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ABSTRACT: In this paper, Computer simulation is used to study the influence of

clumping effect on the dynamic complexities of a discrete-time host-parasitoid model.

We report here parasitoid aggregation may be a strong stabilizing or destabilizing

factor. Using computer simulation, many forms of complex dynamic are observed,

including Hopf bifurcation reversal, period-halving, attractor crises, chaotic bands

with narrow or wide periodic windows, intermittent chaos, and supertransient be-

havior. Several types of attractors, e.g. point equilibrium vs. chaotic, periodic vs.

quasiperiodic and quasiperiodic vs. chaotic attractors, may coexist in the same map-

ping. This non-uniqueness also indicates that the bifurcation diagrams, or the routes

to chaos, depend on initial conditions and are therefore non-unique. The basins of

attraction, defining the initial conditions leading to a certain attractor, may be frac-

tal set. The fractal property observed is the pattern of self-similarity. The numerical

results indicate that computer simulation is a useful method of investigating complex

dynamic systems. We also conclude that non-unique dynamic, associated with the

extremely complex structure of the basin boundaries, can have a profound effect on

our understanding of the dynamical processes of nature.
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1. INTRODUCTION

Simple ecological models have been designed and studied since the pioneering work

of sir. Robert May (see [1], [2]). By his profound discoveries, a new research area

dealing with the complexities in the population dynamic models was initiated.

The theory of single-population dynamic is now quite clearly understood as com-

pared with the dynamic of interactive population. Ecologists have focused on studying

interspecific interaction of continuous-time host-parasitoid models of two variables,

where dynamic includes only stable equilibrium or limit cycles (see [3]). Natural

populations whose generations are non-overlapping can be modeled by differential

equations that describe how the population evolves in discrete time-steps and in the

discrete-time host-parasitoid models the dynamics can produce a much richer set of

patterns than those observed in continuous-time model (see [4]). It is not easy to

analyze its global stability by qualitative method, so people often study the dynamic

complexity of discrete-time host-parasitoid models by computer simulation. Through

simulation, one can test model parameters and find out the stability domain of the

parameters, through which to optimize the system by artificial control and to improve

the stability of the system. Recently, many authors have adopted computer simulation

to investigate the complexities of discrete-time hostparasitoid models. Kaitala and

Heino (see [5]) reported the dynamics complex of host-parasitoid interaction with

immunized and non-immunized host. Tang and Chen (see [6]) and Xu and Mark

(see [7]) show that many forms of complex dynamics are observed not only in host-

parasitoid interaction model with Holling-type functional response but also a mutual

interference host-parasitoid model. Clamer and Pugliese (see [8]) studied the dynam-

ics of a 2 hostCparasitoid model assuming, and obtained explicit conditions for the

existence of an equilibrium where the two host species coexist with the parasitoid.

However, if host demography is density-independent, equilibrium coexistence is im-

possible. Liu and Chu Y (see [9]) proved that a discrete-time biological model and

its dynamical behaviors in detail, the existence and stability of the equilibrium of the

model are qualitatively discussed. Din (see [10]) discussed qualitative behavior of a

discrete-time density-dependent predator-prey model, the existence and uniqueness of

positive steady-state, permanence, local and global behavior of unique positive equi-

librium point and the rate of convergence of positive solutions that converge to the

unique positive equilibrium point of this model are studied. Din (see [11]) considered

the comprehensive dynamics of a density-dependent hostCparasitoid system with the

Hassell growth function for the host population.

Here, using computer simulation, the dynamic complexities of a model that in-

cludes the density-dependent response in the parasitoid were qualitatively analyzed.

This density-dependent response acts on foraging ability of parasitoid. And the ex-
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pression of the functional response is dependent on a clumping index that describes

whether the parasitoids attacks on host become more aggregated or not. We shall

demonstrate that the clumping effect not only can stabilize the dynamics but may

destabilize it as well. Many complexities relating to clumping effect are observed,

including Hopf bifurcation reversal, period-halving, attractor crises, chaotic bands

with narrow or wide periodic windows, non-unique dynamics with multiple attrac-

tors, fractal basins of attraction, intermittent chaos, and supertransient.

2. HOST-PARASITOID INTERACTION

The starting point of our modeling studies is the well-known deterministic single-

species Moran-Ricker (see [12], [13]) dynamic given as.

