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1. INTRODUCTION

In the given paper we study existence, uniqueness, continuous dependence on an initial

datum, and the Markovian property of a solution to the following Cauchy problem for
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a partial stochastic integro-differential equation of reaction-diffusion type with delay

d

(

u(t, x) +

∫

Rd

b(t, x, u(α(t), ξ), ξ)dξ

)

=
(

∆xu(t, x) + f(t, u(α(t), x), x)
)

dt

+ σ(t, u(α(t), x), x)dW (t, x), 0 < t ≤ T , x ∈ R
d, (1)

u(t, x) = φ(t, x), − r ≤ t ≤ 0, x ∈ R
d, r > 0, (1*)

where ∆x ≡
d
∑

i=1

∂2xi
is d-measurable Laplace operator, ∂2xi

≡ ∂2

∂x2

i

, i ∈ {1, . . . , d},

W (t, x), x ∈ R
d, is L2(R

d)-valued Q-Wiener process, {f, σ} : [0, T ] × R × R
d → R

and b : [0, T ] × R
d × R × R

d → R are some given functions to be specified later,

φ : [−r, 0] × R
d × Ω → R is an initial datum function and α : [0, T ] → [−r,∞) is a

delay function.

Differential equations with delay have first appeared as mathematical models of

real processes with evolution that depends on previous states. Number of works are

devoted to intensive study of various aspects from this theory. Let note for this reason

[8] with an extensive bibliography. A qualitative theory of stochastic differential

equations with delay in finite-dimensional spaces has been investigated intensively.

For instance, [9] is dedicated to study of questions on existence of solutions and

invariant measures, related with them; stochastic stability and various applications of

stochastic equations with delay have been studied in [10]; a systematic investigation of

various qualitative questions for a stochastic functional differential equation is given

in [2]; issues of optimal control for such a class of equations have been studied in [11].

Neutral stochastic functional differential equations have first appeared in [12].

This work is devoted to investigation of existence and stability of solutions, as well

as their controllability. Asymptotic behavior and exponential stability of solutions

to equations of this type have been considered in [15] – [17]. Concerning such equa-

tions in infinite-dimensional spaces, let remark [14], where a theorem on existence

and uniqueness of a mild solution to the Cauchy problem for a neutral stochastic dif-

ferential equation in a Hilbert space has been proved. But conditions of this theorem

are formulated in an abstract form, therefore it is difficult to check them directly for

concrete equations in specific spaces, e.g., for stochastic partial differential equations

of reaction-diffusion type. For these equations abstract mappings are generated by

real-valued functions as the Nemytsky operator. Thus our expectations to obtain the

conditions in terms of the coefficients of these equations, i.e. in terms of real-valued

functions, are natural. If such conditions are found, it will be possible to check them

easily while solving concrete applied problems.

The aim of the paper is to obtain coefficient conditions on existence and uniqueness

of a mild solution to (1) – ( 1*). This problem is a special case of the problem from

[14]. Equation (1) has an applied importance: it models behavior of various dynamical
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systems in physics and mathematical biology. For instance, it describes a well-known

Hodgkin-Huxley model in neurophysiology (where u is an electric potential on nerve

cells [18]), as well as the Dawson and Fleming models of population genetics [5] (where

u is a mass distribution of population).

Let remark that presence of an integral term in (1) turns this equation into a

nonlocal neutral stochastic equation of reaction-diffusion type. Nonlocal deterministic

equations of this type are well known in literature and have wide range of applications.

In particularly, these equations are used in modeling of phytoplankton growth in [6].

They also model distant interactions in epidemic models (see, e.g., [1]) and nonlocal

consumption of resources, as well as nonlocal Fisher-KPP equation (see [19] and

references therein).

Let note that problem (1) – ( 1*) is considered in an unbounded domain G = R
d.

The principal difference of this problem from the problem in a bounded domain is that

a semigroup {S(t)}, generated by the Laplace operator in a bounded domain G with

trivial Dirichlet boundary condition, possesses the exponential contraction property,

that is

‖(S(t)u( · ))(x)‖2L2(G) ≤M exp{−̟t}‖u(x)‖2L2(G) (2)

with M and ̟ positive numbers. It is well known that if G = R
d, then (2) is not

valid.

This paper is organised as follows. Firstly, we introduce a few necessary results

on a solution to the Cauchy problem for a heat equation, needed in what follows.

These preliminary results are gathered in section 2. Then, in section 3, we introduce

a statement of the problem and formulate our main results. Section 4 is devoted to

their proof. In the appendix we give the proof of proposition 3.

2. PRELIMINARIES

In this section we recall few facts and introduce some notation, needed hereinafter in

order to establish our results.

Throughout the paper H = L2(R
d) will note a real Hilbert space with the inner

product (f, g)H =
∫

Rd

f(x)g(x)dx and the associated norm ‖f‖H =
√

∫

Rd

f2(x)dx.

Let {en(x), n ∈ {1, 2, . . . }} be an orthonormal basis on H such that

sup
n∈{1,2,... }

‖en‖L∞(Rd) ≤ 1.

Let (Ω,F ,P) be a complete probability space. We now define a Q-Wiener H-valued
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process W (t) =W (t, · ) as follows

W (t, x) =

∞
∑

n=1

√

λnen(x)βn(t), t ≥ 0, x ∈ R
d, (3)

where {βn(t), n ∈ {1, 2, . . . }} ⊂ R are independent standard one-dimensional Brown-

ian motions on t ≥ 0, {λn, n ∈ {1, 2, . . .}} is a sequence of positive numbers such that

λ =
∞
∑

n=1
λn <∞. Let {Ft, t ≥ 0} be a normal filtration on F . We assume that

1) W (t), t ≥ 0, is Ft-measurable;

2) the increments W (t+ h)−W (t) are independent of Ft for all h > 0 and t ≥ 0.

Note that if Q : H → H is a linear continuous operator such that for any z ∈ H

Qz =
∞
∑

n=1

λn(z, en)Hen,

then Q is a nuclear nonnegative operator such that

Qen = λnen.

We set L0
2 = L2(Q

1

2H,H) — the space of all Hilbert-Schmidt operators, acting

from Q
1

2H into H , equipped with the inner product (Ψ,Φ)L0

2

= Tr[ΨQΦ∗].

Hereafter we will need some results of independent interest from the theory of

heat for the following Cauchy problem

∂tu(t, x) = ∆xu(t, x), t > 0, x ∈ R
d, (4)

u(0, x) = g(x), x ∈ R
d. (4*)

Let denote the fundamental solution of the heat equation by

K(t, x) =







1

(4πt)
d
2

exp
{

− |x|2

4t

}

, t > 0, x ∈ R
d,

0, t < 0, x ∈ R
d.

Proposition 1. [20, XIV, Theorem 2] If g in ( 4*) belongs to H, then a solution of

(4) – ( 4*) is given by the following formula

u(t, x) =

∫

Rd

K(t, x− ξ)g(ξ)dξ,

an besides u belongs to C∞((0,∞)× R
d).
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Proposition 2. [20, p. 242 – 244] Operators S(t) : H → H, generating a solution

of the Cauchy problem (4) – ( 4*) by the rule

u(t, x) = (S(t)g( · ))(x) =

∫

Rd

K(t, x− ξ)g(ξ)dξ,

form a contraction (C0)-semigroup of operators, i.e. the following estimate is valid

‖(S(t)g( · ))(x)‖2H ≤ ‖g(x)‖2H , (5)

and besides the Laplacian ∆x is the infinitesimal generator of this semigroup.

