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ABSTRACT: In this paper, we reformulate certain nabla fractional difference equa-

tions which had been investigated by other researchers. The previous results seem

to be incomplete. By using Contraction Mapping Theorem, we establish conditions

under which solutions exist and are unique and have certain asymptotic properties.
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1. INTRODUCTION

As a discrete counterpart of classical fractional calculus [1, 2, 3, 4], in recent years,

discrete fractional calculus (DFC) has been the focus of many mathematicians [5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. This discretizing issue makes
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it possible for numerical analysts to develop discrete iterated algorithms that enable

them to obtain more accurate solutions for discrete fractional initial and boundary

value problems. Besides the previously mentioned references in the field of DFC, we

refer the reader to the useful well-organized book [22] and for the case of right nabla

and delta discrete fractional sums and differences and for the different integration by

parts formulas, we refer to [23, 24]. Very recently, the discrete versions of new types of

fractional operators with nonsingular kernels and some of their properties have been

studied [25, 26, 27, 28, 29, 30] which added a new insight to DFC.

Throughout this paper, for a real number a, we denote Na := {a, a+ 1, · · · }.

Definition 1.1. ([22]) The generalized rising function is defined by

tr =
Γ(t+ r)

Γ(t)
,

for values of t and r so that t, t+ r /∈ {0,−1,−2, · · · }. We use the convention that if

t is a nonpositive integer, but t+ r is not a nonpositive integer, then tr := 0.

Definition 1.2. ([22]) Let f : Na+1 → R and ν > 0, then the ν-th order fractional

sum based at a is given by

∇−ν
a f(t) =

∫ t

a

(t− ρ(s))ν−1

Γ(ν)
f(s)∇s =

1

Γ(ν)

t∑

s=a+1

(t− ρ(s))ν−1f(s), t ∈ Na.

Definition 1.3. ([22]) Let f : Na+1 → R, ν > 0 and choose N such that N − 1 <

ν ≤ N . Then the ν-th order nabla fractional difference is defined by

∇ν
af(t) = ∇N∇−(N−ν)

a f(t), t ∈ Na+N .

Lemma 1.1. ([22]) Let ν > 0 and µ > −1. Then for t ∈ Na, we have

∇−ν
a (t− a)µ =

Γ(µ+ 1)

Γ(µ+ ν + 1)
(t− a)µ+ν .

Theorem 1.4. ([6]) For ν > 0 and f defined in a suitable domain Na, we have

∇ν
a∇

−ν
a f(t) = f(t), (1.1)

∇−ν
a ∇ν

af(t) = f(t), when ν /∈ N, (1.2)

and

∇−ν
a ∇ν

af(t) = f(t)−

n−1∑

k=0

(t− a)k

k!
∇kf(a), when ν = n ∈ N. (1.3)
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From classical fractional calculus [4], we recall that D−αDαf(t) = f(t), where

D−α is the Riemann-Liuoville fractional integral operator. We recall that this is valid

for sufficiently well-behaved functions such as continuous functions. Since discrete

functions are continuous, we see that the term ∇
−(1−α)
a f(t)|t=a, for 0 < α < 1

disappears in (1.2), with the application of the convention that
∑a

s=a+1 f(s) = 0.

This supports the fact that Riemann initial type problems usually make sense for

functions not necessarily continuous at a (left case) so that the initial conditions

are given in the form x(a+) = limt→a+ x(t) = x0. Since sequences are continuous

functions the identity (1.2), which is the tool in solving initial value problems, appears

without any initial condition. In [6], to create an initial condition, the authors shifted

the fractional difference operator so that it started at a − 1. That is, we recall the

following theorem.

Theorem 1.5. ([6]) Consider the initial value problem

∇ν
a−1y(t) = f(t, y(t)), t ∈ Na+1, (1.4)

∇
−(1−ν)
a−1 y(t)|t=a = y(a) = c, (1.5)

where 0 < ν < 1 and a is any real number. Then y is a solution of the initial value

problem (1.4)-(1.5) if and only if y has the representation

y(t) =
(t− a+ 1)ν−1

Γ(ν)
y(a) +∇−ν

a f(t, y(t)), t ∈ Na.