Ht+1 = Htexp

(

r

(

1−
Ht

K

))

, (1)

where Ht is the host population size in generation t, t = 0, 1, 2, , r is the intrinsic

growth rate, and K is the carrying capacity of the environment. The steady state of

the MoranCRicker dynamics, satisfying Ht+1 = Ht, is H∗ = K, and the dynamics

are asymptotically stable when 0 < r < 2, unstable with different periodic attractors

when2.0 < r < 2.6924, and chaotic (with periodic windows) when r > 2.6924.

There are a number of factors that may affect the host-parasitoid dynamic. We

confine our attention to the behavioral responses made by parasitoid whose attacks

become more aggregated to host. Here we use function response as the form of
(

1 + ap
K

)

− K that is the expression for parasitism following the negative binomial

distribution function proposed by May (see [14]). Then, the host-parasitoid model

incorporating clumping effect that we investigate follows as
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Pt+1 = Ht

[

1−

(

1 +
aPt

k

)

−k
]

.

(2)

Here Pt is the parasitoid population size in generation t, a is the searching efficiency

of the parasitoid on the host, and the k is the clumping index of the negative binomial

distribution. As k declines parasitoid attacks become more aggregated.

Typically, Mays model exhibits an abrupt transition form stable to oscillatory

dynamic as the value of the aggregation term k, increases to values greater than 1. If

k < 1, the host-parasitoid interaction is stable. We observed if k → ∞, the function

response of model (2) became e−ap, then the model (2) became Nicholson-Bailey (see

[15]) host-parasitoid equation, which assumed the parasitoids attack to host random.



4 L. SHI, H. LIU, Y. WEI, AND M. MA

Here we will analyze the population dynamics in term of intrinsic growth rate r of

the host population, the searching efficiency a and especially the clumping index k.

3. STABILITY ANALYSIS

In this section, the existence and local stability analysis of the non-negative equilibria

of system (2) are investigated. There are two non-negative equilibrium points for

system (2). The total extinction solution whereby no species is able to survive is

E0 = (0, 0) (trivial equilibrium) and the coexistence solution for the two species is

E∗ = (H∗, P ∗) (non-trivial equilibrium).

The equilibrium point E∗ = (H∗, P ∗) satisfies the following equations:
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Simplification formula (4) can be obtained















H∗ = K

(

1 +
lnQ

r

)

P ∗ = K

(

1 +
lnQ

r

)

(1−Q)

where Q is the net rate of the increase in the host per generation, which in this model

is Q =
(

1 + aP∗

k

)

−k

.

Note that the equilibrium point E∗ = (H∗, P ∗) cannot be solved in a closed form.

In order to discuss the stability of the equilibrium point of model, the model (3)

is written as follows
{

Ht+1 = F1 (Ht, Pt)

Pt+1 = F2 (Ht, Pt)

At t time, a small perturbation nt and pt is added to the equilibrium point, and

the equation evolves at t+ 1 time is as follow

{

H∗ + nt+1 = F1 (H
∗ + nt, P

∗ + pt)

P ∗ + pt+1 = F2 (H
∗ + nt, P

∗ + pt)

In order to obtain the linear stability analysis, the Taylor expansion of the upper

formula is
(

nt+1

pt+1

)

=

(

∂F1

∂H
∂F1

∂P
∂F2

∂H
∂F2

∂P

)

H∗,P∗

(

nt

pt

)

.



NON-UNIQUE DYNAMICS 5

Once the steady-state solutions are obtained, we can study what happens to the

dynamic variables H and P when a steady-state solution is slightly perturbed. Such

knowledge is obtained by calculating the Jacobian matrix. For which the Jacobian

matrix is given by

J =

(

∂F1

∂H
∂F1

∂P
∂F2

∂H
∂F2

∂P

)

.

The Jacobian matrix of system (2) at the equilibrium point E0 = (0, 0) is

J (0, 0) =

(

er 0

0 0

)

.

Accordingly, we find eigenvalues are λ1 = er, λ2 = 0. From this, it can be

concluded that E0 = (0, 0) is a stable center.