The next result is a sort of analogue for [3, proposition A.1.1, p. 307]. But, in

contrast with this work, we do not require analyticity of the semigroup {S(t), t ≥ 0}

and the property of exponential decreasing

‖S(t)‖2H ≤M exp{−̟t}, t ≥ 0,

with M and ̟ positive numbers.

Let A : D(A) ∈ H → H be the infinitesimal generator of the contraction semigroup

{S(t), t ≥ 0} on H . Similarly to [3], for any 0 < γ < 1 and p > 1 we define a linear

bounded operator Rγ on Lp([0, T ], H) by the rule

Rγϕ(t) =

t
∫

0

(t− s)γ−1S(t− s)ϕ(s)ds, ϕ ∈ Lp([0, T ], H). (6)

The proof of the next proposition will be given in the appendix.

Proposition 3. If γ > 1
p
, then Rγ is a bounded operator, acting from Lp([0, T ], H)

to C([0, T ], H).

Proposition 4. [13, p. 274] For partial derivatives of K the following estimate is

true

|∂rt ∂
s
xK(t, x)| ≤ cr,st

− d
2
−r− s

2 exp

{

−
c0|x|

2

t

}

, (7)

where cr,s is a positive number and c0 <
1
4 .

Proposition 5. If g in ( 4*) belongs to L1(R
d) ∩H, then a solution of (4) – ( 4*)

satisfies the following limit relations

lim
|x|→∞

u(t, x) = 0, lim
|x|→∞

∂tu(t, x) = 0. (8)
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Proof. The proof follows from the standard convergence theorem on the passage to

the limit under an integral sign and Lebesgue’s differentiation theorem on differentia-

bility of the Lebesgue integral with respect to a parameter, with the use of estimate

(7).

From propositions 1 and 5 we obtain the following result.

Proposition 6. [7, p. 360] If relations (8) are valid, then a solution of (4) – ( 4*)

satisfies the estimate

sup
0≤t≤T

∫

Rd

(

∆xu(t, x)
)2
dx = sup

0≤t≤T

∫

Rd

‖D2
xu(t, x)‖

2
ddx

≤ CT

∫

Rd

‖D2
xg(x)‖

2
ddx (9)

for some CT > 0, depending only on T , where ∇x ≡ (∂x1
. . . ∂xd

)
T

is the gradient-

vector, D2
x ≡









∂2x1
. . . ∂x1xd

...
. . .

...

∂xdx1
. . . ∂2xd









is the Hessian matrix, ‖ · ‖d is the correspond-

ing norm of matrix.

3. FORMULATION OF THE PROBLEM

In the article we impose the following conditions

(1) α : [0, T ] → [−r,∞) is a continuous function such that α(t) ≤ t, 0 ≤ t ≤ T .

(2) {f, σ} : [0, T ] × R × R
d → R, b : [0, T ] × R

d × R × R
d → R are measurable with

respect to all of their variables functions, b is continuous in the first argument.

(3) The initial datum function φ(t, · , ω) : [−r, 0]× Ω → H is F0-measurable random

variable with almost surely continuous paths and such that

E sup
−r≤t≤0

‖φ(t, · )‖pH <∞, p > 2.

(4) There exists a constant L > 0 and a function χ : [0, T ]× R
d →

→ [0,∞) with

sup
0≤t≤T

∫

Rd

χ2(t, x)dx <∞ (10)
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such that the following linear-growth and Lipschitz conditions are valid for f and

σ

|f(t, u, x)| ≤ χ(t, x) + L|u|,

0 ≤ t ≤ T , u ∈ R, x ∈ R
d,

(11)

|f(t, u, x)− f(t, v, x)| ≤ L|u− v|,

0 ≤ t ≤ T , {u, v} ⊂ R, x ∈ R
d,

σ2(t, u, x) ≤ L2
(

1 + u2),

0 ≤ t ≤ T , u ∈ R, x ∈ R
d,

(12)

|σ(t, u, x)− σ(t, v, x)| ≤ L|u− v|,

0 ≤ t ≤ T , {u, v} ⊂ R, x ∈ R
d.

(5) There exists a function b1 : R
d × R

d → [0,∞), satisfying the following conditions

∫

Rd

∫

Rd

b1(x, ξ)dξdx <∞, (13)

∫

Rd

(∫

Rd

b1(x, ξ)dξ

)2

dx <∞, (14)

such that

|b(t, x, 0, ξ)| ≤ b1(x, ξ), 0 ≤ t ≤ T , {x, ξ} ⊂ R
d. (15)

(6) there exists a function l : Rd × R
d → [0,∞) such that

|b(t, x, u, ξ)− b(t, x, v, ξ)| ≤ l(x, ξ)|u− v|,

0 ≤ t ≤ T , {x, ξ} ⊂ R
d, {u, v} ⊂ R,

(16)

where l satisfies the following conditions

∫

Rd

√

√

√

√

∫

Rd

l2(x, ξ)dξdx <∞, (17)

∫

Rd

∫

Rd

l2(x, ξ)dξdx <∞. (18)

(7) For any x ∈ R
d there are derivatives ∂xb, D

2
xb, and for ∇xb and D

2
xb the following

linear-growth condition with respect to the third argument is true

|∇xb(t, x, u, ξ)|+ ‖D2
xb(t, x, u, ξ)‖d ≤ ψ(t, x, ξ)

(

1 + |u|
)

,

0 ≤ t ≤T , {x, ξ} ⊂ R
d, u ∈ R,

(19)
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for D2
xb — the following Lipschitz condition

‖D2
xb(t, x, u, ξ)−D2

xb(t, x, v, ξ)‖d ≤ ψ(t, x, ξ)|u − v|,

0 ≤ t ≤ T , {x, ξ} ⊂ R
d, {u, v} ⊂ R,

where ψ : [0, T ]× R
d × R

d → [0,∞) is such that

sup
0≤t≤T

∫

Rd

(∫

Rd

ψ(t, x, ξ)dξ

)2

dx <∞, (20)

sup
0≤t≤T

∫

Rd

∫

Rd

ψ2(t, x, ξ)dξdx <∞, (21)

and besides for any point x0 ∈ R
d there is its neighborhood Bδ(x0) and a non-

negative function ϕ such that

sup
0≤t≤T

ϕ(t, · , x0, δ) ∈ L1(R
d) ∩H , δ > 0, (22)

|ψ(t, x, ξ)− ψ(t, x0, ξ)| ≤ ϕ(t, ξ, x0, δ)|x− x0|,

0 ≤ t ≤ T , |x− x0| < δ, ξ ∈ R
d.

