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1. INTRODUCTION

This paper presents two very general Lefschetz fixed point theorems in general ex-

tension spaces for compact admissible maps on Hausdorff topological spaces. Also

noncompact maps are discussed and some random Lefschetz fixed point theorems are

given.

For the remainder of this section we present some definitions and known results

which will be needed throughout this paper. For a subset K of a topological space

X , we denote by CovX (K) the set of all coverings of K by open sets of X (usually

we write Cov (K) = CovX (K)). Given a map F : X → 2X and α ∈ Cov (X), a

point x ∈ X is said to be an α–fixed point of F if there exists a member U ∈ α

such that x ∈ U and F (x) ∩ U 6= ∅.

Let X and Y be topological spaces. Given two maps F, G : X → 2Y and

α ∈ Cov (Y ), F and G are said to be α–close if for any x ∈ X there exists Ux ∈ α,
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y ∈ F (x) ∩ Ux and w ∈ G(x) ∩ Ux. Given a map F : X → 2Y and a single valued

map g : X → Y and α ∈ Cov (Y ), F and g are said to be strongly α–close if for any

x ∈ X there exists Ux ∈ α with F (x) ⊆ Ux and g(x) ∈ Ux. Given two maps single

valued f, g : X → Y and α ∈ Cov (Y ), f and g are said to be α–close if for any

x ∈ X there exists Ux ∈ α containing both f(x) and g(x). We say f and g are

α-homotopic if there is a homotopy hh : X → Y (0 ≤ t ≤ 1) joining f and g such

that for each x ∈ X the values ht(x) belong to a common Ux ∈ α for all t ∈ [0, 1].

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued

map p : Γ → X is called a Vietoris map (written p : Γ ⇒ X) if the following two

conditions are satisfied:

(i). for each x ∈ X , the set p−1(x) is acyclic

(ii). p is a perfect map i.e. p is closed and for every x ∈ X the set p−1(x) is

nonempty and compact.

Let D(X,Y ) be the set of all pairs X
p
⇐ Γ

q
→ Y where p is a Vietoris map and

q is continuous. We will denote every such diagram by (p, q). Given two diagrams

(p, q) and (p′, q′), where X
p′

⇐ Γ′
q′

→ Y , we write (p, q) ∼ (p′, q′) if there are maps

f : Γ→ Γ′ and g : Γ′ → Γ such that q′ ◦ f = q, p′ ◦ f = p, q ◦ g = q′ and p ◦ g = p′.

The equivalence class of a diagram (p, q) ∈ D(X,Y ) with respect to ∼ is denoted

by

φ = {X
p
⇐ Γ

q
→ Y } : X → Y

or φ = [(p, q)] and is called a morphism from X to Y . We let M(X,Y ) be the set of

all such morphisms. For any φ ∈M(X,Y ) a set φ(x) = q p−1 (x) where φ = [(p, q)]

is called an image of x under a morphism φ.

Consider vector spaces over a field K. Let E be a vector space and f : E → E

an endomorphism. Now let N(f) = {x ∈ E : f (n)(x) = 0 for some n} where f (n)

is the nth iterate of f , and let Ẽ = E\N(f). Since f(N(f)) ⊆ N(f) we have the

induced endomorphism f̃ : Ẽ → Ẽ. We call f admissible if dim Ẽ < ∞; for such

f we define the generalized trace Tr(f) of f by putting Tr(f) = tr(f̃ ) where tr

stands for the ordinary trace.

Let f = {fq} : E → E be an endomorphism of degree zero of a graded vector

space E = {Eq}. We call f a Leray endomorphism if (i). all fq are admissible and

(ii). almost all Ẽq are trivial. For such f we define the generalized Lefschetz number

Λ(f) by

Λ(f) =
∑

q

(−1)q Tr (fq).

A linear map f : E → E of a vector space E into itself is called weakly nilpotent

provided for every x ∈ E there exists nx such that fnx(x) = 0. Assume that

E = {Eq} is a graded vector space and f = {fq} : E → E is an endomorphism.



GENERAL LEFSCHETZ FIXED POINT THEORY 805

We say that f is weakly nilpotent iff fq is weakly nilpotent for every q. It is well

known [3] (pp 53) that any weakly nilpotent endomorphism f : E → E is a Leray

endomorphism and Λ(f) = 0.

Let H be the C̆ech homology functor with compact carriers and coefficients in

the field of rational numbers K from the category of Hausdorff topological spaces

and continuous maps to the category of graded vector spaces and linear maps of

degree zero. Thus H(X) = {Hq(X)} is a graded vector space, Hq(X) being the

q–dimensional C̆ech homology group with compact carriers of X . For a continuous

map f : X → X , H(f) is the induced linear map f⋆ = {f⋆ q} where f⋆ q : Hq(X)→

Hq(X).

With C̆ech homology functor extended to a category of morphisms (see [4] (pp.

364)) we have the following well known result (note the homology functor H extends

over this category i.e. for a morphism

φ = {X
p
⇐ Γ

q
→ Y } : X → Y

we define the induced map

H (φ) = φ⋆ : H(X)→ H(Y )

by putting φ⋆ = q⋆ ◦ p−1
⋆ ).

Recall the following result [2], [3] (pp. 227).

Theorem 1.1. If φ : X → Y and ψ : Y → Z are two morphisms (here X, Y and

Z are Hausdorff topological spaces) then

(ψ ◦ φ)⋆ = ψ⋆ ◦ φ⋆.

Two morphisms φ, ψ ∈ M(X,Y ) are homotopic (written φ ∼ ψ) provided there

is a morphism χ ∈ M(X × [0, 1], Y ) such that χ(x, 0) = φ(x), χ(x, 1) = ψ(x) for

every x ∈ X (i.e. φ = χ ◦ i0 and ψ = χ ◦ i1, where i0, i1 : X → X × [0, 1] are

defined by i0(x) = (x, 0), i1(x) = (x, 1)). Recall the following result [3] (pp. 231): If

φ ∼ ψ then φ⋆ = ψ⋆.

