
Dynamic Systems and Applications, 27, No. 4 (2018), 791-801 ISSN: 1056-2176

STABILITY OF NEURAL NETWORKS WITH RANDOM IMPULSES
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ABSTRACT: One of the main properties of solutions of neural networks is stability

and often the direct Lyapunov method is used to study stability properties. We con-

sider the Hopfield’s graded response neural network in the case when the neurons are

subject to a certain impulsive state displacement at random exponentially distributed

moments. It changes significantly the behavior of the solutions because they are not

deterministic ones but they are stochastic processes. We examine the stability of the

equilibrium of the model. Some sufficient conditions for p-moment stability of equi-

librium of neural networks with time varying self-regulating parameters of all units

and time varying functions of the connection between two neurons in the network are

obtained. These sufficient conditions are explicitly expressed in terms of the param-

eters of the system and hence they are easily verifiable. We illustrate our theory on

a particular nonlinear neural network.
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1. INTRODUCTION

The subject of artificial neural networks has become one of the important techni-

cal tools for solving a variety of problems in various scientific disciplines. From a

mathematical point of view, an artificial neural network corresponds to a non-linear
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transformation of some inputs into certain outputs. Among the many types of neural

networks proposed and studied in the literature, the Hopfield-type network ([5]) has

become an important one due to its potential for applications in associative memory,

pattern recognition, optimization, model identification, signal processing, etc. Note

the stability of deterministic models with impulses for neural networks are studied in

[4], [8]-[12].

A brief overview of the randomness in the neural networks and some methods

for their investigations are given in [7] where the studied models are stochastic ones.

Furthermore, the impulsive perturbation is a common phenomenon in real systems,

so it is also an important problem how to deal with impulsive systems. Additionally,

the occurrence of these impulses at random times is often particular for real system.

It requires study of deterministic neural networks with impulses occurring at random

time. An unsuccessful trial for studying the Hopfield neural network with impulses

at random times is done by A. Vinodkumar at al. in [9]. In this paper random

variables are incorrectly mixed with deterministic variables. For example, the defined

I[ξk,ξk+1)(t) for random variables ξk, ξk+1 is not a deterministic index function, it is

a stochastic process and it has an expected value labeled by E and it has to be

taken into mind in the written on page13[9]. Additionally, it is not used the well

known result from probability theory that the expected value of a constant is equal

to the same constant, that the expected value of a product is equal to the product

of expected values only for independent random variables. So, we define for the

first time the generalization of Hopfield neural network with impulses at random

times, briefly give an explanation of the solutions being stochastic processes and

study stability properties. Note the stability problem for differential equation with

impulses at random time are studied in [1].[2]. In this paper we study the general case

of Hopfield neural network with time varying self-regulating parameters of all units

and time varying functions of the connection between two neurons in the network.

The study is based on the application of the Lyapunov method. Using Lyapunov

functions some stability sufficient criteria are provided and illustrated with examples.

2. SYSTEM DESCRIPTION

We will consider the model proposed by Hopfield [5] and known as Hopfield’s graded

response neural network in the case when the neurons are subject to a certain impul-

sive state displacement at random moments

Let T0 ≥ 0 be a fixed point and the probability space (Ω,F , P ) be given. Let a

sequence of independent exponentially distributed random variables {τk}
∞
k=1 with the

same parameter λ > 0 defined on the sample space Ω be given.
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Define the sequence of random variables {ξk}
∞
k=0 by

ξk = T0 +

k
∑

i=1

τi, k = 0, 1, 2, . . . . (1)

The random variable τk measures the waiting time of the k-th impulse after the

(k− 1)-st impulse occurs and the random variable ξk denotes the length of time until

k impulses occur for t ≥ T0.

Remark 1. The random variable Ξ =
∑k

i=1 τi is Erlang distributed and it has a

pdf fΞ(t) = λe−λt (λt)
k−1

(k−1)! and cdf F (t) = P (Ξ < t) = 1− e−λt
∑k−1

j=0
(λt)j

j! .