(23)

Definition 7. A continuous random process u(t, · , ω) : [−r, T ]×

× Ω → H is called a mild solution to (1) – ( 1*) provided

(1) it is Ft-measurable for all −r ≤ t ≤ T ;

(2) it satisfies the following integral equation

u(t, · ) = S(t)

(

φ(0, · ) +

∫

Rd

b(0, · , φ(−r, ζ), ζ)dζ

)

−

∫

Rd

b(t, · , u(α(t), ξ), ξ)dξ

−

t
∫

0

∆( · )

(

S(t− s)

∫

Rd

b(s, · , u(α(s), ζ), ζ)dζ

)

ds

+

t
∫

0

S(t− s)f(s, u(α(s), · ), · )ds

+

t
∫

0

S(t− s)σ(s, u(α(s), · ), · )dW (s), 0 ≤ t ≤ T , (24)

u(t, · ) = φ(t, · ), − r ≤ t ≤ 0, r > 0.
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Remark 8. It is assumed in the definition above that all the integrals from (24) are

well defined.

Our first result is concerned with existence and uniqueness of the solution to (1)

– ( 1*).

Theorem 9 (existence and uniqueness). Suppose assumptions (1) – (7) are satisfied.

Then, if
(∫

Rd

∫

Rd

l2(x, ξ)dξdx

)
p
2

<
1

4p−1
, (25)

the Cauchy problem (1) – ( 1*) has a unique for 0 ≤ t ≤ T mild solution u(t, · ). This

solution satisfies the condition

E sup
−r≤t≤T

‖u(t, · )‖pH <∞.

From now on u(t, x, φ) will denote the solution of (1), satisfying ( 1*). The next

result is concerned with continuous dependence of u on the corresponding initial

datum function φ.

Theorem 10 (continuous dependence). Under the conditions of theorem 9 there

exists C(T ) > 0 such that for arbitrary admissible initial datum functions φ and φ1

the following estimate holds

E sup
−r≤t≤T

‖u(t, · , φ)− u(t, · , φ1)‖
p
H

≤ C(T )E sup
−r≤t≤0

‖φ(t, · )− φ1(t, · )‖
p
H , p > 2. (26)

With regard to extension of the mild solution for (1) – ( 1*) to the whole semi-axis

t ≥ 0, the following corollary is true.

Corollary 11. If in theorem 9 the conditions from (4) – (7) are valid for t ≥ 0,

then the Cauchy problem (1) – ( 1*) has a unique mild solution for t ≥ 0.

If we replace the initial range [−r, 0] from ( 1*) by [s−r, s] for arbitrary 0 ≤ s ≤ t,

it will be possible to guarantee existence and uniqueness of the mild solution to (1)

– ( 1*) for 0 ≤ s ≤ t with Fs-measurable initial datum function φ(t, · ), satisfying

assumption (3) for s − r ≤ t ≤ s. From now on such a solution will be denoted by

u(t, s, · , φ). Consequently, if we define Fs-measurable initial datum function φ(s +

θ, · , ω) ∈ H , θ ∈ [−r, 0], satisfying the conditions from assumption (3), then u(s +

θ, s, · , φ) = φ(s+ θ, · ) and u(t, s, · , φ) satisfies (24) for t ≥ s.

Let C = C([−r, 0], H) be the Banach space of all continuous functions, acting from
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[−r, 0] to H , equipped with the norm

‖u‖C = sup
−r≤t≤0

‖u(t, · )‖H = sup
−r≤t≤0

√

√

√

√

∫

Rd

u2(t, x)dx.

By ut(s, · , φ) = u(t+ θ, s, · , φ), −r ≤ θ ≤ 0, we denote a shift of the solution u such

that us(s, · , φ) = u(s+ θ, s, · , φ) = φ(s+ θ, · ).

Let define by C, similarly to the finite-dimensional case from [2], the family

{U t
s, 0 ≤ s ≤ t} of the operators U t

sφ ≡

≡ u(t + θ, s, · , φ). This family is said to be a family of shift-operators along so-

lutions to (1) – ( 1*). It follows from theorem 9 that for any s and t such that

0 ≤ s ≤ t the operator U t
s corresponds to every non-random function ϕ ∈ C C-valued

F t
s(dW )-measurable random variable ut(s, · , ϕ). Here F t

s(dW ) is the minimal σ-al-

gebra such that the increments W (τ)−W (s), s ≤ τ ≤ t, are measurable with respect

to it. It is clear that ut(s, · , ϕ) does not depend on Gt — σ-algebra, generated by the

increments W (s)−W (t), s ≥ t.

From theorem 9 we evidently get the following proposition.

Proposition 12. The family {U t
s, 0 ≤ s ≤ t} of shift-operators has the following

evolution property

U t
τU

τ
s ϕ = U t

sϕ, ϕ ∈ C,

for every τ such that 0 ≤ s ≤ τ ≤ t.

Let D be σ-algebra of Borel subsets from C. If for any set A ∈ D we define

µt(A) = P{ut(s, · , ϕ) ∈ A} = P{U t
sϕ ∈ A} = P{s, ϕ, t, A}, (27)

then ut(s, · , ϕ) naturally defines a measure on D. Function (27) is said to be a tran-

sition function, corresponding to the random process ut(s, · , ϕ), s ≤ t. Similarly

to the finite-dimensional case from [2], it is possible to show that this function possess

all standard properties of the transition probability. The following theorem is valid.

Theorem 13 (the Markovian property). Under the assumptions of theorem 9 the

process ut(s, · , φ) (φ satisfies assumption (3)), t ≥ s, is the Markov process on C with

the transition function, defined by (27).

We will denote by Bb(C) the Banach space of all real bounded Borel functions,

defined on C, endowed with sup-norm, by Cb(C) — the Banach space of all real

bounded continuous functions, defined on C. If f ∈ Bb(C), then for 0 ≤ s ≤ t ≤ T

and ϕ ∈ C we define the family of operators

Ps,tf(ϕ) = Ef(U t
sϕ) = Ef(ut(s, · , ϕ)). (28)
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If Ps,tf( · ) is bounded and continuous for any f ∈ Cb(C), then it will be said that

Ps,t possess the Feller property. From theorem 10 we have the following corollary.

Corollary 14 (the Feller property). Under the assumptions of theorem 10 the family

Ps,t from (28) possess the Feller property.

4. PROOF OF THE THEOREMS AND THEIR COROLLARIES

4.1. PROOF OF THEOREM 9 AND ITS COROLLARY 11

Let consider the Banach space Bp,T of all H-valued Ft-measurable random processes

z that are continuous in −r ≤ t ≤ T for almost all fixed ω ∈ Ω, endowed with the

norm ‖z(t)‖Bp,T
=

= p

√

E sup
0≤t≤T

‖z(t, · )‖pH , p > 2. We will consider on Bp,T a closed subset M of such

elements z from Bp,T that z(t, · ) = φ(t, · ),

−r ≤ t ≤ 0, and define on M the operator Ψ, acting as follows

Ψu(t, x) =

∫

Rd

K(t, x− ξ)

(

φ(0, ξ) +

∫

Rd

b(0, ξ, φ(−r, ζ), ζ)dζ

)

dξ

−

∫

Rd

b(t, x, u(α(t), ξ), ξ)dξ

−

t
∫

0

(

∆x

∫

Rd

K(t− s, x− ξ)

(∫

Rd

b(s, ξ, u(α(s), ζ), ζ)dζ

)

dξ

)

ds

+

t
∫

0

∫

Rd

K(t− s, x− ξ)f(s, u(α(s), ξ), ξ)dξds

+

t
∫

0

∞
∑

n=1

√

λn

(∫

Rd

K(t− s, x− ξ)σ(s, u(α(s), ξ), ξ)en(ξ)dξ

)

dβn(s)

=
4
∑

j=0

Ij(t), 0 ≤ t ≤ T , x ∈ R
d, (29)

and Ψu(t, · ) = φ(t, · ), − r ≤ t ≤ T , r > 0. Firstly let show that Ψ takes each

u ∈ M to Ψu ∈ M . In order to do it, we need to estimate the norms of each of five

components in (29).