Theorem 1.6. (Contraction Mapping Theorem) ([31]) Let (X, ||.||) be a Banach

space. Assume that T : X → X is a contraction mapping, that is, there is a real

number α, 0 ≤ α < 1, such that ||Tx−Ty|| ≤ α||x− y|| for all x, y ∈ X. Then T has

a unique fixed point z in X.

2. MAIN RESULTS

In [32] in Chapter 3, the author uses the Contraction Mapping Theorem to prove the

existence and uniqueness of solutions of the fractional difference equations

∇ν
a(p∇y)(t) + q(t)y(ρ(t)) = f(t), t ∈ Na+1,

and

∇ν
a(p∇y)(t) + F (t, y(t)) = 0, t ∈ Na+1,

where 0 < ν < 1, a is any real number, p : Na+1 → (0,∞), q : Na+1 → [0,∞),

f : Na+1 → R, and F : Na+1 × [0,∞) → [0,∞), which has a nonnegative constant
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limit as t → ∞. But, in the proofs, the solution representations appeared with a

term which turns out to be zero and hence no dependency on the initial condition

was assumed. In order to allow an initial condition, we shall reformulate the above

equations as

∇ν
a−1(p∇y)(t) + q(t)y(ρ(t)) = f(t), t ∈ Na+1, (2.1)

and

∇ν
a−1(p∇y)(t) + F (t, y(ρ(t))) = 0, t ∈ Na+1, (2.2)

where 0 < ν < 1, a is any real number.

We now prove the main results for Equation (2.2).

Lemma 2.1. Let p : Na → (0,∞) and F : Na+1 × R → [0,∞). For M ≥ 0, define

ζM := {y : Na−1 → [M,∞) : ∇y(t) ≤ 0 ∀ t ∈ Na and ∇y(a) = 0}.

The fractional difference equation (2.2) has a solution y ∈ ζM such that lim
t→∞

y(t) = M

if and only if the summation equation

y(t) = M +
∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))) (2.3)

has a solution y on Na−1.

Proof. Suppose the fractional difference equation (2.2) has a solution y ∈ ζM that

satisfies lim
t→∞

y(t) = M. Let x(t) := (p∇y)(t). Then x solves the fractional initial value

problem

∇ν
a−1x(t) = −F (t, y(ρ(t))), t ∈ Na+1,

x(a) = (p∇y)(a).

By Theorem 1.5, x has the representation

x(t) =
(t− a+ 1)ν−1

Γ(ν)
x(a)−∇−ν

a F (t, y(ρ(t))), t ∈ Na.

From ∇y(a) = 0, it follows that

∇y(t) = −
1

p(t)
∇−ν

a F (t, y(ρ(t))), t ∈ Na.

Now summing from s = t+ 1 to ∞ and using the fact that lim
t→∞

y(t) = M, we get

M − y(t) = −

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))), t ∈ Na−1.
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Hence,

y(t) = M +

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))), t ∈ Na−1.

Thus y is a solution of the summation equation (2.3).

Conversely, if y is a solution of the summation equation (2.3) on Na−1, then

y(t) = M +
∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))), t ∈ Na−1.

Now by taking the nabla difference on both sides of the last equation, we get that

∇y(t) = −
1

p(t)

t∑

τ=a+1

(t− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))), t ∈ Na. (2.4)

Hence,

p(t)∇y(t) = −∇−ν
a F (t, y(ρ(t))), t ∈ Na.

Taking the ν-th difference based at a− 1 of both sides, we get

∇ν
a−1(p∇y)(t) = −∇ν

a−1∇
−ν
a F (t, y(ρ(t)))

= −∇ν
a−1

{
∇−ν

a−1F (t, y(ρ(t)))−
(t− a+ 1)ν−1

Γ(ν)
F (a, y(ρ(a)))

}

= −∇ν
a−1∇

−ν
a−1F (t, y(ρ(t))) +∇ν

a−1

{
(t− (a− 1))ν−1

Γ(ν)
F (a, y(ρ(a)))

}

= −F (t, y(ρ(t))), t ∈ Na+1,

which follows from the power rule in Lemma 1.1. This implies that

∇ν
a−1(p∇y)(t) + F (t, y(ρ(t))) = 0, t ∈ Na+1.

