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in this paper. The results of numerical examples confirm theoretical conclusions and

they are obtained using programming environment Mathematica.

We give also real-world examples with data provided in [4] using Song–Chang–

Pham [2] software reliability model. Dataset included [5] Year 2000 compatibility

modifications, operating system upgrade, and signaling message processing.
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1. INTRODUCTION

There are two main approaches to testing: structured and functional. Very good

description of all elements in the area of debugging theory may be found in the fol-

lowing books [7]–[9]. For some degradation models with applications to reliability and

survival analysis, see [10]. Practical treatment of similar topics is given in [11], [37]-

[68]. In the book [11], we pay particular attention to both deterministic approaches
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and probability models for debugging theories. A Hausdorff metric was chosen to

evaluate the test data which are fitted to the sigmoid models proposed in this book.

Some software reliability models, can be found in [12]–[36]. In this article we study

the Hausdorff approximation of the shifted Heaviside function ht0(t) by sigmoidal

functions based on the Song–Chang–Pham [2] cumulative functions.

Definition 1. Chang, Pham, Lee and Song [1] developed the following software

reliability model incorporating the uncertainty of the system fault detection rate per

unit of time subject to the operating environment:

M(t) = N

(

1−

(

β

β + (at)b

)α)

. (1)

Definition 2. Song, Chang and Pham [2] developed the following new software

reliability model with consideration of a three–parameter fault–detection rate in the

software development process:

M1(t) = N



1−
β

β − a
b
ln
(

(1+c)e−bt

1+ce−bt

)



 . (2)

Definition 3. The shifted Heaviside function is defined as:

ht0(t) =















0, if t < t0,

[0, 1], if t = t0

1, if t > t0

(3)

The confidence intervals of the models M(t) and M1(t) are visualized on Fig.1

(see, [2]). We will note that the determination of compulsory in area of the Software

Reliability Theory components, such as confidence intervals and confidence bounds,

should also be accompanied by a serious analysis of the value of the best Hausdorff

approximation of the function ht0(t) by cumulative functions of type (1)–(2) - the

subject of study in the present paper.

Definition 4. [3] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).
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Figure 1: The confidence intervals of the models (1) and (2) [2].

2. MAIN RESULTS

2.1. A NOTE ON THE ”TESTING COVERAGE MODEL” (1) [1]

Without loosing of generality we will look at the following ”cumulative sigmoid”:

M∗(t) = 1−

(

β

β + (at)b

)α

, (4)

with N = 1, b = β (see (1)), and

t0 =
1

a



β





1
(

1
2

)
1
α

− 1









1
β

; M∗(t0) =
1

2
. (5)

The one–sided Hausdorff distance d between the function ht0(t) and the sigmoid

((4)–(5)) satisfies the relation

M∗(t0 + d) = 1− d. (6)

The following theorem gives upper and lower bounds for d.

Theorem 1. Let

p = −
1

2
, q = 1 + aα



β





1
(

1
2

)
1
α

− 1









β−1

β
(

1

2

)
α+1

α

.

For the one–sided Hausdorff distance d between ht0(t) and the sigmoid ((4)–(5)) the

following inequalities hold for: 2.1q > e1.05

dl =
1

2.1q
< d <

ln(2.1q)

2.1q
= dr. (7)
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Figure 2: The functions F (d) and G(d).

Figure 3: The model ((4)–(5)) for β = 4, α = 0.95, a = 3.9, t0 = 0.369175;

H–distance d = 0.177566, dl = 0.129912, dr = 0.265137.

Proof. Let us examine the function:

F (d) = M∗(t0 + d)− 1 + d. (8)

From F ′(d) > 0 we conclude that function F is increasing. Consider the function

G(d) = p+ qd. (9)

From Taylor expansion we obtain G(d) − F (d) = O(d2). Hence G(d) approximates

F (d) with d → 0 as O(d2) (see Fig. 2). In additionG′(d) > 0. Further, for 2.1q > e1.05

we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

The model ((4)–(5)) for β = 4, α = 0.95, a = 3.9, t0 = 0.369175 is visualized on

Fig. 3. From the nonlinear equation (6) and inequalities (7) we have: d = 0.177566,

dl = 0.129912 and dr = 0.265137. The model ((4)–(5)) for β = 6, α = 0.99, a = 9,

t0 = 0.150127, d = 0.0773387, dl = 0.0434456, dr = 0.136256 is visualized on Fig. 4.
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Figure 4: The model ((4)–(5)) for β = 6, α = 0.99, a = 9, t0 = 0.150127;

H–distance d = 0.0773387, dl = 0.0434456, dr = 0.136256.

Figure 5: The functions F1(d1) and G1(d1).

2.2. A NOTE ON THE ”DETERMINISTIC MODEL” (2) [2]

We consider the following ”cumulative sigmoid”:

M∗

1 (t) = 1−
β

β − a
b
ln
(

(1+c)e−bt

1+ce−bt

) , (10)

with N = 1 (see (2)), and

t0 =
β

a
+

1

b
ln
(

1 + c
(

1− e−
βb

a

))

; M∗

1 (t0) =
1

2
. (11)

The one–sided Hausdorff distance d1 between the function ht0(t) and the sigmoid

((10)–(11)) satisfies the relation

M∗

1 (t0 + d1) = 1− d1. (12)

The following theorem gives upper and lower bounds for d1

Theorem 2. Let

p1 = −
1

2
, q1 =

(

1 + c
(

1− e−
βb

a

))

(a+ 4β + 4cβ)

4β(1 + c)
.