For ‖I0(s)‖
p
Bp,t

= E sup
0≤s≤t

‖I0(s)‖
p
H , 0 ≤ t ≤ T , we get, using (5),

‖I0(s)‖
p
Bp,t

≤2p−1E‖φ(0, · )‖pH+
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+ 2p−1E

∥

∥

∥

∥

∥

∫

Rd

|b(0, · , φ(−r, ζ), ζ)|dζ

∥

∥

∥

∥

∥

p

H

. (30)

For the second term in (30) we obtain, applying the conditions from assumptions

(6), (5) and (3),

E

∥

∥

∥

∥

∥

∫

Rd

|b(0, · , φ(−r, ζ), ζ) − b(0, · , 0, ζ) + b(0, · , 0, ζ)|dζ

∥

∥

∥

∥

∥

p

H

≤ E

∥

∥

∥

∥

∥

∫

Rd

(

l( · , ζ)|φ(−r, ζ)| + |b(0, · , 0, ζ)|
)

dζ

∥

∥

∥

∥

∥

p

H

≤ 2p−1

(

E

(∫

Rd

(∫

Rd

l(x, ζ)|φ(−r, ζ)|dζ

)2

dx

)
p

2

+

(∫

Rd

(∫

Rd

b1(x, ζ)dζ

)2

dx

)
p

2

)

≤ 2p−1

(

(∫

Rd

∫

Rd

l2(x, ζ)dζdx

)
p

2

E‖φ(−r, · )‖pH

+

(∫

Rd

(∫

Rd

b1(x, ζ)dζ

)2

dx

)
p
2

)

<∞. (31)

For ‖I1(s)‖
p
Bp,t

, as above in (31), we have

‖I1(s)‖
p
Bp,t

= E sup
0≤s≤t

∥

∥

∥

∥

∥

∫

Rd

b(s, · , u(α(s), ξ), ξ)dξ

∥

∥

∥

∥

∥

p

H

≤ 2p−1

(

(∫

Rd

∫

Rd

l2(x, ζ)dζdx

)
p
2

E sup
0≤s≤t

‖u(α(s), · )‖pH

+

(∫

Rd

(∫

Rd

b1(x, ζ)dζ

)2

dx

)
p

2

)

<∞, (32)

due to the conditions from assumptions (6), (5) and (1).

Now let estimate ‖I2(s)‖
p
Bp,t

, taking into account the Cauchy-Schwartz inequality

and the Fubini theorem,

‖I2(s)‖
p
Bp,t

= E sup
0≤s≤t

∥

∥

∥

∥

∥

s
∫

0

(

∆x

∫

Rd

K(s− τ, x− ξ)

(∫

Rd

b(τ, ξ, u(α(τ), ζ), ζ)dζ

)

dξ

)

dτ

∥

∥

∥

∥

∥

p

H
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= E sup
0≤s≤t

(

∫

Rd

( s
∫

0

(

∆x

∫

Rd

K(s − τ, x− ξ)

×

(∫

Rd

b(τ, ξ, u(α(τ), ζ), ζ)dζ

)

dξ

)

dτ

)2

dx

)
p

2

≤ t
p

2 E sup
0≤s≤t

(

∫

Rd

s
∫

0

(

∆x

∫

Rd

K(s− τ, x− ξ)

×

(∫

Rd

b(τ, ξ, u(α(τ), ζ), ζ)dζ

)

dξ

)2

dτdx

)
p

2

= t
p

2 E sup
0≤s≤t

( s
∫

0

∫

Rd

(

∆x

∫

Rd

K(s− τ, x− ξ)

×

(∫

Rd

b(τ, ξ, u(α(τ), ζ), ζ)dζ

)

dξ

)2

dxdτ

)
p

2

≤ t
p

2 E

( t
∫

0

sup
0≤s≤t

∥

∥

∥

∥

∆x

∫

Rd

K(s − τ, x− ξ)

×

(∫

Rd

b(τ, ξ, u(α(τ), ζ), ζ)dζ

)

dξ

∥

∥

∥

∥

2

H

dτ

)
p

2

≤ tp−1E

t
∫

0

(

sup
0≤s≤t

∥

∥

∥

∥

∆x

∫

Rd

K(s − τ, x− ξ)

×

(∫

Rd

b(τ, ξ, u(α(τ), ζ), ζ)dζ

)

dξ

∥

∥

∥

∥

2

H

)
p

2

dτ . (33)

In order to estimate (33), we rely on proposition 6 with

u(s, τ, x) =

∫

Rd

K(s− τ, x− ξ)

(∫

Rd

b(τ, ξ, u(α(τ), ζ), ζ)dζ

)

dξ,

g(τ, x, ω) =

∫

Rd

b(τ, x, u(α(τ), ζ), ζ)dζ, (34)

where u(s, τ, x) is the solution to (4) – ( 4*) with the initial datum in τ . We now

need to prove that for any 0 ≤ τ ≤ t

1) g(τ, · , ω) ∈ L1(R
d) ∩H with probability one;

2) D2
xg(τ, x, ω) ∈ H .
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1. Due to (16), (17), (15), (13) and belonging u to M , we get

E

∫

Rd

|g(τ, x, ω)|dx

≤ E

∫

Rd

∫

Rd

|b(τ, x, u(α(τ), ζ), ζ) − b(τ, x, 0, ζ) + b(τ, x, 0, ζ)|dζdx

≤ E

∫

Rd

∫

Rd

l(x, ζ)|u(α(τ), ζ)|dζdx +

∫

Rd

∫

Rd

|b(τ, x, 0, ζ)|dζdx

≤
(

∫

Rd

√

√

√

√

∫

Rd

l2(x, ζ)dζdx
)

E‖u(α(τ), · )‖H

+

∫

Rd

∫

Rd

b1(x, ζ)dζdx <∞. (35)

Hence, g(τ, · , ω) belongs to L1(R
d) for any 0 ≤ τ ≤ t.

Next, taking into account (16), (18), (15), (14) and belonging u toM , we conclude

E

∫

Rd

|g(τ, x, ω)|2dx ≤ E

∫

Rd

(

∫

Rd

|b(τ, x, u(α(τ), ζ), ζ)|dζ
)2

dx

≤ 2E

∫

Rd

(

∫

Rd

l(x, ζ)|u(α(τ), ζ)|dζ
)2

dx+ 2

∫

Rd

(

∫

Rd

|b(τ, x, 0, ζ)|dζ
)2

dx

≤ 2
(

∫

Rd

∫

Rd

l2(x, ζ)dζdx
)

E‖u(α(τ), · )‖2H

+ 2

∫

Rd

(

∫

Rd

b1(x, ζ)dζ
)2

dx <∞. (36)

Consequently, condition 1) fulfills.

