1,2, respectively and let

α ∈ (−p10M7, (−1− p1 − p2)M8). In view of (3), we can choose a t1 > t0 sufficiently

large satisfying (9) such that

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u)β1 + |f(u)|
)

duds 6 p10M7 + α, (18)

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q2(u)β2 + |f(u)|
)

duds

6 −(1 + p1 + p2)M8 − α (19)

and

−
1

p1

(

1 + p2 +
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u) +Q2(u)
)

duds

)

= q7 < 1. (20)

Define a mapping S : Ω −→ Λ as follows

(Sx)(t) =











































−1
P1(t+τ1)

(

α+ x(t+ τ1) + P2(t+ τ1)x(t + τ1 + τ2)

− 1
(n−2)!

∫

∞

t+τ1

(s−t−τ1)
n−2

r(s)

∫

s

t1+τ1

(

Q1(u)g1(x(u − σ1))

−Q2(u)g2(x(u + σ2))− f(u)
)

duds

)

, t > t1

(Sx)(t1), t0 6 t 6 t1.

(21)

Clearly Sx is continuous. For t > t1 and x ∈ Ω, from (19) and (18), respectively, it

follows that

(Sx)(t) 6
−1

p1

(

α+M8+p2M8+
1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q2(u)β2+|f(u)|
)

duds

)

6 M8

and

(Sx)(t) >
−1

p10

(

α−
1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u)β1 + |f(u)|
)

duds

)

> M7.
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These prove that SΩ ⊂ Ω. In order to apply the contraction principle, the remaining

is to show that S is a contraction mapping on Ω since Ω is a bounded, closed, convex

subset of Λ. Thus, if x1, x2 ∈ Ω and t > t1, from (20)

|(Sx1)(t)− (Sx2)(t)| 6
−1

p1
||x1 − x2||

×

(

1 + p2 +
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u) +Q2(u)
)

duds

)

= q7||x1 − x2||.

This implies with the sup norm that

||Sx1 − Sx2|| 6 q7||x1 − x2||,

where in view of (20), q7 < 1. S is a contraction mapping and S has a unique fixed

point which is a positive and bounded solution of (1). This completes the proof.

Theorem 9. Assume that −∞ < p10 6 P1(t) 6 p1 < −1, p1 + 1 < p2 6 P2(t) 6 0

and (3) holds, then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with the

sup norm. Set

Ω = {x ∈ Λ : N7 6 x(t) 6 N8, t > t0},

where N7 and N8 are positive constants such that

−p10N7 − p2N8 < (−p1 − 1)N8.

Let Li, i = 1, 2 denote Lipschitz constants of functions gi, i = 1, 2 on the set Ω,

respectively and L = max{L1, L2}, βi = maxx∈Ω{gi(x)}, i=1,2, respectively and let

α ∈ (−p10N7− p2N8, (−p1− 1)N8). By using (3) one can choose a t1 > t0 sufficiently

large satisfying (9) such that

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫

s

t1

(

Q1(u)β1 + |f(u)|
)

duds 6 p10N7 + p2N8 + α,

1

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q2(u)β2 + |f(u)|
)

duds 6 −(1 + p1)N8 − α

and

−
1

p1

(

1− p2 +
L

(n− 2)!

∫

∞

t1

sn−2

r(s)

∫ s

t1

(

Q1(u) +Q2(u)
)

duds

)

= q8 < 1.

By defining the operator S by (21), the remaining part of the proof is similar to that

of Theorem 8, therefore it is omitted. Thus the proof is complete.
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Example 1. Consider the equation

(

et
(

x(t) −
1

e2
x(t − 1) +

1

e2
x(t+ 1)

)(6))′

−

(

e−tx3(t− 1)− e−2tx(t+1)−
64

e4
e−t − e−t

(

2+ e−2(t−1)
)3

+ e−2t
(

2+ e−2(t+1)
)

)

= 0, (22)

and note that n = 7, r(t) = et, P1(t) = − 1
e2
, P2(t) =

1
e2
, Q1(t) = e−t and Q2(t) =

e−2t, g1(x) = x3, g2(x) = x and f(t) = 64
e4
e−t+e−t

(

2+e−2(t−1)
)3

−e−2t
(

2+e−2(t+1)
)

.

A straightforward verification yields that the conditions of Theorem 6 are satisfied.

We note that x(t) = 2 + exp(−2t) is a nonoscillatory solution of (22).
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