Hence, y is a solution of the fractional difference equation (2.2). We also observe

that y(t) ≥ M for all t ∈ Na−1 since p(t) > 0 for all t ∈ Na and F (t, u) ≥ 0 for all

(t, u) ∈ Na+1 ×R. From the expression for ∇y(t) given by equation (2.4), we see that

∇y(t) ≤ 0 for all t ∈ Na and in particular

∇y(a) = −
1

p(a)

a∑

τ=a+1

(a− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))) = 0

by convention. Thus y ∈ ζM . From the convergence of the series, it follows from

equation (2.3) that lim
t→∞

y(t) = M .

Remark 2.1. It is straightforward to prove that the pair (ζM , ||.||), where ||y|| :=

sup
t∈Na−1

|y(t)|, is a complete metric space.
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Theorem 2.1. Assume F : Na+1 × [0,∞) → [0,∞) satisfies a uniform Lipschitz

condition with respect to its second variable, i.e., there is a constant K > 0 such that

|F (t, u)− F (t, v)| ≤ K|u− v|

for all t ∈ Na+1, u, v ∈ [0,∞) and assume p : Na → (0,∞) and let (ζM , ||.||) be the

complete metric space as defined in Remark 2.1. If

(H1) the series

∞∑

s=a+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))) converges for every y ∈

ζM ,

and

(H2) β :=
K

Γ(ν + 1)

(
∞∑

s=a+1

(s− a)ν

p(s)

)
< 1,

then there exists a unique positive solution of the fractional difference equation (2.2)

with lim
t→∞

y(t) = M .

Proof. Let (ζM , ||.||) be the complete metric space as defined in Remark 2.1. Define

the mapping T on ζM by

(Ty)(t) := M +

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))).

Now, we will show that T : ζM → ζM . First note that for all y ∈ ζM , (Ty)(t) ≥ M for

all t ∈ Na−1 since p(t) > 0 for all t ∈ Na and F (t, u) ≥ 0 for all (t, u) ∈ Na+1× [0,∞).

Next note that

∇(Ty)(t) = −
1

p(t)

t∑

τ=a+1

(t− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))) ≤ 0, t ∈ Na,

and ∇(Ty)(a) = 0 by convention. Hence, T maps ζM into itselt. Furthermore, we

will show that T is a contraction mapping. Let x, y ∈ ζM and t ∈ Na−1 be fixed but

arbitrary. Then

|(Tx)(t)− (Ty)(t)| =

∣∣∣∣∣

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(F (τ, x(ρ(τ))) − F (τ, y(ρ(τ))))

∣∣∣∣∣

≤

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
|F (τ, x(ρ(τ))) − F (τ, y(ρ(τ)))|

≤K

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
|x(ρ(τ)) − y(ρ(τ))|

≤K||x− y||

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
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=
K

Γ(ν + 1)

(
∞∑

s=t+1

(s− a)ν

p(s)

)
||x− y||

≤
K

Γ(ν + 1)

(
∞∑

s=a+1

(s− a)ν

p(s)

)
||x− y||

=β||x− y||.

So

||Tx− Ty|| ≤ β||x − y||

with β < 1, and hence T is a contraction mapping. By ContractionMapping Theorem,

T has a unique fixed point y ∈ ζM . This fixed point satisfies the summation equation

(2.3), and therefore by Lemma 2.1, it is also a solution of the fractional difference

equation (2.2) that satisfies lim
t→∞

y(t) = M.

Remark 2.2. Assume p : Na → (0,∞) satisfies

∞∑

s=a

1

p(s)
< ∞ and define d :

ζM × ζM → [0,∞) by

d(x, y) := sup
t∈Na−1

|x(t) − y(t)|

w(t)
,

where

w(t) := e−(
∑

t
s=a

1
p(s) ).