2. In order to prove item 2), we will use Lebesgue’s differentiation theorem on

differentiation with respect to a parameter. Let x0 be an arbitrary fixed point from

R
d, Bδ(x0) — its vicinity from assumption (7). This assumption implies that the

integrand from (34) is differentiable with respect to x. From (19) and (23) we have

|∇xb(τ, x, u(α(τ), ζ), ζ)| ≤ ψ(τ, x, ζ)
(

1 + |u(α(τ), ζ)|
)

≤
(

|ψ(τ, x, ζ) − ψ(τ, x0, ζ)| + ψ(τ, x0, ζ)
)

×
(

1 + |u(α(τ), ζ)|
)

≤
(

δϕ(τ, ζ, x0, δ) + ψ(τ, x0, ζ)
)

×
(

1 + |u(α(τ), ζ)|
)

. (37)
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We claim that the expression on the right-hand of (37) is integrable. Indeed, by

virtue of belonging u to M and estimates (22), (20), (21), we obtain

E

∫

Rd

(

ϕ(τ, ζ, x0, δ) + ψ(τ, x0, ζ)
)(

1 + |u(α(τ), ζ)|
)

dζ

≤

∫

Rd

ϕ(τ, ζ, x0, δ)dζ +

∫

Rd

ψ(τ, x0, ζ)dζ

+







√

√

√

√

∫

Rd

ϕ2(τ, ζ, x0, δ)dζ +

√

√

√

√

∫

Rd

ψ2(τ, x0, ζ)dζ







×
√

E‖u(α(τ), · )‖2H <∞.

Hence, the function |∇xb(τ, x, u(α(τ), ζ), ζ)| is bounded above by the integrable

function
(

ϕ(τ, ζ, x0, δ) + ψ(τ, x0, ζ)
)

×

×
(

1 + |u(α(τ), ζ)|
)

. Hence, g(τ, x, ω) is differentiable with respect to x.

Now it remains to check that for any 0 ≤ τ ≤ T ∇g(τ, · , ω) belongs to H with

probability one. Indeed, taking into account estimates (19), (20), (21) and belonging

u to M , we obtain

E

∫

Rd

∣

∣

∣

∣

∇x

∫

Rd

b(τ, x, u(α(τ), ζ), ζ)dζ

∣

∣

∣

∣

2

dx

≤ E

∫

Rd

(∫

Rd

ψ(τ, x, ζ)
(

1 + |u(α(τ), ζ)|
)

dζ

)2

dx

≤ 2

∫

Rd

(∫

Rd

ψ(τ, x, ζ)dζ

)2

dx+ 2

(

∫

Rd

∫

Rd

ψ2(τ, x, ζ)dζdx

)

×E‖u(α(τ), · )‖2H ≤ const. (38)

Existence of D2
xg(τ, x, ω) and validity of the inequality

E

∫

Rd

∥

∥

∥

∥

D2
x

∫

Rd

b(τ, x, u(α(τ), ζ), ζ)dζ

∥

∥

∥

∥

2

d

dx ≤ const

is proved as above.

Thus, taking into account (9) and conditions 1), 2), we conclude that the right-

hand of (33) is estimated by the expression

C
p

2

T t
p−1

t
∫

0

E

(∫

Rd

∥

∥

∥

∥

D2
x

∫

Rd

b(τ, x, u(α(τ), ζ), ζ)dζ

∥

∥

∥

∥

2

d

dx

)
p
2

dτ . (39)
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Similarly to (38), taking into account that u ∈ M and estimates (19), (20), (21),

we can easily obtain the following estimate

E

(∫

Rd

∥

∥

∥

∥

D2
x

∫

Rd

b(τ, x, u(α(τ), ζ), ζ)dζ

∥

∥

∥

∥

2

d

dx

)
p

2

≤ E

(∫

Rd

(∫

Rd

ψ(τ, x, ζ)
(

1 + |u(α(τ), ζ)|
)

dζ

)2

dx

)
p

2

≤ 2p−1E

(

(
∫

Rd

(
∫

Rd

ψ(τ, x, ζ)dζ

)2

dx

)
p

2

+

(∫

Rd

∫

Rd

ψ2(τ, x, ζ)dζdx

)
p

2

‖u(α(τ), · )‖pH

)

≤ const. (40)

Substituting (40) into (39), we have

‖I2(s)‖
p
Bp,t

<∞.

Next let estimate ‖I3(s)‖
p
Bp,t

. Taking into account (5), (11), (10) and belonging

u to M , we compute

‖I3(s)‖
p
Bp,t

= E sup
0≤s≤t

(

∫

Rd

(

s
∫

0

∫

Rd

K(s− τ, x− ξ)f(τ, u(α(τ), ξ), ξ)dξdτ

)2

dx

)
p

2

≤ t
p
2 E sup

0≤s≤t

( s
∫

0

∫

Rd

(∫

Rd

K(s− τ, x− ξ)f(τ, u(α(τ), ξ), ξ)dξ

)2

dxdτ

)
p

2

≤ t
p
2 E

( t
∫

0

‖f(τ, u(α(τ), · ), · )‖2Hdτ

)
p

2

≤ tp−1E

t
∫

0

‖f(τ, u(α(τ), · ), · )‖pHdτ

≤ 2p−1tp−1

( t
∫

0

(∫

Rd

χ2(τ, x)dx

)
p

2

dτ + Lp

t
∫

0

E‖u(α(τ), · )‖pHdτ

)

<∞. (41)

It remains to estimate the last term, ‖I4(s)‖
p
Bp,t

. From [4, proposition 7.3] we

have

E sup
0≤s≤t

∥

∥

∥

∥

∥

s
∫

0

S(s− τ)σ(τ, u(α(τ), · ), · )dW (τ)

∥

∥

∥

∥

∥

p

H
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≤ D(T )

t
∫

0

E‖σ(s, u(α(s), · ), · )‖p
L0

2

ds (42)

for some D(T ) > 0. We obtain the consequence of the following computations for the

Hilbert-Schmidt norm of the integrand on the right-hand of (42)

E‖σ(s, u(α(s), · ), · )‖p
L0

2

= E

(

∞
∑

n=1

‖σ(s, u(α(s), · ), · )Q
1

2 en( · )‖
2
H

)
p

2

= E

(

∞
∑

n=1

λn‖σ(s, u(α(s), · ), · )en( · )‖
2
H

)
p

2

= E

(

∞
∑

n=1

λn

∫

Rd

σ2(s, u(α(s), x), x)e2n(x)dx

)
p

2

≤ LpE

(

∞
∑

n=1

λn

(∫

Rd

e2n(x)dx +

∫

Rd

u2(α(s), x)dx

)

)
p

2

≤ 2
p

2
−1λ

p

2Lp

(

1 +E‖u(α(s), · )‖pH

)

, (43)

thus the right-hand of (42) is bounded.

Now let prove that trajectories of the process Ψu from (29) are continuous.

The first term, I0, is continuous due to proposition 1 and because the expression

φ(0, · ) +
∫

Rd

b(0, · , φ(−r, ζ), ζ)dζ belongs to H with probability one.