Consider the general model of Hopfield’s graded response neural networks with

impulses occurring at random times (RINN)

x′
i(t) =− ci(t)xi(t) +

n
∑

j=1

aij(t)fj(xj(t)) + Ii(t),

for t ≥ T0, ξk < t < ξk+1, k = 0, 1, . . . , i = 1, 2, . . . n

xi(ξk + 0) =Φk,i(xi(ξk − 0)) for k = 1, 2, . . . ,

xi(T0) =x0
i ,

(2)

where n represents the number of neurons in the network, xi(t) is the pseudostate

variable denoting the average membrane potential of the i-th neuron at time t,

x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ R
n, ci(t) > 0, i = 1, 2, . . . , n, is the self-regulating

parameter of the i-th unit, aij(t), i, j = 1, 2, . . . , n, correspond to the synaptic connec-

tion strength of the i-th neuron to the j-th neuron at time t , fj(xj(t)) denotes the acti-

vation functions of the neurons at time t and represent the response of the j-th neuron

to its membrane potential, f(x) = (f1(x1), f2(x2), . . . , fn(xn)) and I = (I1, I2, . . . , In)

is an external bias vector, the state displacements is impulsive activated at a random

time equal to a value of the random variable ξk, the functions Φk,i(u), k = 1, 2, . . .

are the impulsive functions giving the impulsive perturbation of the i-th neuron.

2.1. DESCRIPTION OF THE SOLUTIONS OF MODEL (2)

Consider the sequence of points {tk}
∞
k=1 where the point tk is an arbitrary value of

the corresponding random variable τk, k = 1, 2, . . . . Define the increasing sequence

of points {Tk}
∞
k=1 by

Tk = T0 +

k
∑

i=1

tk. (3)

Note Tk are values of the random variables ξk, k = 1, 2, . . . .
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Consider the initial value problem for the system of non - instantaneous impulsive

differential equations with fixed points of impulses and fixed length of action of the

impulses (INN):

x′
i(t) =− ci(t)xi(t) +

n
∑

j=1

aij(t)fj(xj(t)) + Ii(t),

for t ≥ T0, t 6= Tk, k = 0, 1, . . . , i = 1, 2, . . . n

xi(Tk + 0) =Φk,i(xi(Tk − 0)) for k = 1, 2, . . . ,

xi(T0) =x0
i ,

(4)

The solution of the differential equation with fixed moments of impulses (4) de-

pends not only on the initial condition (T0, x0) but on the moments of impulses

Tk, k = 1, 2, . . . , i.e. the solution depends on the chosen arbitrary values tk of the

random variables τk, k = 1, 2, . . . . We denote the solution of the initial value problem

(4) by x(t;T0, x0, {Tk}). We will assume that

x(Tk;T0, x0, {Tk}) = lim
t→Tk−0

x(t;T0, x0, {Tk})

for any k = 1, 2, . . . . The set of all solutions x(t;T0, x0, {Tk}) of the initial value

problem for the impulsive fractional differential equation (4) for any values tk of the

random variables τk, k = 1, 2, . . . generates a stochastic process with state space Rn.

We denote it by x(t;T0, x0, {τk}) and we will say that it is a solution of RINN (2).

Definition 1. For any given values tk of the random variables τk, k = 1, 2, 3, . . .

respectively, the solution x(t;T0, x0, {Tk}) of the corresponding IVP for the INN (4)

is called a sample path solution of the IVP for the RINN (2).

Any sample path solution x(t;T0, x0, {Tk}) ∈ Cq((sk, Tk+1],R
n), k = 0, 1, 2, . . . .

Definition 2. A stochastic process x(t;T0, x0, {τk}) with an uncountable state space

R
n is said to be a solution of the IVP for the system of RINN (2) if for any values tk

of the random variables τk, k = 1, 2, . . . the corresponding function x(t;T0, x0, {Tk})

is a sample path solution of the IVP for RINN (2).