Let φ : X → Y be a multivalued map (note for each x ∈ X we assume φ(x) is a

nonempty subset of Y ). A pair (p, q) of single valued continuous maps of the form

X
p
← Γ

q
→ Y is called a selected pair of φ (written (p, q) ⊂ φ) if the following two

conditions hold:

(i). p is a Vietoris map

and

(ii). q (p−1(x)) ⊂ φ(x) for any x ∈ X .

Note if there exists a selected pair of φ with φ(x) = q (p−1(x)) for x ∈ X then

[3] automatically φ is upper semicontinuous.
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Definition 1.2. A upper semicontinuous map φ : X → Y is said to be strongly

admissible [3, 4] (and we write φ ∈ Ads(X,Y )) provided there exists a selected pair

(p, q) of φ with φ(x) = q (p−1(x)) for x ∈ X .

Definition 1.3. A map φ ∈ Ads(X,X) is said to be a Lefschetz map if for each

selected pair (p, q) ⊂ φ with φ(x) = q (p−1(x)) for x ∈ X the linear map q⋆ p
−1
⋆ :

H(X)→ H(X) (the existence of p−1
⋆ follows from the Vietoris Theorem) is a Leray

endomorphism.

When we talk about φ ∈ Ads it is assumed that we are also considering a specified

selected pair (p, q) of φ with φ(x) = q (p−1(x)).

Remark 1.4. In fact since we specify the pair (p, q) of φ it is enough to say φ is

a Lefschetz map if φ⋆ = q⋆ p
−1
⋆ : H(X)→ H(X) is a Leray endomorphism. However

for the examples of φ, X known in the literature [3] the more restrictive condition in

Definition 1.3 works. We note [3] (pp 227) that φ⋆ does not depend on the choice of

diagram from [(p, q)], so in fact we could specify the morphism.

If φ : X → X is a Lefschetz map as described above then we define the Lefschetz

number (see [3, 4]) Λ (φ) (or ΛX (φ)) by

Λ (φ) = Λ(q⋆ p
−1
⋆ ).

Definition 1.5. A Hausdorff topological space X is said to be a Lefschetz space

(for the class Ads) provided every compact φ ∈ Ads(X,X) is a Lefschetz map and

Λ(φ) 6= 0 implies φ has a fixed point.

Definition 1.6. A upper semicontinuous map φ : X → Y with closed values is

said to be admissible (and we write φ ∈ Ad(X,Y )) provided there exists a selected

pair (p, q) of φ.

Remark 1.7. In the literature [3] usually φ in Definition 1.6 is not assumed to

be upper semicontinuous. If we remove the upper semicontinuity in the definition of

an admissible map then once again the results in Section 2 hold provided we adjust

slightly the definitions in Section 2 (we leave the obvious adjustments to the reader,

see Remark 2.5 (ii) and Remark 2.16 (iv)).

Definition 1.8. A map φ ∈ Ad(X,X) is said to be a Lefschetz map if for each

selected pair (p, q) ⊂ φ the linear map q⋆ p
−1
⋆ : H(X) → H(X) (the existence of

p−1
⋆ follows from the Vietoris Theorem) is a Leray endomorphism.

If φ : X → X is a Lefschetz map, we define the Lefschetz set Λ (φ) (or ΛX (φ))
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by

Λ (φ) =
{

Λ(q⋆ p
−1
⋆ ) : (p, q) ⊂ φ

}

.

Definition 1.9. A Hausdorff topological space X is said to be a Lefschetz space

(for the class Ad) provided every compact φ ∈ Ad(X,X) is a Lefschetz map and

Λ(φ) 6= {0} implies φ has a fixed point.

Remark 1.10. Many examples of Lefschetz spaces (for the class Ad or Ads) can be

found in [2, 3, 4, 5, 7, 8, 10, 11].

2. LEFSCHETZ FIXED POINT THEORY

By a space we mean a Hausdorff topological space. We begin with a class of maps

motivated in part from [9].

Definition 2.1. We say X ∈ locmultiGMNES (w.r.t. Ad and F ) if there exists

a Lefschetz space (for the class Ad) U , a set V ⊆ X with F (V ) ⊆ V and F |W ∈

Ad(W,W ) (here W = F (V )), a compact map Φ ∈ Ad(U,W ), a compact valued map

Ψ ∈ Ad(W,U), if (p, q) is a selected pair of F |W then there exists a selected pair

(p1, q1) of Φ and a selected pair (p′, q′) of Ψ with (q1)⋆ (p1)
−1
⋆ (q′)⋆ (p

′)−1
⋆ = q⋆ p

−1
⋆ ,

and we have the property that if x ∈ U with x ∈ Ψ(y) for some y ∈ Φ(x) then

y ∈ F |W (y).

Remark 2.2. If ΦΨ (z) ⊆ F |W (z) for z ∈ W then automatically the property

that if x ∈ U with x ∈ Ψ(y) for some y ∈ Φ(x) then y ∈ F |W (y) holds since

y ∈ Φ(x) ⊆ ΦΨ (y) ⊆ F |W (z).

Theorem 2.3. Let X ∈ locmultiGMNES (w.r.t. Ad and F ) [let U , V , W ,

Φ and Ψ be as described in Definition 2.1]. Then Λ (F |W ) is well defined. Also

Λ (F |W ) 6= {0} guarantees that F |W has a fixed point (i.e. F has a fixed point in W ).