The stability of the steady state at E∗ = (H∗, P ∗) will now be examined. Using

Eqs. (4) and (5), one can calculate the Jacobian matrix (3) of system (2) at E∗ =

(H∗, P ∗):

∂F1

∂H
| E∗ = 1− r − lnQ,

∂F1

∂P
| E∗ =

−aK (r + lnQ)Q
1
k

r
,

∂F2

∂H
| E∗ = 1− lnQ,

∂F2

∂P
| E∗ =

aK (r + lnQ)Q1+ 1
k

r
.

Consider the matrix

A =





1− r − lnQ
−aK(r+lnQ)Q

1
k

r

1− lnQ
aK(r+lnQ)Q1+ 1

k

r



 =

(

G11 G12

G21 G22

)

.

Here

G11 =
∂F1

∂H
| E∗, G12 =

∂F1

∂P
| E∗, G21 =

∂F2

∂H
| E∗, G22 =

∂F2

∂P
| E∗.

Which can be rewritten in the following form
∣

∣

∣

∣

∣

G11 − λ G12

G12 G22 − λ

∣

∣

∣

∣

∣

= 0

The characteristic equation is Q (λ) ≡ λ2 −Bλ+ C, Q (λ) is a concave parabola,

when meets the following conditions, the roots of the equation, the balance point

gradual. Where B = G11 +G12, C = G11G22 −G21G12.

In the stable:Q (−1) > 0, Q (+1) > 0, C < 1.

The solution stability of the E∗ = (H∗, P ∗) positive equilibrium conditions

−1− C < B < 1 + C, C > 1.
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4. BIFURCATION ANALYSIS

System (2) can not be solved explicitly. Thus, we have to study the long-term be-

havior of the system (2) by numerical simulation with Matlab, which is an interactive

computer algebra system with great ability for symbolic evaluation, numerical calcu-

lation, etc. Its powerful function library and unique programming language provide

scientific calculation and programming on an user-friendly platform.

To gain preliminary insight into the properties of the dynamical system we con-

ducted an one-dimensional bifurcation analysis. One-dimensional bifurcation dia-

grams provide information about the dependence of the dynamics on a certain pa-

rameter. The analysis is called upon to reveal the type of attractor to which the

dynamics will ultimately settle down after passing an initial transient phase and

within which the trajectory will then remain forever. Here we plot one-dimensional

bifurcation diagrams of system (2) by computer simulation.

Figure 1 illustrates the bifurcation diagram of the parasitoid population dynamic

for r = 3 and for initial values H0 = 5, P0 = 2.5 as parameter a increase. Figure

1(a) shows a case of model (2) with parasitoids attacks on host random (aggregation

absent, k → ∞). As the parameter a is increased from 0.3421, a stable coexistence

between the host and parasitoid is observed. When the parameter a further increase,

the system first experiences a quasiperiodicity (Hopf bifurcation at a = 0.6368). In

the phase plane this appearance of a closed curve, where the points never coincide, is

an indication of quasiperiodic. Quasiperiodic range often includes frequency-lockings,

as in this case, too. When the parameter a is slightly increased, the system goes

through period−4, period−12, high period cycle, period−32, and to chaotic dynamic

at a = 0.8206. We also observed the parasitoid extinct at parameter a = 2.3764.

In contrast, the dynamics are much more simple when clumping index k is decreased

(Figure 1 (b): k = 1.5, Figure 1 (c): k = 0.5). Figure 1(b) shows the case of parasitoid

moderate aggregation. The host-parasitoid system begins with chaos at a = 0.3583.

As a approaches to 0.3868, the dynamic experienced a period-doubling reversal, from

period−32 at a = 0.3868 to period−16 at a = 0.3870, following period−8, period−4,

period−2 and at a = 0.4434 the system becomes a stable coexistence. When the

parameter a further increases, the system suddenly becomes period−4 at a = 1.9768,

and then becomes period−8 at a = 2.5596. As a approaches to 3.1403, the chaotic

dynamics appears again, and sometimes it appears period−13 window. In the case

of the parasitoid aggregation strong (Figure 1 (c): k = 0.5), the parameter region for

persistent and stable interaction increases. In Figure 1 (c), the system begins with

chaos. Chaotic dynamics experiences a period-doubling reversal. At a = 0.8384 a

stable coexistence is observed.