Now we claim that the second term, I1, is continuous. Indeed, let 0 ≤ t0 ≤ T be

fixed. We have
∫

Rd

(
∫

Rd

(

b(t, x, u(α(t), ξ), ξ) − b(t0, x, u(α(t0), ξ), ξ)
)

dξ

)2

dx

≤ 2

∫

Rd

(∫

Rd

|b(t, x, u(α(t), ξ), ξ) − b(t, x, u(α(t0), ξ), ξ)|dξ

)2

dx

+ 2

∫

Rd

(∫

Rd

|b(t, x, u(α(t0), ξ), ξ) − b(t0, x, u(α(t0), ξ), ξ)|dξ

)2

dx

= J1(t) + J2(t). (44)

Let estimate each of two terms in (44) separately. Taking into account (16), the

Cauchy-Swartz inequality, (18) and belonging u toM , we obtain with probability one

J1(t) ≤ 2

∫

Rd

(∫

Rd

l(x, ξ)|u(α(t), ξ) − u(α(t0), ξ)| dξ

)2

dx
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≤ 2

(∫

Rd

∫

Rd

l2(x, ξ)dξdx

)

‖u(α(t), · )− u(α(t0), · )‖
2
H

→
t→t0

0. (45)

Now let show that J2(t) is tending to zero as t→ t0 with probability one. In order

to do it, we need to substantiate a capability of limit passage in this integral. Firstly,

we claim that for all x ∈ R
d the expression

ϕ(t, x) =

∫

Rd

|b(t, x, u(α(t0), ξ), ξ)− b(t0, x, u(α(t0), ξ), ξ)|dξ (46)

is tending to zero as t → t0 with probability one. Indeed, since b is continuous in

the first argument, the integrand on the right-hand of (46) is tending to zero. Then,

taking into account (16) and (15), we have

|b(t, x, u(α(t0), ξ), ξ)| ≤ l(x, ξ)|u(α(t0), ξ)|+ b1(x, ξ). (47)

Condition (14) guarantees that
∫

Rd

b1(x, ξ)dξ < ∞ for any fixed x ∈ R
d. Next,

taking into account the Cauchy-Schwartz inequality, condition (17) and belonging u

to M , we calculate

∫

Rd

l(x, ξ)|u(α(t0), ξ)|dξ ≤

√

√

√

√

∫

Rd

l2(x, ξ)dξ · ‖u(α(t0), · )‖H <∞.

Therefore the right-hand of (47) is an integrable majorant function for b. It now

follows that ϕ(t, x) →
t→t0

0 for all x ∈ R
d and almost all ω ∈ Ω.

Let prove that the expression 2

(

∫

Rd

(

b1( · , ξ) + l( · , ξ)|u(α(t0), ξ)|
)

dξ

)2

is an inte-

grable majorant for the integrand in J2(t). Indeed, using (14), (18) and taking into

account belonging u to M , we get

∫

Rd

(∫

Rd

(

b1(x, ξ) + l(x, ξ)|u(α(t0), ξ)|
)

dξ

)2

dx

≤ 2

∫

Rd

(∫

Rd

b1(x, ξ)

)2

dx+ 2

∫

Rd

(∫

Rd

l(x, ξ)|u(α(t0), ξ)|dξ

)2

dx

≤ 2

∫

Rd

(
∫

Rd

b1(x, ξ)

)2

dx+ 2

(
∫

Rd

∫

Rd

l2(x, ξ)dξdx

)

‖u(α(t0), · )‖
2
H

<∞ (48)

with probability one.
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Consequently, J1(t) + J2(t) →
t→t0

0 and I1(t) is continuous in t.

It is obvious that I2 and I3 are continuous. Therefore it only remains to prove

that I4 is continuous. In order to do it, we will use the factorization method from [3,

theorem 5.2.5]. First we need to show that E‖S(s− τ)σ(τ, u(α(τ), · ), · )dW (τ)‖2
L0

2

is

bounded. Similarly to (43), we compute

E‖S(s− τ)σ(τ, u(α(τ), · ), · )‖2L0

2

= E

∞
∑

n=1

λn‖S(s− τ)σ(τ, u(α(τ), · ), · )en( · )‖
2
H

≤ E

∞
∑

n=1

λn

∫

Rd

σ2(τ, u(α(τ), x), x)e2n(x)dx

≤ L2E

(

∞
∑

n=1

λn

(∫

Rd

e2n(x)dx +

∫

Rd

u2(α(τ), x)dx

)

)

≤ λL2

(

1 +E‖u(α(τ), · )‖2H

)

= B <∞. (49)

Then, from the mentioned above theorem, we have

s
∫

0

S(s− τ)σ(τ, u(α(τ), · ), · )dW (τ)

=
sinπγ

π

s
∫

0

(s− τ)γ−1S(s− τ)Uγ(τ)dW (τ),

where

Uγ(s) =

s
∫

0

(s− τ)−γS(s− τ)σ(τ, u(α(τ), · ), · )dW (τ),

1

p
< γ <

1

2
. (50)

According to proposition 3 and the mentioned above theorem, in order to prove

that I4 is continuous, it is enough to show that process (50) has p-integrable trajec-

tories. Similarly to (42), we have

E sup
0≤s≤t

∥

∥

∥

∥

s
∫

0

(s− τ)−γS(s− τ)σ(τ, u(α(τ), · ), · )dW (τ)

∥

∥

∥

∥

p

H

≤ CpE

(

t
∫

0

(t− s)−2γ‖S(t− s)σ(s, u(α(s), · ), · )‖2L0

2

ds

)
p
2
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≤ B
p

2Cp

(

t
∫

0

(t− s)−2γds

)
p

2

,

where Cp is a positive number and B is defined from (49). Then we get

E

t
∫

0

‖Uγ(τ)‖
p
Bp,s

ds ≤ B
p

2Cp

t
∫

0

(

s
∫

0

(s− τ)−2γdτ

)
p

2

ds <∞,

hence I4 is continuous with respect to the norm of H .

Now, taking into account the proven fact of continuity and combining estimates

(30), (31), (32), (33), (39), (40), (41), (42) and (43), we conclude that the operator

Ψ, defined by (29), transforms M into itself.

Now let prove that this operator is contractive. Let u and v be two elements from

M . From (29) we obtain

‖Ψu−Ψv‖p
Bp,t

≤ 4p−1‖I1(s)(u)− I1(s)(v)‖
p
Bp,t

+ 4p−1‖I2(s)(u)− I2(s)(v)‖
p
Bp,t

+ 4p−1‖I3(s)(u)− I3(s)(v)‖
p
Bp,t

+ 4p−1‖I4(s)(u)− I4(s)(v)‖
p
Bp,t

.