Definition 3. We will say that the stochastic processes y(t) and u(t) satisfy the

inequality y(t) ≤ u(t) for t ∈ J ⊂ R if the state space of the stochastic processes

v(t) = y(t)− v(t) is (−∞, 0].
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2.2. EQUILIBRIUM OF MODEL (2)

Definition 4. A vector x∗ ∈ R
n, x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) is an equilibrium point of

RINN (2), iff the equalities

0 = −ci(t)x
∗
i +

n
∑

j=1

aij(t)fj(x
∗
j ) + Ii(t) for t ≥ 0, i = 1, 2, . . . , n (5)

and

x∗
i = Φk,i(t, x

∗
i , x

∗
i ) for t ≥ 0, k = 1, 2, . . . , i = 1, 2, . . . , n (6)

hold.

We assume the following:

Assumption A1. Let the RINN (2) have an equilibrium vector x∗ ∈ R
n.

If assumption A1 is satisfied then we can shift the equilibrium point x∗ of system

(2) to the origin. The transformation y(t) = x(t) − x∗ is used to put system (2) in

the following form:

y′i(t) =− ci(t)yi(t) +

n
∑

j=1

aij(t)Fj(yj(t)),

for t ≥ T0, ξk < t < ξk+1, k = 0, 1, . . . , i = 1, 2, . . . n

yi(ξk + 0) =φk,i(y(ξk − 0)) for k = 1, 2, . . . ,

yi(t0) =y0i ,

(7)

where Fj(u) = fj(u + x∗
j ) − fj(x

∗
j ), j = 1, 2, . . . , n and φk,i(u) = Φk,i(u + x∗

i ) −

Φk,i(x
∗
i ), i = 1, 2, . . . , n, k = 1, 2, . . . ,, y0i = x0

i − x∗
i .

Note that Fj(0) ≡ 0 and according to Definition 1 the point x∗ ∈ R
n is an

equilibrium of RINN (2) iff φk,i(0) ≡ 0, i.e. if the point x∗ ∈ R
n is an equilibrium

of RINN (2) then the point y∗ = 0 is an equilibrium of RINN (7). This allows us to

study the stability properties of the zero equilibrium of of RINN (7).

3. SOME STABILITY RESULTS FOR RANDOM

IMPULSIVE DIFFERENTIAL EQUATIONS

Consider the general type of initial value problem (IVP) for a system of nonlinear

random impulsive differential equations (RIDE)

x′(t) = g(t, x(t)) for t ≥ T0, ξk < t < ξk+1,

x(ξk + 0) = Ψk(x(ξk − 0)) for k = 1, 2, . . .

x(T0) = x0.

(8)
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Definition 5. Let p > 0. Then the trivial solution (x0 = 0) of the RIDE (8) is said

to be p-moment exponentially stable if for any initial point (T0, y0) ∈ R+ ×R
n there

exist constants α, µ > 0 such that E[||y(t;T0, x0, {τk)})||
p] < α||y0||

pe−µ(t−T0) for all

t > T0, where y(t;T0, x0, {τk)} is the solution of the IVP for the RIDE (8).

Definition 6. Let p > 0. Then the equilibrium x∗ of the RINN (2) is said to be

p-moment exponentially stable if for any initial point (T0, x0) ∈ R+ × R
n there exist

constants α, µ > 0 such that E[||x(t;T0, x0, {τk)}) − x∗||p] < α||x0 − x∗||pe−µ(t−T0)

for all t > T0, where x(t;T0, x0, {τk)} is the solution of the IVP for the RINN (2).

Remark 2. We note that the two-moment exponentially stability for stochastic

equations is known as exponentially stability in mean square.

Note the p-moment exponential stability of RIDE(8) is studied in [3].

We will give some stability results for differential equations with non-instantaneous

impulses applying Lyapunov functions from the class Λ(J,∆), J ⊂ R+ be a given

interval, and ∆ ⊂ R
n, 0 ∈ ∆ be a given set:

Λ(J,∆) = {V (t, x) ∈ C(J ×∆,R+) : V (t, 0) ≡ 0,

V (t, x) is locally Lipschitzian with respect to x}.