Figure 2 is bifurcation diagram for mode (2) with a = 1.5, H0 = 5, P0 = 2.5, and r
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Figure 1: Bifurcation diagram of parasitoid population with respect to the

searching efficiency a in the host-parasitoid model (2) for (a) k → ∞; (b)

k = 1.5; (c) k = 0.5;. The parameters r = 3,K = 5, and the initial values

H0 = 5, P0 = 2.5.
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Figure 2: Bifurcation diagram of parasitoid population with respect to the

intrinsic growth rate r in the host-parasitoid model (2) for(a) k → ∞; (b)

k = 1.5; (c) k = 0.5;. The parameters a = 1.5,K = 5, and the initial values

H0 = 5, P0 = 2.5.
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as the bifurcation parameter. Like Figure 1, we show varying degrees of aggregation:

Figure 2 (a) shows parasitoid random attack (aggregation absent k → ∞). The

dynamics of model (2) is very complicated, including many chaotic bands, pitchfork

and tangent bifurcation, periodic windows, and attractor crises. This conclusion is

the same with host-parasitoid model without mutual interference (see [7]). We also

note recent study of Holling type II host-parasitoid model (see [6], [14]), in which,

similar complexities have been found. Figure 2 (b) (c) show parasitoid moderate

aggregation (Figure 2 (b): k = 1.5) and parasitoid aggregation strong (Figure 2(c):

k = 0.5). For k = 1.5 (Figure 2 (b)) there is a Hopf bifurcation reversal of parameter

r before a stable coexistence between host and parasitoid at r = 1.2748. The stable

coexistence persists until parameter r approaches 3.559. In the range of [3.559, 4.8486],

parasitoid goes extinct. When parameter r = 4.8486, the system suddenly changes

into period−2, and then, system experiences a Feigenbaum cascade of period-doubling

bifurcations to chaos at r5.047. This chaos last for a short time. After that, parasitoid

suddenly goes extinct and host dynamics become chaos. For k = 0.5 (Figure 2 (c)),

Host and parasitoid experiences stable coexistence for long region of parameter r,

and as r further increases, the system goes through a Feigenbaum cascade of period-

doubling bifurcation leading to chaos at r3.7650. This chaotic region with periodic

windows also suddenly disappears. Unlike the common Feigenbaum cascade of period-

doubling leading to chaos which persists for a long time (see [7]), in Figure 2(b) (c),

we observe the sudden extinct of parasitoid after its dynamics become chaos shortly.

As we show before, the clumping index k can stabilize the dynamics and decrease of

k made the stabile dynamic more strong.

We observe from Figure 3 that the clumping index k also may act as a strong

destabilizing factor. Figure 3 is the bifurcation diagram for model (2) with r = 3

and k is the bifurcation parameter. The parameter of Figure 3(a) is H0 = 5, P0 =

2.5K = 5, a = 2.0. We see the system experiences a period-doubling reversal from

chaotic dynamics with periodic window to period−32, period−16, period−8 and

then period−4, period−2, and at k = 0.2928 stable coexistence. The stable coex-

istence suddenly changes into period−4 at k = 1.4860. As k increases further, we

see that suddenly changes from one type of attractor to anther occurs in range of

[2.2668, 2.2886], where multiple attractors coexist (see the following section). As k

approaches 2.2668, the period−4 becomes into 12 piece of quasiperodicity Hopf bi-

furcation. Especially, these quasiperodicity Hopf bifurcations are reversal (details

plotted in Figure 3(b)). At k = 2.2886, the system changes back to period−4, and

then the system dynamics become chaos at k2.5948. When the parameters change

to H0 = 0.49, P0 = 0.81, a = 1.95 (Figure 3(c)), then bifurcation diagram looks the

same with Figure 3(a), but details are different. At k = 2.1100, the sudden change of

attractors is from period−4 into period−12, and then pitchfork bifurcation occurs in
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Figure 3: Bifurcation diagram of parasitoid population with respect to the

clumping index k in the host-parasitoid model (2) for (a) H0 = 5, P0 = 2.5,

a = 2; (b) give details of (a); (c) H0 = 0.49, P0 = 0.81, a = 1.95; (d) give

details of (c). The parameters r = 3,K = 5.

each of these period−12 components, (details plotted in Figure 3 (d)). The frequent

occurrence of sudden changes of attractors (crises) are also observed at parameter

k2.3067 and k2.3096, where multiple attractors coexist.