Proof. Let G = ΨΦ. Note G ∈ Ad(U,U) is a compact map (note Φ is compact

and Ψ is upper semicontinuous with compact values). Let (p, q) be a selected pair

of F |W . Then from Definition 2.1 there exists a selected pair (p1, q1) of Φ and a

selected pair (p′, q′) of Ψ with

(q1)⋆ (p1)
−1
⋆ (q′)⋆ (p

′)−1
⋆ = q⋆ p

−1
⋆ . (2.1)

There exists [6] (Section 40) a selected pair (p, q) of G with

(q)⋆ (p)
−1
⋆ = (q′)⋆ (p

′)−1
⋆ (q1)⋆ (p1)

−1
⋆ (2.2)
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Now U is a Lefschetz space (for the class Ad) so (q)⋆ (p)
−1
⋆ is a Leray endomorphism.

Now [5] (page 214, see (1.3) or see the diagram below) (here E′ = U ′ = H(U),

E′′ =W ′ = H(W ), v = (q′)⋆ (p
′)−1
⋆ , u = (q1)⋆ (p1)

−1
⋆ , f ′ = (q)⋆ (p)

−1
⋆ and f ′′ = q⋆ p

−1
⋆

and note (2.1) and (2.2))

f ′ f ′′

E′

E′

E′′

E′′u

u

v

guarantees that q⋆ p
−1
⋆ is a Leray endomorphism and Λ (q⋆ p

−1
⋆ ) = Λ ((q)⋆ (p)

−1
⋆ ).

Thus Λ (F |W ) is well defined.

Next suppose Λ (F |W ) 6= {0}. Then there exists a selected pair (p, q) as described

above with Λ (q⋆ p
−1
⋆ ) 6= 0. Let p and q be as described above with Λ ((q)⋆ (p)

−1
⋆ ) =

Λ (q⋆ p
−1
⋆ ) 6= 0. Now since U is a Lefschetz space (for the class Ad) there exists x ∈ U

with x ∈ q (p)−1(x) i.e. x ∈ G(x) = ΨΦ(x). Then x ∈ Ψ(y) for some y ∈ Φ (x).

From Definition 2.1 we have y ∈ F |W (y).

Remark 2.4. (i). One could also replace Ad maps with Ads maps in the above

presentation. Also from the proof above we see that the assumption F ∈ Ad(W,W )

in Definition 2.1 could be replaced by the assumption F ∈ Ad(V, V ) or F ∈ Ad(X,X)

[Note if F ∈ Ad(X,X) then automatically F ∈ Ad(V, V ) (and F ∈ Ad(W,W ))].

To show the assumption F ∈ Ad(V, V ) guarantees F ∈ Ad(W,W ) let (p0, q0) be a

selected pair of F |V . Then (p0, q0) ⊂ F |W ; here p0, q0 : p−1
0 (W ) → W are given by

p0(z) = p0(z), q0(z) = q0(z) for z ∈ p
−1
0 (W ).

(ii). Suppose in Definition 2.1 we have F |W ∈ Ad(W,W ) replaced by F ∈

Ad(V, V ). Then Λ (F |V ) is well defined and Λ (F |V ) 6= {0} guarantees that F |V has a

fixed point. To see this first note F |W ∈ Ad(W,W ). Next let (p0, q0) be a selected pair

of F |V . Let i0 :W → V be the inclusion and F1 : V → 2W be given by F1(x) = F (x)

for x ∈ V , and we note F1 ∈ Ad(V,W ) (since (p0, q
′

0) ⊂ F1; here q′0 : Γ → W

is the contraction of q0 to the pair (Γ,W )). Now (note F |W = F1 i0) [3] guaran-

tees that there exists a selected pair (p, q) of F |W with q⋆ p
−1
⋆ = (q′0)⋆ (p0)

−1
⋆ (i0)⋆.

Theorem 2.3 guarantees q⋆ p
−1
⋆ is a Leray endomorphism. Now [2] (page 214, see

(1.3)) (here E′ = W ′ = H(W ), E′′ = V ′ = H(V ), u = (i0)⋆, v = (q′0)⋆ (p0)
−1
⋆ ,



GENERAL LEFSCHETZ FIXED POINT THEORY 809

f ′ = q⋆ p
−1
⋆ and f ′′ = (q0)⋆ (p0)

−1
⋆ and note v u = (q′0)⋆ (p0)

−1
⋆ (i0)⋆ = q⋆ p

−1
⋆ and

u v = (i0)⋆ (q
′

0)⋆ (p0)
−1
⋆ = (q0)⋆ (p0)

−1
⋆ since i0 q

′

0 = q0) guarantees that (q0)⋆ (p0)
−1
⋆

is a Leray endomorphism and Λ ((q0)⋆ (p0)
−1
⋆ ) = Λ (q⋆ p

−1
⋆ ). Thus Λ (F |V ) is well

defined. Next suppose Λ (F |V ) 6= {0}. Then there exists a selected pair (p0, q0) of

F |V with Λ ((q0)⋆ (p0)
−1
⋆ ) 6= 0. Let (p, q) be as described above with Λ (q⋆ p

−1
⋆ ) =

Λ ((q0)⋆ (p0)
−1
⋆ ) 6= 0. Then Λ (F |W ) 6= {0} and now apply Theorem 2.3, and we are

finished.

Suppose in the statement of Definition 2.1 we replace F |W ∈ Ad(W,W ) with

F ∈ Ad(X,X) and F : X → 2V . Then similar reasoning as above guarantees that

Λ (F ) is well defined and Λ (F ) 6= {0} guarantees that F has a fixed point.

Remark 2.5. (i). In Theorem 2.3 to show Λ (F |W ) is well defined we do not need

the property that if x ∈ U with x ∈ Ψ(y) for some y ∈ Φ(x) then y ∈ F |W (y).

(ii). In Definition 2.1 we could replace the condition ”a compact map Φ and a

compact valued map Ψ” with ”ΨΦ : U → 2U a compact map”. In this case we could

remove the condition of upper semicontinuity in Definition 1.6.