We will use the Dini derivative of the Lyapunov function V (t, x) ∈ Λ(J,∆) along

trajectories of solutions of (8) given by:

(8)D+V (t, x) = lim sup
h→0+

1

h

{

V (t, x) − V (t− h, x− hg(t, x))

}

for t ∈ J, x ∈ ∆,

(9)

where for any t ∈ (tk, sk) there exists ht > 0 such that t−h ∈ (tk, sk), x−hg(t, x) ∈ ∆

for 0 < h ≤ ht.

Now we will give some sufficient condition that will be used further:

Theorem 1. [3]. Let the following conditions be satisfied:

1. For t ≥ 0 : g(t, 0) ≡ 0 and Ψk(0) = 0, k = 1, 2, . . . and for any initial values

(T0, x
0) the corresponding IVP for the ordinary differential equation x′(t) = g(t, x(t))

has a unique solution.

2. The function V ∈ Λ([T0,∞),Rn), and there exist positive constants a, b such

that

(i) a||x||p ≤ V (t, x) ≤ b||x||p for t ≥ T0 x ∈ R
n;

(ii) there exists a function m ∈ C(R+,R+) : inft≥0 m(t) = L ≥ 0 and the

inequality

(8)D+V (t, x) ≤ −m(t)V (t, x), for t ≥ 0, x ∈ R
n
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holds;

(iii) for any k = 1, 2, . . . there exist constants wk and C such that 0 ≤ wk(t) ≤

C < 1 + L
λ
for t ≥ 0 such that

V (t, Ik(t, x)) ≤ wkV (t, x) for t ≥ 0, x ∈ R
n. (10)

Then the trivial solution of the RIDE (8) is p-moment exponentially stable.

4. STABILITY ANALYSIS OF NEURAL NETWORKS WITH

RANDOM IMPULSES

We will introduce the following assumptions:

Assumption A2. The neuron activation functions are Lipschitz, i.e. there exist

positive numbers Li > 0, i = 1, 2, . . . , n such that |fi(u) − fi(v)| ≤ Li|u − v|, i =

1, 2, . . . , n for u, v ∈ R.

Assumption A3. There exist positive numbers Mi,j, i, j = 1, 2, . . . , n such that

|ai,j(t)| ≤ Mi,j for t ≥ 0.

Assumption A4. There exist numbers Bi > 0, i = 1, 2, . . . , n such that the

inequalities ci(t) ≥ Bi > 0, t ≥ 0 hold.

Assumption A5. There exists a positive inequality

2 min
i=1,n

Bi >

n
∑

i=1

max
j

MijLj +max
i

n
∑

j=1

MijLj (11)

holds.

Assumption A6. There exists positive numbers Kk such that for k = 1, 2, . . .

and x ∈ R
n the inequalities

n
∑

i=1

(

Φk,i(xi)− Φk,i(x
∗
i )
)2

≤ Kk

n
∑

i=1

(xi − x∗
i )

2,

hold where x∗ is the equilibrium point from assumption A1.

Remark 3. In the case the self-regulating parameters of the i-th unit in the system

(2) are constants Assumption A4 is satisfied.

Remark 4. If assumption A4 is fulfilled then the function F in RINN (7) satisfies

|Fj(u)| ≤ Lj |u|, j = 1, 2, . . . , n for any u : |u| ≤ λ.

Remark 5. If assumption A6 is fulfilled then the impulsive functions φk, k =

1, 2, . . . in RINN (7) satisfy the inequalities
∑n

i=1 φ
2
k,i(ui) =

∑n

i=1

(

Φk,i(ui + x∗
i ) −

Φk,i(x
∗
i )
)2

≤
∑n

i=1 u
2
k.
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Theorem 2. Let assumptions A1- A6 be satisfied.

Then the equilibrium point x∗ of RINN (2) is p-moment exponentially stable.