Note that 0 < w(t) ≤ 1 for all t ∈ Na−1 and 0 < L := lim
t→∞

w(t) < 1. Then the pair

(ζM , d) is a complete metric space.

Proof. The proof follows as in the proof of Lemma 3.4.1 in [32].

Theorem 2.2. Assume F : Na+1 × [0,∞) → [0,∞) satisfies a uniform Lipschitz

condition with respect to its second variable, i.e., there is a constant K > 0 such that

|F (t, u)− F (t, v)| ≤ K|u− v|

for all t ∈ Na+1, u, v ∈ [0,∞) and assume p : Na → (0,∞) and let (ζM , d) be the

complete metric space as defined in Remark 2.2. If

(H1) the series

∞∑

s=a+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))) converges for every y ∈

ζM ,

and

(H2)α :=
K

LΓ(ν + 1)

∞∑

s=a+1

(s− a)ν

p(s)
< 1,

then there exists a unique positive solution of the fractional difference equation (2.2)

with lim
t→∞

y(t) = M .
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Proof. Let (ζM , d) be the complete metric space as defined in Remark 2.2. As in the

proof of Theorem 2.1, define the mapping T on ζM by

(Ty)(t) := M +

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
F (τ, y(ρ(τ))).

We already know that T : ζM → ζM . Now, we will prove that T is a contraction

mapping. Let x, y ∈ ζM and t ∈ Na−1 be fixed but arbitrary. Then

|(Tx)(t)− (Ty)(t)|

w(t)
=

1

w(t)

∣∣∣∣∣

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(F (τ, x(ρ(τ)))

−F (τ, y(ρ(τ))))|

≤
1

w(t)

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
|F (τ, x(ρ(τ)))

− F (τ, y(ρ(τ)))|

≤
K

w(t)

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
|x(ρ(τ)) − y(ρ(τ))|

≤
K

w(t)

(
∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
w(ρ(τ))

)
d(x, y)

≤
K

L

(
∞∑

s=t+1

(s− a)ν

Γ(ν + 1)p(s)

)
d(x, y)

≤
K

L

(
∞∑

s=a+1

(s− a)ν

Γ(ν + 1)p(s)

)
d(x, y)

=αd(x, y).

So

d(Tx, T y) ≤ αd(x, y)

with α < 1, and hence T is a contraction mapping. By ContractionMapping Theorem,

T has a unique fixed point y ∈ ζM . This fixed point satisfies the summation equation

(2.3), and therefore by Lemma 2.1, it is also a solution of the fractional difference

equation (2.2) that satisfies lim
t→∞

y(t) = M.

The results for Equation (2.1) are as follows:

Lemma 2.2. Let p : Na → (0,∞), q : Na+1 → R, and f : Na+1 → R. For M ≥ 0,

define

ξM := {y : Na−1 → R : lim
t→∞

y(t) = M and ∇y(a) = 0}.
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The fractional difference equation (2.1) has a solution y ∈ ξM if and only if the

summation equation

y(t) = M +

∞∑

s=t+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)y(ρ(τ)) − f(τ))

has a solution y on Na−1.

Proof. The proof is similar to that of Lemma 2.1.

Theorem 2.3. Let p : Na → (0,∞), q : Na+1 → [0,∞), and f : Na+1 → R, and let

M ≥ 0 be a real number. Assume that

(H1)

∞∑

s=a+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
q(τ) < ∞,

(H2)

∞∑

s=a+1

1

p(s)

s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
|f(τ)| < ∞.

Then there exists some b ∈ Na so that the fractional difference equation

∇ν
b−1(p∇y)(t) + q(t)y(ρ(t)) = f(t), t ∈ Nb+1,

has a solution y : Nb−1 → R which satisfies lim
t→∞

y(t) = M.

Proof. The proof is similar to that of Theorem 3.2.2. in [32] except that we define

ξ̃b−1 := {y : Nb−1 → R : lim
t→∞

y(t) = M and ∇y(b) = 0}, where b ∈ Na, and the

supremum norm ||.|| on ξ̃b−1 by ||y|| := sup
t∈Nb−1

|y(t)|.

Remark 2.3. The examples in [32] are valid for the above results also.
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