Alternate Definition and Results: We say X ∈ locmultiGGMNES (w.r.t. Ad and

F ) if there exists a Lefschetz space (for the class Ad) U , a set A ⊆ X with F (A) ⊆ A

and F |W ∈ Ad(W,W ) (here W = F (A)), a compact map Φ ∈ Ad(U,W ), a compact

valued map Ψ ∈ Ad(W,U), if (p, q) is a selected pair of F |W then there exists a se-

lected pair (p1, q1) of Φ and a selected pair (p′, q′) of Ψ with (q1)⋆ (p1)
−1
⋆ (q′)⋆ (p

′)−1
⋆ =

q⋆ p
−1
⋆ , and we have the property that if x ∈ U with x ∈ Ψ(y) for some y ∈ Φ(x) then

y ∈ F |W (y).

(1). The reasoning in Theorem 2.3 guarantees that if X ∈ locmultiGGMNES (w.r.t.

Ad and F ) (let U , A,W , Φ and Ψ be as described above) then Λ (F |W ) is well defined

and also Λ (F |W ) 6= {0} guarantees that F |W has a fixed point.

(2). Suppose in the statement above we have F |W ∈ Ad(W,W ) replaced by F ∈

Ad(A,A). Then the reasoning in Remark 2.4 (ii) guarantees that Λ (F |A) is well

defined and Λ (F |A) 6= {0} guarantees that F |A has a fixed point.

(3). Suppose in the statement above we have F |W ∈ Ad(W,W ) replaced by F ∈

Ad(X,X) and F : X → 2A. Then the reasoning in Remark 2.4 (ii) guarantees that

Λ (F ) is well defined and Λ (F ) 6= {0} guarantees that F has a fixed point.

(4). There is also an obvious analogue of Remark 2.5 (ii) in this case.

We now consider two special cases of Theorem 2.3.

Definition 2.6. We say X ∈ multiGMNES1 (w.r.t. Ad and F ) if there ex-

ists a Lefschetz space (for the class Ad) U , F ∈ Ad(X,X), a compact map Φ ∈

Ad(U,X), a compact valued map Ψ ∈ Ad(X,U), if (p, q) is a selected pair of F
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then there exists a selected pair (p1, q1) of Φ and a selected pair (p′, q′) of Ψ

with (q1)⋆ (p1)
−1
⋆ (q′)⋆ (p

′)−1
⋆ = q⋆ p

−1
⋆ , and we have the property that if x ∈ U with

x ∈ Ψ(y) for some y ∈ Φ(x) then y ∈ F (y).

Theorem 2.7. Let X ∈ multiGMNES1 (w.r.t. Ad and F ) Then Λ (F ) is well

defined. Also Λ (F ) 6= {0} guarantees that F has a fixed point.

Proof. The proof is word for word that in Theorem 2.3 with W replaced by X .

Definition 2.8. We say X ∈ multiGMNES2 (w.r.t. Ad and F ) if there exists a

Lefschetz space (for the class Ad) U , F |W ∈ Ad(W,W ) (hereW = F (X)), a compact

map Φ ∈ Ad(U,W ), a compact valued map Ψ ∈ Ad(W,U), if (p, q) is a selected pair

of F |W then there exists a selected pair (p1, q1) of Φ and a selected pair (p′, q′)

of Ψ with (q1)⋆ (p1)
−1
⋆ (q′)⋆ (p

′)−1
⋆ = q⋆ p

−1
⋆ , and we have the property that if x ∈ U

with x ∈ Ψ(y) for some y ∈ Φ(x) then y ∈ F |W (y).

Theorem 2.9. Let X ∈ multiGMNES2 (w.r.t. Ad and F ) and W = F (X). Then

Λ (F |W ) is well defined. Also Λ (F |W ) 6= {0} guarantees that F |W has a fixed point

(i.e. F has a fixed point in W ).

Proof. Take V = X in Theorem 2.3.

Remark 2.10. An analogue of Remark 2.2 and Remark 2.5 hold for Definition 2.6

and Definition 2.8.

Example 2.11. Let X be a space and F : X → 2X . Suppose F |W ∈ Ad(W,W )

where W = F (X) is compact. We know [5] that W can be embedded as a closed

subset K⋆ of T (Tychonoff cube i.e. cartesian product of copies of the unit interval);

let s :W → K⋆ be a homeomorphism. Now assume

{

there exists an open neighborhood U of K⋆ in T

and a continuous extension h : U →W of s−1.
(2.3)

Let jU : K⋆ →֒ U be the natural embedding. Now let Ψ = jU s and Φ = F |W h. We

now show X ∈ multiGMNES2 (w.r.t. Ad and F ).

Note Ψ ∈ Ad(W,U) and Φ ∈ Ad(U,W ) is a compact map. Also it is well known [2]

(page 221) that every open subset of the Tychonoff cube is a Lefschetz space (w.r.t.

Ad). Let (p, q) be a selected pair of F |W . Since Φ = F |W h ∈ Ad(U,W ) there exists

[3] (Section 40) a selected pair (p1, q1) of Φ with (q1)⋆ (p1)
−1
⋆ = q⋆ p

−1
⋆ h⋆. As a

result (note Ψ = jU s),

(q1)⋆ (p1)
−1
⋆ (jU )⋆ s⋆ = q⋆ p

−1
⋆ h⋆ (jU )⋆ s⋆ = q⋆ p

−1
⋆
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since h jU s = id. Finally notice for z ∈ W that ΦΨ(z) = F |W h jU s(z) = F |W (z).

Thus X ∈ multiGMNES2 (w.r.t. Ad and F ).