In view of the obtained for ‖I1(s)‖
p
Bp,t

estimate, we evidently get

‖I1(s)(u)− I1(s)(v)‖
p
Bp,t

≤

(∫

Rd

∫

Rd

l2(x, ξ)dξdx

)
p
2

× ‖u− v‖p
Bp,t

. (51)

Similarly to estimating I2 from (29), we obtain

‖I2(s)(u)− I2(s)(v)‖
p
Bp,t

≤ C
p

2

T t
p sup
0≤τ≤t

(∫

Rd

∫

Rd

ψ2(τ, x, ζ)dζdx

)
p

2

‖u− v‖p
Bp,t

. (52)

In a similar way to (41), (42) and (43), we have

‖I3(s)(u)− I3(s)(v)‖
p
Bp,t

≤ Lptp‖u− v‖p
Bp,t

, (53)

‖I4(s)(u)− I4(s)(v)‖
p
Bp,t

≤ D(T )λ
p

2Lpt‖u− v‖p
Bp,t

. (54)

Thus, from (51) – (54) we deduce

‖Ψu−Ψv‖p
Bp,t

≤ 4p−1

(

(∫

Rd

∫

Rd

l2(x, ξ)dξdx

)
p
2

+ C
p

2

T t
p sup
0≤τ≤t

(∫

Rd

∫

Rd

ψ2(τ, x, ζ)dζdx

)
p
2
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+ Lptp +D(T )λ
p
2Lpt

)

‖u− v‖p
Bp,t

= γ(t)‖u− v‖p
Bp,t

. (55)

According to condition (25), the first term in γ from (55) is less than one. There-

fore, by choosing small 0 ≤ t ≤ T , we conclude that 0 < γ(t) < 1. It means that the

operator Ψ, defined in a complete Banach space Bp,t, is contractive, and therefore has

a unique fixed point — the mild solution of (1) – ( 1*) on [−r, t]. This procedure can

be repeated finitely many steps in order to extend the solution to the entire interval

[−r, T ]. This completes the proof of the theorem.

While analysing the above proof, we conclude that, under the conditions of corol-

lary 11, this proof is true on any interval [0, T ] for arbitrary T . Hence, corollary 11

holds.

4.2. PROOF OF THEOREM 10

Let φ and φ1 be arbitrary admissible functions, u(t, · , φ) and u(t, · , φ1) — the solu-

tions of (1), corresponding to these functions. We get

u(t, x, φ) − u(t, x, φ1)

=

∫

Rd

K(t, x − ξ)

(

φ(0, ξ)− φ1(0, ξ)

+

∫

Rd

(

b(0, ξ, φ(−r, ζ), ζ) − b(0, ξ, φ1(−r, ζ), ζ)
)

dζ

)

dξ

+

∫

Rd

(

b(t, x, u(α(t), ξ, φ1), ξ)− b(t, x, u(α(t), ξ, φ), ξ)
)

dξ

+

t
∫

0

(

∆x

∫

Rd

K(t− s, x− ξ)

×

(∫

Rd

(

b(s, ξ, u(α(s), ζ, φ1), ζ)− b(s, ξ, u(α(s), ζ, φ), ζ)
)

dζ

)

dξ

)

ds

+

t
∫

0

∫

Rd

K(t− s, x− ξ)

×
(

f(s, u(α(s), ξ, φ), ξ) − f(s, u(α(s), ξ, φ1), ξ)
)

dξds

+

t
∫

0

∞
∑

n=1

√

λn

(∫

Rd

K(t− s, x− ξ)

×
(

σ(s, u(α(s), ξ, φ), ξ) − σ(s, u(α(s), ξ, φ1), ξ)
)

en(ξ)dξ

)

dβn(s)
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=

4
∑

j=0

Jj(t), 0 ≤ t ≤ T . (56)

Let estimate E sup
−r≤s≤t

‖Jj(s)‖
p
H , j ∈ {0, . . . , 4}, from each of terms in (56).

Similarly to (30), (31), we have for some C1 > 0

E sup
−r≤s≤t

‖J0(s)‖
p
H

≤ 2p−1E‖φ(0, · )− φ1(0, · )‖
p
H

+ 2p−1

(∫

Rd

∫

Rd

l2(x, ζ)dζdx

)
p

2

E‖φ(−r, · )− φ1(−r, · )‖
p
H

≤ C1E sup
−r≤s≤0

‖φ(s, · )− φ1(s, · )‖
p
H . (57)

Using (51), we deduce

E sup
−r≤s≤t

‖J1(s)‖
p
H ≤

(∫

Rd

∫

Rd

l2(x, ζ)dζdx

)
p

2

×E sup
−r≤s≤t

‖u(α(s), · , φ1)− u(α(s), · , φ)‖pH ≤

(∫

Rd

∫

Rd

l2(x, ζ)dζdx

)
p

2

×E sup
−r≤s≤t

‖u(s, · , φ1)− u(s, · , φ)‖pH . (58)

Now let estimate E sup
−r≤s≤t

‖J2(s)‖
p
H , taking into account estimate of the right-hand

on (33) (namely, estimates (39) and (40)). We get

E sup
−r≤s≤t

‖J2(s)‖
p
H

≤ C
p

2

T t
p−1

×

t
∫

0

E

(∫

Rd

(∫

Rd

‖D2
xb(τ, x, u(α(τ), ζ, φ1), ζ)−D2

xb(τ, x, u(α(τ), ζ, φ), ζ)‖ddζ

)2

dx

)
p

2

dτ

≤ C
p

2

T t
p−1 sup

0≤τ≤T

(∫

Rd

∫

Rd

ψ2(τ, x, ζ)dζdx

)
p

2

×

t
∫

0

E sup
−r≤τ≤s

‖u(α(τ), · , φ1)− u(α(τ), · , φ)‖pHds

≤ C
p

2

T t
p−1 sup

0≤τ≤T

(∫

Rd

∫

Rd

ψ2(τ, x, ζ)dζdx

)
p
2
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×

t
∫

0

E sup
−r≤τ≤s

‖u(τ, · , φ1)− u(τ, · , φ)‖pHds. (59)

Using (41) for estimating E sup
−r≤s≤t

‖J3(s)‖
p
H , we can easily obtain the following

E sup
−r≤s≤t

‖J3(s)‖
p
H

≤ Lptp−1

t
∫

0

E sup
−r≤τ≤s

‖u(α(τ), · , φ1)− u(α(τ), · , φ)‖pHds

≤ Lptp−1

t
∫

0

E sup
−r≤τ≤s

‖u(τ, · , φ1)− u(τ, · , φ)‖pHds. (60)

Similarly, using (42) and (43), forE sup
−r≤s≤t

‖J4(s)‖
p
H we have the following estimate

E sup
−r≤s≤t

‖J4(s)‖
p
H

≤ D(T )Lpλ
p

2

t
∫

0

E sup
−r≤τ≤s

‖u(α(τ), · , φ1)− u(α(τ), · , φ)‖pHds

≤ D(T )Lpλ
p

2

t
∫

0

E sup
−r≤τ≤s

‖u(τ, · , φ1)− u(τ, · , φ)‖pHds. (61)

Thus, from (58) – (61) it is now clear that for some C2 > 0

E sup
−r≤s≤t

‖u(s, · , φ1)− u(τ, · , φ)‖pH

≤ C1E sup
−r≤s≤0

‖φ1(s, · )− φ(s, · )‖pH

+

(∫

Rd

∫

Rd

l2(x, ζ)dζdx

)
p
2

E sup
−r≤s≤t

‖u(s, · , φ1)− u(s, · , φ)‖pH

+ C2

t
∫

0

E sup
−r≤τ≤s

‖u(τ, · , φ1)− u(τ, · , φ)‖pHds.