4.1. NON-UNIQUE ATTRACTOR AND FRACTAL BASIN

BOUNDARIES

A typical feature of bifurcation diagrams is the occurrence of sudden changes in

the type of the attractors. In Figure 3 we see that sudden changes form one type of

attractor to anther occurs quite often. A more detailed numerical analysis reveals that

the question is neither about windows of frequency-lockings within the quasiperiodic

range usually occurring in tow-dimensional mapping nor about periodic windows in

the middle of chaos usually occurring in one-dimensional mapping. Instead, it appears

that the attractor of dynamics for a certain parameter combination may not be unique.

In Figure 3(a) (b), there is a sensitive range where multiple attractors coexist. In

the range from k = 2.2668 to 2.2886, two-attractors coexist, i.e., period−4 and 12-

piece quasiperodicity attractors at k = 2.2668, period− 4and period−12 attractors at

k = 2.282. In Figure 3(c) (d), in the range from k = 2.1100 to 2.2033, we also find

non-unique attractor coexist.
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Figure 4: Two alternative attractors for r = 3, a = 2,K = 5, and k = 2.2668:

4−cycle and 12−cycle.

The basins of attraction defined as the set of the initial conditions whose trajec-

tories asymptotically approach that attractor as time increases (see [17]). Complex

basins of attraction for two coexistent attractors have been investigated by several

authors(see [5], [7]and [16]), [17], [18], [19]. Figure 4illustrates the basins of attraction

for two alternatives: period−4 and period−12. The basins of attraction are fractal

sets, indicating the sensitive dependence of the final state, or the attractor, on the ini-

tial state. Figure 5 shows the properties of self-similarity and fractal basin boundaries

of the basins of attraction.

4.2. INTERMITTENT CHAOS AND SUPERTRANSIENTS

We also found other important properties such as intermittency and supertransient,

as illustrated in Figure 6 and Figure 7. Intermittency is characterized by switches be-

tween apparently regular and chaotic behavior even though all the control parameters

are constant and no external noise is present (see [20]). The switching seems random

although the difference equations are deterministic. The behavior is completely ape-

riodic and chaotic although the system seems to switch between periodic and chaotic

behavior. Supertransients are used to denote an unusually long convergence to an

attractor. These transient dynamics are considerably longer than the timescale of

significant environmental perturbations (see [21]). The timescale of ecological inter-

est is tens or hundreds of generations, while supertransient can persist thousands of

generations or even longer. In Figure 7, the host population size suddenly stabilizes
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Figure 5: The basins of attraction for the two alternative attractorsthe white

and black areas are the basins of attraction for period−4, period−12, respec-

tively, illustrated in Figure4. The patterns of self-similarity and fractal basin

boundaries indicate that the basins of attraction are fractals.

into a period−4 attractor after about 2100 generations of complicated fluctuations

resembling an intermittent trajectory.

It should be noted that intermittency is basic characteristic of chaos, even in

discrete-time single-species model (see [21]) and some epidemiological models with

discrete host generations (see [22]). Intermittency chaos and supertransients were also

reported in spatially structured ecological models (see [22]), Holling-type functional

response host-parasitoid models (see [6], [16]), and mutual interference host-parasitoid
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Figure 6: Intermittent chaos of host dynamics for r = 3, a = 1.95,K = 5, k =

2.3615, and the initial values H0 = 0.81, P0 = 0.49.

Figure 7: Supertransient behavior of host population for r = 3, a = 1.95,K =

5, k = 2.7153, and the initial values H0 = 0.81, P0 = 0.49.

model (see [7]).
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5. CONCLUSION

In this paper, we have examined the dynamic complexities in a parasitoid aggregation

host- parasitoid model by computer numerical simulation. We found the parasitoid

aggregation may be a strong stabilizing or destabilizing factor. Parasitoid aggregation

can extend the parameter range of host-parasitoid stable coexistence. Analysis of host-

parasitoid model with clumping effect reveals that parasitoid aggregation often leads

to the suppression of quasiperodicity and the reversal with Hopf bifurcation (Figure 2

(b)) and it also leads to the suppression of chaos and the reversal with period-doubling

(Figure 1(b) (c)).The phenomenon of period-halving occurs in models of the crown-of-

thorns starfish (see [24]), insect population (see [25], [26]), annual plant populations