Example 2.12. Let X be a space and F : X → 2X . Suppose F ∈ Ad(X,X) and

W = F (X) is compact. Now W can be embedded as a closed subset K⋆ of T ; let

s :W → K⋆ be a homeomorphism. Let i :W →֒ X be the inclusion. Now assume

{

there exists an open neighborhood V of K⋆ in T and a

continuous extension hV : V → X of i s−1 (: K⋆ → X).
(2.4)

Let jV : K⋆ →֒ V be the natural embedding so hV jV = i s−1. Now consider span (T )

in a Hausdorff locally convex topological vector space containing T . We know [2]

(page 221) that there exists a retraction r : span (T ) → T . Let i1 : V →֒ r−1(V )

be the inclusion. Let U = r−1(V ), Ψ = i1 jV s F and Φ = hV r. We now show

X ∈ multiGMNES1 (w.r.t. Ad and F ).

First note [2] (page 221) that U (note U is open) is a Lefschetz space (w.r.t. Ad).

Also note Ψ ∈ Ad(X,U) and Φ ∈ Ad(U,X) and ΨΦ : U → 2U is a compact map since

F (X) is compact. Let (p, q) be a selected pair of F . Since Ψ = i1 jV s F ∈ Ad(X,U)

there exists [3] (Section 40) a selected pair (p′, q′) of Ψ with

(q′)⋆ (p
′)−1
⋆ = (i1)⋆ (jV )⋆ s⋆ q⋆ p

−1
⋆ ,

so as a result (note Φ = hV r),

(hV )⋆ r⋆ (q
′)⋆ (p

′)−1
⋆ = (hV )⋆ r⋆ (i1)⋆ (jV )⋆ s⋆ q⋆ p

−1
⋆ = q⋆ p

−1
⋆

since hV r i1 jV s(w) = (hV r i1 jV ) s(w) = i(w) for w ∈ W (note hV jV = i s−1).

Finally notice for z ∈ X (note F (z) ∈W ) that ΦΨ(z) = hV r i1 jV s F (z) = i F (z) =

F (z). Thus X ∈ multiGMNES1 (w.r.t. Ad and F ).

Definition 2.13. We say X ∈ locmultiGMANES (w.r.t. Ad and F ) if there

exists a set V ⊆ X with F (V ) ⊆ V and F |W ∈ Ad(W,W ) (here W = F (V )),

and for each α ∈ CovW (F (W )) there exists a Lefschetz space (for the class Ad)

Uα, maps Φα ∈ Ad(Uα,W ), Ψα ∈ Ad(W,Uα) with Ψα Φα : Uα → 2Uα a compact

map, for each x ∈ Uα and y ∈ Φα (x) with x ∈ Ψα (y) there exists V0 ∈ α with

y ∈ V0 and F |W (y) ∩ V0 6= ∅, and if (p, q) is a selected pair of F |W then there

exists a selected pair (p1,α, q1,α) of Φα and a selected pair (p′α, q
′

α) of Ψα with

(q1,α)⋆ (p1,α)
−1
⋆ (q′α)⋆ (p

′

α)
−1
⋆ = q⋆ p

−1
⋆ .

Theorem 2.14. Let X ∈ locmultiGMANES (w.r.t. Ad and F ) [let V , W , α,

Uα, Ψα and Φα be as described in Definition 2.13]. Then Λ (F |W ) is well defined.

Also Λ (F |W ) 6= {0} guarantees for any α ∈ CovW (F (W )) that F |W has an α–fixed
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point. Moreover if (W,F |W ) has the α–fixed point property (i.e. F |W having an α–

fixed point for each α ∈ CovW (F (W )) guarantees that F |W has a fixed point) then

Λ (F |W ) 6= {0} guarantees F |W has a fixed point.

Remark 2.15. One can put conditions on the space X and the map F so that F |W

has an α–fixed point for each α ∈ CovW (F (W )) would guarantee F |W has a fixed

point; for example we refer the reader to [1] (Lemma 1.2 and 4.7) and [6] (Theorem

1.4 and Remark 1.6)].

Proof. Let α ∈ CovW (F (W )) and Gα = Ψα Φα. Note Gα ∈ Ad(Uα, Uα) is a

compact map. Let (p, q) be a selected pair of F |W . Then from Definition 2.13 there

exists a selected pair (p1,α, q1,α) of Φα and a selected pair (p′α, q
′

α) of Ψα with

(q1,α)⋆ (p1,α)
−1
⋆ (q′α)⋆ (p

′

α)
−1
⋆ = q⋆ p

−1
⋆ . (2.5)

There exists [3] (Section 40) a selected pair (pα, qα) of Gα with

(qα)⋆ (pα)
−1
⋆ = (q′α)⋆ (p

′

α)
−1
⋆ (q1,α)⋆ (p1,α)

−1
⋆ (2.6)

Now Uα is a Lefschetz space (for the class Ad) so (qα)⋆ (pα)
−1
⋆ is a Leray endomor-

phism. Now [2] (page 214, see (1.3)) (here E′ = U ′

α = H(Uα), E
′′ = W ′ = H(W ),

v = (q′α)⋆ (p
′

α)
−1
⋆ , u = (q1,α)⋆ (p1,α)

−1
⋆ , f ′ = (qα)⋆ (pα)

−1
⋆ and f ′′ = q⋆ p

−1
⋆ and note

(2.5) and (2.6)) guarantees that q⋆ p
−1
⋆ is a Leray endomorphism and Λ (q⋆ p

−1
⋆ ) =

Λ ((qα)⋆ (pα)
−1
⋆ ). Thus Λ (F |W ) is well defined.

Next suppose Λ (F |W ) 6= {0}. Then there exists a selected pair (p, q) of F |W

with Λ (q⋆ p
−1
⋆ ) 6= 0. Let α ∈ CovW (F (W )) and let pα and qα be as described above

with Λ ((qα)⋆ (pα)
−1
⋆ ) = Λ (q⋆ p

−1
⋆ ) 6= 0. Now since Uα is a Lefschetz space (for the

class Ad) there exists x ∈ Uα with x ∈ qα (pα)
−1(x) i.e. x ∈ Gα(x). As a result

there exists a y ∈ Φα(x) with x ∈ Ψα (y). Then from Definition 2.13 there exists

V0 ∈ α with

y ∈ V0 and F |W (y) ∩ V0 6= ∅.