In view of (25), we conclude

E sup
−r≤s≤t

‖u(s, · , φ1)− u(τ, · , φ)‖pH

≤ C3E sup
−r≤s≤0

‖φ1(s, · )− φ(s, · )‖pH

+ C4

t
∫

0

E sup
−r≤τ≤s

‖u(τ, · , φ1)− u(τ, · , φ)‖pHds, (62)
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where C3 =
C1

1−

(

∫

Rd

∫

Rd

l2(x, ζ)dζdx

)
p

2

, C4 =
C2

1−

(

∫

Rd

∫

Rd

l2(x, ζ)dζdx

)
p

2

. Applica-

tion of Gronwall’s inequality to (62) gives (26), thereby concluding the proof.

4.3. PROOF OF THEOREM 13

Let u(t, s, · , φ) be the mild solution of (1) – ( 1*) in the terms of section 3, i.e. let

u(s + θ, s, · , φ) = φ(s + θ, · ), −r ≤ θ ≤ 0, and u(t, s, · , φ) satisfy (24) for t ≥ s.

Here the function φ(s + θ, · , ω) is Fs-measurable and satisfies the conditions from

assumption (3) for any fixed s such that 0 ≤ s ≤ t ≤ T . From theorem 9 we conclude

that for fixed s and t ut(s, · , φ) = u(t + θ, s, · , φ) as a function of θ is a random

variable from C.

Let ϕ ∈ C be non-random. Then u(t, s, · , ϕ) is completely defined by the in-

crements W (τ) − W (s), τ ≥ s, therefore it does not depend on σ-algebra Fs and

is Gs-measurable. Here Gs is the minimal σ-algebra, generated by the increments

W (τ) −W (s), τ ≥ s. It is easy to see that, due to theorem 9, proposition 12 is true

for a random initial Fs-measurable function φ such that E sup
−r≤t≤T

‖φ(t, · )‖pH < ∞,

p > 2. Hence, for any 0 ≤ s ≤ τ ≤ t ≤ T we have

ut(s, · , φ) = ut(τ, · , uτ(s, · , φ)). (63)

Note that uτ (s, · , φ) is Fτ -measurable function and does not depend on σ-algebra Gτ .

Thus, ut(s, · , φ) = β(uτ (s, · , φ), ω), where β(X,ω), X ∈ C, is a random function

that does not depend on events from σ-algebra Fτ and is Gτ -measurable.

In order to prove the theorem, we need to demonstrate that for all 0 ≤ s ≤ τ ≤

≤ t ≤ T and A ∈ D the following equality is true

P{ut(s, · , φ) ∈ A|Fτ} = P{τ, uτ (s, · , φ), t, A}, (64)

where P{τ, u, t, A} is defined from (27). For proof of (64) it is enough to show that

for any real bounded Borel function g : C → R we have

E(g(ut(s, · , φ))|Fτ ) = Eg(ut(τ, · , ϕ))|ϕ=uτ (s, · ,φ). (65)

The proof of (65) is proved similarly to [4, theorem 3.8] with the help of (63),

independence of ut(τ, · , ϕ) from σ-algebra Fτ and its Fτ -measurability. The theorem

is proved.
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EXAMPLE

Let consider a particular case of the problem (1) – ( 1*)

d

(

u(t, x) +

∫

R

b(t, x, ξ)u(t− h, ξ)dξ

)

=
(

∂2xu(t, x) + f(t, u(t− h, x), x)
)

dt

+ σ(t, u(t− h, x), x)dW (t, x), 0 < t ≤ T , x ∈ R, (66)

u(t, x) = φ(t, x), − h ≤ t ≤ 0, x ∈ R, h > 0. (66*)

Equation (66) is an equation of neutral type with constant delay. It can be a

mathematical model with delay in nonlocal consumption of resources or nonlocal

stimulation of reproduction [19].

Let function b(t, x, ξ) have the form

b(t, x, ξ) = ϕ(t, ξ)ψ(x),

where ϕ is continuous in t, and the following conditions fulfill:

1) there exists ϕ1 such that |ϕ(t, ξ)| ≤ ϕ1(ξ), 0 ≤ t ≤ T , ξ ∈ R;

2) ψ is twice continuously differentiable and has bounded on R the first and the

second derivatives ψ′, ψ′′;

3) {ψ, ϕ1} ⊂ L1(R) ∩ L2(R), {ψ
′, ψ′′} ⊂ L2(R).

Then the conditions from assumptions (5) – (7) are valid. If standard conditions

from assumptions (2) (examples of f and σ can be easily given) and (4) fulfill, and

estimate (25) is true, then all conditions of theorem 9 are true.

APPENDIX

We now prove proposition 3. Let ϕ ∈ Lp([0, T ], H) and set ψ =

= Rγϕ. We can write

ψ(t)− ψ(s) =

t
∫

s

(t− τ)γ−1S(t− τ)ϕ(τ)dτ

+

s
∫

0

(

(t− τ)γ−1 − (s− τ)γ−1
)

S(t− τ)ϕ(τ)dτ

+

s
∫

0

(s− τ)γ−1
(

S(t− τ) − S(s− τ)
)

ϕ(τ)dτ
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= K1 +K2 +K3. (A.1)

We will estimate each term in (A.1) separately.

Since the semigroup {S(t), t ≥ 0} is contractive, we obtain for K1

‖K1‖H ≤

t
∫

s

(t− τ)γ−1‖ϕ(τ)‖Hdτ

≤

(

t
∫

s

(t− τ)q(γ−1)dτ

)
1

q
(

t
∫

s

‖ϕ(τ)‖pHdτ

)
1

p

,

where 1
p
+ 1

q
= 1. Since ϕ ∈ Lp([0, T ], H), there exists a constant M1 > 0 such that

‖K1‖H ≤M1(t− s)
1

q
+γ−1 =M1(t− s)γ−

1

p .

For K2 in (A.1), taking into account the estimate ‖S(t)‖ ≤ 1, in the same way as

in [3, proposition A.1.1, p. 307], we obtain validity for some M2 > 0 of the following

inequality

‖K2‖H ≤M2(t− s)γ−
1

q .

It remains to estimate the last term in (A.1). We will use the theorem on a

dominated convergence with an integrable majorant (s− τ)‖ϕ(τ)‖H , s ≤ τ ≤ t ≤ T ,

and take into account that the expression S(t− τ)ϕ(τ) is continuous in t for any fixed

τ . As a result, we conclude that ‖K3‖H is tending to zero as t → s, t ≥ s. In order

to prove that ‖K3‖H is tending to zero as s → t, s ≤ t, let write K3 in the following

way
t
∫

0

η(τ)
0≤τ≤s

(

t− τ

s− τ

)1−γ

(t− τ)γ−1
(

S(t− τ)− S(s− τ)
)

ϕ(τ)dτ ,

where η(τ)
0≤τ≤s

is the characteristic function of the time interval [0, s]. It is obvious that

for any 0 ≤ τ < t η(τ)
0≤τ≤s

→ η(τ)
0≤τ≤t

as s→ t, and t−τ
s−τ

is bounded as s→ t. Thus, using

the theorem on a dominated convergence, we finish the proof of proposition 3.
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