762 N. PAVLOV, A. ILIEV, A. RAHNEV, AND N. KYURKCHIEV

Figure 6: The model ((10)–(11)) for β = 4, b = 1.55, a = 9, c = 1.1,

t0 = 0.0901371; H–distance d1 = 0.214728, dl1 = 0.120875, dr1 = 0.25548.

For the one–sided Hausdorff distance d1 between ht0 and the sigmoid M∗

1 (t) the fol-

lowing inequalities hold for: 2.1q1 > e1.05

dl1 =
1

2.1q1
< d1 <

ln(2.1q1)

2.1q1
= dr1 . (13)

Proof. Let us examine the functions:

F1(d1) = M∗

1 (t0 + d1)− 1 + d1. (14)

G1(d1) = p1 + q1d1. (15)

From Taylor expansion we obtain G1(d1) − F1(d1) = O(d21). Hence G1(d1) approxi-

mates F1(d1) with d1 → 0 as O(d21) (see Fig. 5). In addition G′(d1) > 0. Further, for

2.1q1 > e1.05 we have G1(dl1) < 0 and G(dr1 ) > 0.

This completes the proof of the theorem.

The model ((10)–(11)) for β = 4, b = 1.55, a = 9, c = 1.1, t0 = 0.0901371 is

visualized on Fig. 6. From the nonlinear equation (12) and inequalities (13) we have:

d1 = 0.214728, dl1 = 0.120875 and dr1 = 0.25548.

3. NUMERICAL EXAMPLE. CONCLUDING REMARKS.

The research of each new model in the field of debugging and test theory compulsory

passes through the experimental phase with imposed in practice databases. One of

them is the data provided in [4]. The operating time of the software is 167,900 days.

115 failures are detected for these days which contain 71 unique failures. Table 1

shows the failures data which are united for each of the 13 months. Dataset included

[5] Year 2000 compatibility modifications, operating system upgrade, and signaling

message processing. Below, we will illustrate the fitting of this data, for example,
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with the M1(t) model, and will show the connection to discussed in this article -

approximate task.

Month In-

dex

System Days

(Days)

System Days (Cu-

mulative)

Failures Cumulative

Failures

1 961 961 7 7

2 4170 5131 3 10

3 8789 13,920 14 24

4 11,858 25,778 8 32

5 13,110 38,888 11 43

6 14,198 53,086 8 51

7 14,265 67,351 7 58

8 15,175 82,526 19 77

9 15,376 97,902 17 94

10 15,704 113,606 6 100

11 18,182 131,788 11 111

12 17,760 149,548 4 115

13 18,352 167,900 0 115

Table 1. Field failure data [4].

The fitted model

M1(t) = N



1−
β

β − a
b
ln
(

(1+c)e−bt

1+ce−bt

)





based on the data of Table 1 for the estimated parameters: N = 115; a = 2.07563; b =

0.464771; c = 12181.7; β = 0.00620473 is plotted on Fig. 7.

With such found parameters N, a, b, c, β for the value t0 we have t0 = 6.21147.

The value of the best Hausdorff distance between the function ht0(t) and sigmoid

M1(t) satisfies the following nonlinear equation: M1(t0 + d) − N + d = 0. In this

case, d is the length of the side of the square shown on Fig. 7. Obviously, studying

of phenomenon super saturation is mandatory element along with other important

components - confidence bounds and confidence intervals (see, Fig. 1) when dealing

with questions from Software Reliability Models domain.

Remark. Song, Chang and Pham [6] developed the following new software reliability

model with consideration of a five–parameter fault–detection rate in the software

development process:

M2(t) = N



1−
β

β − a
b
ln
(

(1+c)e−bpt

1+ce−bpt

)





α

(16)

where a, b, c, β, α > 0 and 0 ≤ p ≤ 1. The one–sided Hausdorff distance d2 between
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Figure 7: a). The model M1(t) with N = 115; a = 2.07563; b = 0.464771; c =

12181.7; β = 0.00620473; b.) The Hausdorff approximation of the shifted

Heaviside function ht0(t) by sigmoid M1(t).

the function ht0(t) and the sigmoid (16) satisfies the relation

M2(t0 + d2) = 1− d2. (17)

The model (16) for N = 1, β = 0.1, b = 1.8, a = 9, c = 1.5, p = 0.95, α = 0.9,

t0 = 0.0248855, d2 = 0.132733 is visualized on Fig. 8.

The fitted model based on the data of Table 1 for the estimated parameters: N =

111.5; a = 1.57493; b = 0.453278; c = 46.7291;β = 0.310662;α = 1.7115; p = 0.902566

is plotted on Fig. 9.

In particular, the discipline ”Approximation and Modelling Aspects in Debugging

and Test Theory” will be made, the materials for which will be in Distributed Platform

for e-Learning DisPeL [69]-[75].

Based on the methodology proposed in the present note, the reader may formulate

the corresponding approximation problems on his/her own. We hope that the results

will be useful for specialists in this scientific area.
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Figure 8: The model (16) for N = 1, β = 0.1, b = 1.8, a = 9, c = 1.5,

p = 0.95, α = 0.9, t0 = 0.0248855; H–distance d2 = 0.132733.

Figure 9: The fitted model M2(t) with N = 111.5; a = 1.57493; b =

0.453278; c = 46.7291; β = 0.310662; α = 1.7115; p = 0.902566.
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