As a result F |W has an α-fixed point for α ∈ CovW (F (W )). Finally if we assume

(W,F |W ) has the α–fixed point property then automatically F |W has a fixed point.

Remark 2.16. (i). One could replace Ad maps with Ads maps in the above

presentation.

(ii). The assumption F ∈ Ad(W,W ) in Definition 2.13 could be replaced by the

assumption F ∈ Ad(V, V ) or F ∈ Ad(X,X).

(iii). In Definition 2.13 suppose we have F |W ∈ Ad(W,W ) replaced by F ∈

Ad(V, V ). Then essentially the same reasoning as in Remark 2.4 (ii) guarantees that

Λ (F |V ) is well defined and if Λ (F |V ) 6= {0} then for any α ∈ CovW (F (W )) we
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have that F |V has an α–fixed point (note if Λ (F |V ) 6= {0} then essentially the

same argument as in Remark 2.4 (ii) guarantees that Λ (F |W ) 6= {0} and now apply

Theorem 2.14 so if α ∈ CovW (F (W )) then F |W has an α–fixed point).

(iv). In Definition 2.13 we could remove the condition of upper semicontinuity in

Definition 1.6.

(v). Let X be a space and F : X → 2X . Suppose F |W ∈ Ad(W,W ) where

W = F (X) is compact. Now W can be embedded as a closed subset K⋆ of T ; let

s :W → K⋆ be a homeomorphism. Now assume



















for α ∈ CovW (F (W )) there exists an open neighborhood

Uα of K⋆ in T and a compact map Φα ∈ Ad(Uα,W )

such that for each x ∈ K⋆ there exists V0 ∈ α with

Φα(x) ⊆ V0 and F |W s−1(x) ∩ V0 6= ∅.

(2.7)

Let jUα
: K⋆ →֒ Uα be the natural embedding and assume











if (p, q) is a selected pair of F |W then

there exists a selected pair (p1,α, q1,α) of Φα

with (q1,α)⋆ (p1,α)
−1
⋆ (jUα

)⋆ s⋆ = q⋆p
−1
⋆ .

(2.8)

Then X ∈ locmultiGMANES (w.r.t. Ad and F ).

Let V = X and Ψα = jUα
s. Note Ψα ∈ Ad(W,Uα) and ΨαΦα : Uα → 2Uα is a

compact map since Φα is a compact map. It remains to consider when x ∈ Uα and

y ∈ Φα(x) with x ∈ Ψα(y) = jUα
s(y). Then x = jUα

s(y) and note s(y) ∈ K⋆. Now

from (2.7) there exists V0 ∈ α with Φα(x) ⊆ V0 and F |W s−1(x) ∩ V0 6= ∅. Since

y ∈ Φα(x) we have y ∈ V0 and since x = jUα
s(y) we have F |W (y) ∩ V0 6= ∅. Thus

X ∈ locmultiGMANES (w.r.t. Ad and F ).

Alternate Definition and Results: We say X ∈ locmultiGGMANES (w.r.t. Ad and

F ) if there exists a set A ⊆ X with F (A) ⊆ A and F |W ∈ Ad(W,W ) (here W =

F (A)), and for each α ∈ CovW (F (W )) there exists a Lefschetz space (for the class

Ad) Uα, maps Φα ∈ Ad(Uα,W ), Ψα ∈ Ad(W,Uα) with ΨαΦα : Uα → 2Uα a

compact map, for each x ∈ Uα and y ∈ Φα (x) with x ∈ Ψα (y) there exists V0 ∈ α

with y ∈ V0 and F |W (y) ∩ V0 6= ∅, and if (p, q) is a selected pair of F |W then

there exists a selected pair (p1,α, q1,α) of Φα and a selected pair (p′α, q
′

α) of Ψα

with (q1,α)⋆ (p1,α)
−1
⋆ (q′α)⋆ (p

′

α)
−1
⋆ = q⋆ p

−1
⋆ .

(1). The reasoning in Theorem 2.14 guarantees that if X ∈ locmultiGGMANES

(w.r.t. Ad and F ) (let A, W , α, Uα, Φα and Ψα be as described above) then Λ (F |W )

is well defined, and also Λ (F |W ) 6= {0} guarantees for any α ∈ CovW (F (W )) that

F |W has an α–fixed point (moreover if (W,F |W ) has the α–fixed point property then

Λ (F |W ) 6= {0} guarantees F |W has a fixed point).
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(2). Suppose in the statement above we have F |W ∈ Ad(W,W ) replaced by F ∈

Ad(A,A). Then the reasoning in Remark 2.4 (ii) guarantees that Λ (F |A) is well

defined and Λ (F |A) 6= {0} guarantees for any α ∈ CovW (F (W )) that F |A has an

α–fixed point.

We now consider some special cases of Theorem 2.14.

Definition 2.17. We say X ∈ multiGMANES1 (w.r.t. Ad and F ) if F ∈

Ad(X,X), and for each α ∈ CovX (F (X)) there exists a Lefschetz space (for the

class Ad) Uα, maps Φα ∈ Ad(Uα, X), Ψα ∈ Ad(X,Uα) with Ψα Φα : Uα → 2Uα a

compact map, for each x ∈ Uα and y ∈ Φα (x) with x ∈ Ψα (y) there exists V0 ∈ α

with y ∈ V0 and F (y) ∩ V0 6= ∅, and if (p, q) is a selected pair of F then there

exists a selected pair (p1,α, q1,α) of Φα and a selected pair (p′α, q
′

α) of Ψα with

(q1,α)⋆ (p1,α)
−1
⋆ (q′α)⋆ (p

′

α)
−1
⋆ = q⋆ p

−1
⋆ .