(see [27]), genetic selection (see [28]), microbial predator-prey chemostats (see [29]),

cardiac cell stimulation (see [30]), coevolutionary host-parasite models (see [31]) and

mutual interference host-parasitoid model (see [7]). The presence of reversals has

also been documented in other areas of research, ranging from models of magneto-

convection (see [32]) and rotating galaxies(see [33]), to a neuronal model of psychotic

human behaviour (see [34]). Also notable is Swinneys classic study (see [35]) of chem-

ical reaction in stirred flow reactor yielding important empirical confirmation. On the

other hand, clumping effect might actually strongly destabilize the dynamics. The

parasitoid aggregation leads to many forms of dynamic behavior. Some complexities

in the dynamics are related to chaotic bands with periodic windows, pitchfork bifur-

cations attractor crises. Some are related to the non-uniqueness of the dynamics, or

multiple attractors with fractal basins of attraction. Other complexities are related

to intermittency with random switches between apparently regular and chaotic be-

havior or chaotic transient dynamics towards the attractors. We note some similar

observations that the evolution of protective immunity against parasites or diseases,

or any other comparable life-history trait under evolution (see [5]), or the mutual

interference between host and its parasitoid (see [7]), may be a strong stabilizing or

destabilizing factor in ecological interactions.

We find sudden changes of attractor (crisis) in model (2). The phenomena of crisis

in which chaotic attractors can suddenly appear or disappear, or change size discon-

tinuously as a parameter smoothly raises was first extensively analyzed by Grebogi et

al. (see [17]), and it was observed in many others discrete-time host-parasitoid mod-

els (see [6], [7]). We also find that the attractor of dynamics for a certain parameter

combination may not be unique. Because of the coexistence of non-chaotic attrac-

tors, i.e., two- or three-periodic attractors, in ecological interaction, the presence of

chaotic dynamics cannot be judged solely on the basis of the sensitivity. Similarly, the

presence of strong periodicity in population dynamics does not exclude the possible

presence of chaos in the dynamics (see [37]).
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The dynamic behavior of a population may dramatically be affected by small

changes in values of the parameters (e.g., frequency-lockings or attractor crises). Even

if the parameter values and initial conditions remain unchanged, the trajectory may

change significantly as time passes (e.g., intermittency and supertransient behavior).

This shows that if the time series is too short, only a part of the dynamic structure

may be detected. Unfortunately, as the existence of supertransients implies, it may

be difficult to determine the appropriate and reliable length for a time series.

Complex dynamic patterns have been observed in spatial logistic models in which

local populations are connected by migration (see [38], [39]) and in two-species in-

teractions of hosts and parasites (see [5]). In spatial predator-prey or host-parasitoid

system, complex spatial patterns could be incurred by the predation or parasitism

interactions and migration of individuals. Dynamic complexities also have been re-

ported in periodically forced continuous-time predator-prey models (see [37], [40], [41],

[42], [43]). As has been stated above, the dynamic complexities of ecosystem have

already received considerable attention. However, as far as the authors are aware, the

present study is one of analysis of the functional response of the parasitoid aggregation

attacks to host discrete-time ecosystem models. The functional response also acts on

foraging ability of the parasitoid and influences PP (predator pursuit). PP indicates

that predators migrate not only from patches of higher predator density to those of

lower predator density but also from patches of lower prey density to those of higher

prey density. McCann (see [44]) found that PP can lead to static spatial pattern

and local population outbreak in hostCparasitoid metapopulation. Li and Gao (see

[45]) have investigated the influence of PP (predator pursuit) and PE (prey evasion)

on the spatial synchrony of a predatorCprey metapopulation and have shown that

PP and PE incurring spatial chaos. We find that clumping effect can incur complex

dynamic patterns and it also can exclude the possible presence of chaos in the dynam-

ics. Elsewhere, predators have been proposed to cause chaos-like oscillations in the

dynamics of small rodents (see [46]). Nevertheless, identifying complicated, possibly

chaotic, dynamics in population data has remained a major challenge in ecological

studies (see [47], [48]). The increasing number of potential complexities predicted by

the theory seems to make this task more difficult. Computer numerical simulation

would facilitate the examination of the dynamic complexities of the model and would

promise to uncover the complex mechanisms in the ecosystems.
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