Proof. Apply the quadratic Lyapunov function V (t, x) = xTx to the system (7) and

for any t ∈ [0, s1] ∪
∞
k=1 [tk, sk+1] and y ∈ S(λ) we have

(7)D+V (t, y) ≤− 2
n
∑

i=1

ci(t)y
2
i + 2

n
∑

i=1

n
∑

j=1

|aij(t)||Fj(yj)|yi|

≤ − 2 min
i=1,n

aBi

n
∑

i=1

y2i +

n
∑

i=1

n
∑

j=1

MijLj(y
2
j + y2i )

≤− 2 min
i=1,n

Bi

n
∑

i=1

y2i +

n
∑

i=1

n
∑

j=1

MijLjy
2
j +

n
∑

i=1

n
∑

j=1

MijLjy
2
i

≤− 2 min
i=1,n

Bi

n
∑

i=1

y2i +
(

n
∑

i=1

max
j

MijLj

)

n
∑

j=1

y2j

+

n
∑

i=1

y2i
(

max
i

(

n
∑

j=1

MijLj

)

=−
(

2 min
i=1,n

Bi −

n
∑

i=1

max
j

MijLj −max
i

n
∑

j=1

MijLj

)

n
∑

i=1

y2i .

(12)

Define

m(s) ≡ 2 min
i=1,n

Bi −

n
∑

i=1

max
j

MijLj −max
i

n
∑

j=1

MijLj .

Then condition 2(ii) of Theorem 1 is satisfied.

Also, from A8 it follows the condition 2(iii) of Theorem 1 is satisfied.

From Theorem 1 the zero solution of the system (8) is p-moment exponentially

stable and therefore the equilibrium point x∗ of RINN (2) is p-moment exponentially

stable.

EXAMPLE 1. Let n = 3, t0 = 0, sk = (k− 0.5k)π, tk = kπ, k = 1, 2, . . . . Consider

the following partial case of the neural network with impulses at random times (2):

x′
i(t) =− (1 + | csc(t)|)(xi(t)− 0.5π) +

3
∑

j=1

aij(t)cos(xj(t)),

for t ≥ 0 ξk < t < ξk+1, i = 1, 2, 3

xi(ξk + 0) =Φk,i(xi(ξk − 0)) for k = 1, 2, . . .

xi(0) =x0
i ,

(13)

with Φk,i(u) = sin tk u + (1 − sin tk)0.5π, τk ∈ Exp(1), i.e. λ = 1 and A = aij(t) is



STABILITY OF NEURAL NETWORKS WITH RANDOM IMPULSES 799

given by

A(t) =







−0.1 sin t 0.4 0.3

− t2

5t2+1 0.3 t
5t+1

t
10t+1 −0.2 cos t −0.1 sin t






.

The point x∗ = (0.5π, 0.5π, 0.5π) is the equilibrium point of RINN (13).

Note assumptions A2 is satisfied with L = 1.

Also assumption A4 is satisfied with B = 1.

Next assumption A6 is fulfilled with Kk = 1 because

3
∑

i=1

(

Φk,i(xi)− Φk,i(x
∗
i )
)2

=

3
∑

i=1

(

sin tk xi + (1− sin tk)0.5π − 0.5π
)2

=4

3
∑

i=1

(

sin tk(xi − 0.5π)
)2

≤

3
∑

i=1

(

xi − 0.5π
)2

, k = 1, 2, . . . .

(14)

C : 0 < wk ≤ C < 1 + L
λ
= 2

Also, |aij | ≤ Mij , i, j = 1, 2, 3, t ≥ 0 where M = {Mij}, is given by

M =







0.1 0.4 0.3

0.2 0.3 0.2

0.1 0.2 0.1







and (0.4 + 0.3 + 0.2) + max(0.8, 0.7, 0.4) < 2, i.e. the assumption A5 is fulfilled.

Figure 1: Example 1. Graph of the

solution of the system ODE.

Figure 2: Example 1. Graph of the

solution of RINN (13) with an impulse

at 1.

Therefore, according to Theorem 1 the equilibrium of RINN (13) is exponentially

stable in mean square.
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Consider the system (13) without any kind of impulses. The equilibrium x∗ =

(0.5π, 0.5π, 0.5π) is asymptotically stable (see Figure 2 and Figure 3). Therefore, the

appropriate perturbing of the neural networks by impulses at random time can keep

the stability properties of the equilibrium.
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