Theorem 2.18. Let X ∈ multiGMANES1 (w.r.t. Ad and F ). Then Λ (F ) is

well defined. Also Λ (F ) 6= {0} guarantees for any α ∈ CovX (F (X)) that F has an

α–fixed point. Moreover if (W,F ) has the α–fixed point property (i.e. F having an

α–fixed point for each α ∈ CovX (F (X)) guarantees that F has a fixed point) then

Λ (F ) 6= {0} guarantees F has a fixed point.

Proof. The proof is word for word that in Theorem 2.14 with W replaced by X .

Definition 2.19. We say X ∈ multiGMANES2 (w.r.t. Ad and F ) if F |W ∈

Ad(W,W ) (hereW = F (X)), and for each α ∈ CovW (F (W )) there exists a Lefschetz

space (for the class Ad) Uα, maps Φα ∈ Ad(Uα,W ), Ψα ∈ Ad(W,Uα) with ΨαΦα :

Uα → 2Uα a compact map, for each x ∈ Uα and y ∈ Φα (x) with x ∈ Ψα (y) there

exists V0 ∈ α with y ∈ V0 and F |W (y) ∩ V0 6= ∅, and if (p, q) is a selected pair of

F |W then there exists a selected pair (p1,α, q1,α) of Φα and a selected pair (p′α, q
′

α)

of Ψα with (q1,α)⋆ (p1,α)
−1
⋆ (q′α)⋆ (p

′

α)
−1
⋆ = q⋆ p

−1
⋆ .

Theorem 2.20. Let X ∈ multiGMANES2 (w.r.t. Ad and F ) and W = F (X).

Then Λ (F |W ) is well defined. Also Λ (F |W ) 6= {0} guarantees that for any α ∈

CovW (F (W )), F |W has an α–fixed point. Moreover if (W,F |W ) has the α–fixed

point property then Λ (F |W ) 6= {0} guarantees F |W has a fixed point.

Proof. Take V = X in Theorem 2.14.

Motivated in part by [3] (Section 42) we will generalize slightly Theorem 2.3

(see Remark 2.4 (ii)) and Theorem 2.14 (see Remark 2.16) for noncompact maps

F : X → 2X .
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Definition 2.21. Let X be a space. A map F ∈ Ad(X,X) is said to be a locally

multi general absorbing contraction (written F ∈ locmultiGAC(X,X)) if

(i). X ∈ locmultiGMNES (w.r.t. Ad and F ) [let U , V ,W , Φ and Ψ be as described

in Definition 2.1];

(ii). for any selected pair (p, q) of F , q′′⋆ (p
′′)−1

⋆ : H(X,W ) → H(X,W ) is a weakly

nilpotent endomorphism (here p′′, q′′ : (Γ, p−1(W ))→ (X,W ) are given by p′′(u) =

p(u) and q′′(u) = q(u)).

Theorem 2.22. Let F ∈ locmultiGAC(X,X). Then Λ (F ) is well defined and if

Λ (F ) 6= {0} then F has a fixed point.

Proof. Let (p, q) be a selected pair for F so in particular q p−1(W ) ⊆ F (W ).

Consider F |W and let q′, p′ : p−1(W ) → W be given by p′(u) = p(u) and q′(u) =

q(u) (and note (p′, q′) is a selected pair for F |W ). Now Theorem 2.3 guarantees that

q′⋆ (p
′)−1
⋆ is a Leray endomorphism. Now Definition 2.21 (ii) and [3] (Property 11.8,

pp 53) guarantees that q′′⋆ (p′′)−1
⋆ is a Leray endomorphism and Λ (q′′⋆ (p

′′)−1
⋆ ) = 0.

Also [3] (Property 11.5, pp 52) guarantees that q⋆ p
−1
⋆ is a Leray endomorphism (with

Λ (q⋆ p
−1
⋆ ) = Λ (q′⋆ (p

′)−1
⋆ )) so Λ (F ) is well defined.

Next suppose Λ (F ) 6= {0}. Then there exists a selected pair (p, q) of F with

Λ (q⋆ p
−1
⋆ ) 6= 0. Let (p′, q′) be as described above with Λ (q⋆ p

−1
⋆ ) = Λ (q′⋆ (p

′)−1
⋆ ).

Then Λ (q′⋆ (p
′)−1
⋆ ) 6= 0 so since X ∈ locmultiGNES (w.r.t. Ad and F ) then Theo-

rem 2.3 guarantees that there exists x ∈ W with x ∈ F |W (x) i.e. x ∈ F x.

Remark 2.23. (1). If we use Remark 2.4 (ii) in the proof of Theorem 2.22 we

see that we could replace Definition 2.21 (ii) with: for any selected pair (p, q) of F ,

q′′⋆ (p
′′)−1

⋆ : H(X,V ) → H(X,V ) is a weakly nilpotent endomorphism (here p′′, q′′ :

(Γ, p−1(V ))→ (X,V ) are given by p′′(u) = p(u) and q′′(u) = q(u)).

(2). Note we do not assume F : X → 2V in Definition 2.21.

(3). In Definition 2.21 (i) we could replace locmultiGMNES (w.r.t. Ad and F )

with locmultiGGMNES (w.r.t. Ad and F ).

Definition 2.24. Let X be a space. A map F ∈ Ad(X,X) is said to be a locally

multi general approximative absorbing contraction (written F ∈ locmultiGAAC(X,X))

if X ∈ locmultiGMANES (w.r.t. Ad and F ) [let V , W , α, Uα, Φα and Ψα be as

described in Definition 2.13], (W,F |W ) has the α–fixed point property, and (ii) in

Definition 2.21 holds.

The same reasoning as in Theorem 2.22 (except Theorem 2.14 replaces Theorem

2.3) establishes the next result.
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Theorem 2.25. Let F ∈ locmultiGAAC(X,X). Then Λ (F ) is well defined and

if Λ (F ) 6= {0} then F has a fixed point.

Finally in this paper we present some Lefschetz fixed point theory for random

operators. First we recall some preliminary results. Let (Ω,A) be a measurable space

and C a nonempty subset of a metric space X = (X, d). A mapping G : Ω→ 2C is

said to be measurable if

G−1(U) = {w ∈ Ω : G(w) ∩ U 6= ∅} ∈ A

for each open subset U of C. A mapping ξ : Ω→ C is called a measurable selector

of the measurable mapping G : Ω → 2C if ξ is measurable and ξ(w) ∈ G(w) for

each w ∈ Ω. A mapping F : Ω × C → 2X is called a random operator if, for any

fixed x ∈ C, the map F ( . , x) : Ω → 2X is measurable. A measurable mapping

ξ : Ω→ C is said to be a random fixed point of a random operator F : Ω×C → 2X

if ξ(w) ∈ F (w, ξ(w)) for each w ∈ Ω. A random operator F : Ω × C → 2X is said

to be continuous (compact etc.) if for each w ∈ Ω, the map F (w, . ) : C → 2X is

continuous (compact etc.).

Next we state a well known result of Tan and Yuan [12].

Theorem 2.26. Let (Ω,A) be a measurable space and Z a nonempty separable

complete subset of a metric space X = (X, d). Suppose the map F : Ω×Z → CD(X)

(here CD(X) denotes the family of nonempty closed subsets of X) is a continuous

compact random operator. If F has a deterministic fixed point then F has a random

fixed point.

Remark 2.27. A single valued map φ : Ω → X is said to be a deterministic fixed

point of F if φ(w) ∈ F (w, φ(w)) for each w ∈ Ω.

Another version of a random operator F : Ω × Z → 2X was considered by

Gorniewicz [3]. Let X be a separable metric space, Ω a complete measurable space,

and Z a closed subset of X . A map F : Ω×Z → 2X with compact values is said to

be a random in the sense of Gorniewicz operator if

(i). F is product measurable

and

(ii). F (w, . ) is upper semicontinuous for every w ∈ Ω

hold. The following result is taken from [3] (pp. 156).

Theorem 2.28. Let X be a separable metric space, (Ω,A) a complete measurable

space and Z a closed subset of X. Suppose the map F : Ω × Z → 2X has compact
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values and is a random in the sense of Gorniewicz operator. If F has a deterministic

fixed point then F has a random fixed point.

We can obtain the random analogue of all the results obtained in this paper. To

illustrate this we will obtain the random analogue of Theorem 2.7, first using Theorem

2.26 and then using Theorem 2.28.

Theorem 2.29. Let (Ω,A) be a measurable space and E a metric space. In

addition assume


















X ∈ multiGMNES1 (with respect to Ad and F ( ., , w))

for each w ∈ Ω is a complete separable subset of E,

F : Ω×X → CD(X) is a continuous, compact random

operator and F (w, . ) ∈ Ad(X,X) for each w ∈ Ω.

(2.9)

Then if Λ (F (w, . ) 6= {0} for each w ∈ Ω, then F has a random fixed point.

Remark 2.30. Note in Theorem 2.29 for fixed w ∈ Ω that Λ (F (w, . ) is well

defined (see Theorem 2.7).

Proof. Theorem 2.7 guarantees that F has a deterministic fixed point. The result

follows from Theorem 2.26.

Theorem 2.31. Let (Ω,A) be a complete measurable space and E a separable

metric space. In addition assume






























X ∈ multiGMNES1 (with respect to Ad and F ( ., , w))

for each w ∈ Ω is a closed subset of E, F : Ω×X → CK(X)

(here CK(X) denotes the family of nonempty compact subsets

of X) is a random in the sense of Gorniewicz compact

operator with F (w, . ) ∈ Ad(X,X) for each w ∈ Ω.

(2.10)

Then if Λ (F (w, . ) 6= {0} for each w ∈ Ω, then F has a random fixed point.

Proof. Theorem 2.7 guarantees that F has a deterministic fixed point. The result

follows from Theorem 2.28.

REFERENCES

[1] H. Ben-El-Mechaiekh, The coincidence problem for compositions of set valued

maps, Bull. Austral. Math. Soc., 41 (1990), 421-434.

[2] G. Fournier and L. Gorniewicz, The Lefschetz fixed point theorem for multi-

valued maps of non-metrizable spaces, Fundamenta Mathematicae, 92 (1976),

213-222.



818 DONAL O’REGAN

[3] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer

Acad. Publishers, Dordrecht, 1999.

[4] L. Gorniewicz and A. Granas, Some general theorems in coincidence theory, J.

Math. Pures et Appl., 60 (1981), 361-373.

[5] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.

[6] D. O’Regan, Fixed point theory on extension type spaces and essential maps on

topological spaces, Fixed point Theory and Applications, 2004 (2004), 13-20.

[7] D. O’Regan, Fixed point theory in generalized approximate neighborhood exten-

sion spaces, Fixed Point Theory, 12 (2011), 155-164.

[8] D. O’Regan, Lefschetz type theorem for a class of noncompact mappings, J.

Nonlinear Sci. Appl., 7 (2014), 288-295.

[9] D. O’Regan, Generalized Lefschetz fixed point theorems in extension type spaces,

J. Nonlinear Sci. Appl., 8 (2015), 986-996.

[10] M. Skiba and M. Slosarski, On the generalization of absolute neighborhood re-

tracts, Topology and its Applications, 156 (2009), 697-709.

[11] M. Slosarski, Fixed points of multivalued mappings in Hausdorff topological

spaces, Nonlinear Analysis Forum, 13 (2008), 39-48.

[12] K.K. Tan and X.Z. Yuan, Random fixed point theorems and approximations in

cones, Jour. Math. Anal. Appl., 185 (1994), 378-390.


