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1. INTRODUCTION

Impulsive differential equations are used to model physical phenomenon which experi-

ence instantaneous changes of the state at certain moments, such as in population dy-

namics, radio physics, pharmacokinetics, mathematical economy, ecology, industrial
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robotics, control theory and medicine. In [7] the authors studied Ulam-type stability

of nonlinear impulsive ordinary differential equations and Hyers-Ulam stability for

other classes of impulsive delay differential equations was studied in [8], [11]. Some-

times abrupt changes may stay for certain time intervals and such impulses are called

non-instantaneous impulses. A well known application of non-instantaneous impulses

is when one introduces insulin in the bloodstream which is an abrupt change and the

consequent absorption is a gradual process as it remains active for a finite interval

of time ([4]). Ulam type stability was studied for second order differential equations

with non-instantaneous impulses in [5], and for first order differential equations with

non-instantaneous impulses see [3]. For stability results for non-instantaneous frac-

tional differential equation we refer the reader to [1], [2], [10] and the monograph

[3].

In real world problems delay depends not only on the time but also on the unknown

quantity (see, for example [1]). In this paper we study an initial value problem

(IVP) for a nonlinear system of non-instantaneous impulsive differential equations

with state dependent delay (NIDDE). We establish an existence result based on the

Banach contraction principle. Also we obtain some sufficient conditions for Ulam-

Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and

generalized Ulam-Hyers-Rassias stability. An example is given to illustrate our results.

2. STATEMENT OF THE PROBLEM AND DEFINITION

OF THE SOLUTION

Let the positive constants r, T be given and the points ti, si ∈ [0, T ] be such that

s0 = 0, tk+1 = T , 0 < ti < si < ti+1, i = 1, 2, . . . , k.

Consider the space PC0 = C([−r, 0], E) endowed with the norm

||y||PC0
= sup

t∈[−r,0]

{||y(t)||E : y ∈ PC0};

here E is a Banach space.

The intervals (si, ti+1), i = 0, 1, 2, . . . , k are the intervals on which the differential

equation is given and the intervals (ti, si), i = 1, 2, . . . , k are called impulsive intervals

and on these intervals the impulsive conditions are given.

Consider the initial value problem (IVP) for a nonlinear system of non-instantaneous

impulsive differential equations with state dependent delay (NIDDE)

x′(t) =f(t, xρ(t,xt)), for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k,

x(t) =gi(t, x(ti)), fot t ∈ (ti, si], i = 1, 2, . . . , k, (1)

x(t) =φ(t), for t ∈ [−r, 0],
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where the functions f :
⋃k

i=0[si, ti+1] × PC0 → E; ρ :
⋃k

i=0[si, ti+1] × PC0 → [0, T ],

φ : [−r, 0] → E; gi : [ti, si] × E → E, i = 1, 2, . . . , k. Here for any t ∈ [0, T ] the

notation xt(s) = x(t+s), s ∈ [−r, 0] is used, i.e. xt ∈ PC0 represents the history of the

state x(t) from time t−r up to the present time t. Note that for any t ∈
⋃k

i=0(si, ti+1]

we let xρ(t,xt)(s) = x(ρ(t, x(t+ s)) + s), s ∈ [−r, 0], i.e. the function ρ determines the

state-dependent delay.

Remark 1. Note in the special case ρ(t, x) ≡ t problem (1) reduces to an IVP for

a delay non-instantaneous impulsive differential equation.

Let PC be the Banach space of all functions y : [−r, T ] → E which are con-

tinuous on [0, T ] except for the points ti ∈ (0, T ) at which y(ti+) = limt↓ti y(t)

and y(ti−) = y(ti) = limt↑ti y(t) exist and it is endowed with the norm ||y||PC =

supt∈[−r,T ]{||y(t)||E : y ∈ PC}.

We consider the assumptions:

A1. The function f ∈ C(
k
⋃

i=0

[si, ti+1]× PC0, E).

A2. The function φ ∈ PC0.

A3. The function ρ ∈ C(
k
⋃

i=0

[si, ti+1] × PC0, [0, T ]) is such that for any t ∈

⋃k

i=0[si, ti+1] and any function u ∈ PC0 the inequality ρ(t, u) ≤ t holds.

A4. The functions gi ∈ C([ti, si]× E,E), i = 1, 2, . . . , k.

Remark 2. Assumption A3 guarantees the delay of the argument in (1).

Definition 1. The function x ∈ PC is a solution of the IVP (1) iff it satisfies the

following integral-algebraic equation

x(t) =



































φ(t), t ∈ [−r, 0],

φ(0) +

∫ t

0

f(s, xρ(s,xs))ds, t ∈ (0, t1],

gi(t, x(ti)), t ∈ (ti, si], i = 1, 2, . . . , k,

gi(si, x(ti)) +

∫ t

si

f(s, xρ(s,xs))ds, t ∈ (si, ti+1], i = 1, 2, . . . , k.

(2)

Note in assumption (A1) the function f is defined for the time variable t only on

the intervals without impulses
⋃k

i=0[si, ti+1]. Without loss of generality let

f(t, x) =























f(t, x), t ∈
k
⋃

i=0

[si, ti+1], x ∈ E,

0, t ∈

k
⋃

i=1

(ti, si), x ∈ E.

(3)
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Define functions hi(t, x) = gi(t, x) − x for t ∈ [si, ti] and x ∈ E. Then we obtain

the following definition for the solution of (1):

Definition 2. Suppose Eq. (3) holds. The function x ∈ PC is a solution of the IVP

(1) iff it satisfies the following integral-algebraic equation

x(t) =







































φ(t), t ∈ [−r, 0],

φ(0) +
i

∑

j=1

hj(sj , x(tj))

+

∫ t

0

f(s, xρ(s,xs))ds, t ∈ (si, ti+1], i = 1, 2, . . . , k,

gi(t, x(ti)), t ∈ (ti, si], i = 1, 2, . . . , k.

(4)

Comments on Definition 1 and Definition 2. In the special case of instan-

taneous impulses, i.e. si = ti, i = 1, 2, . . . , k, the function hi(t, x) gives the amount

of the impulsive perturbation ∆x(ti) = x(ti + 0) − x(ti − 0) at time ti and the ap-

plication of these functions in the definition of the solution of impulsive differential

equations has meaning. In the case of non-instantaneous impulses the introduction

of the function hi(t, x) is artificial and the application of these functions in Definition

2 is meaningless. In connection with this we will use Definition 1 in the study of

properties of (1).

3. DEFINITIONS OF ULAM TYPES STABILITY

Let ε > 0,Ψ ≥ 0 and Φ ∈ C(
⋃k

i=1[si, ti+1], [0,∞) be nondecreasing. We consider the

following inequalities:

||y′(t)− f(t, yρ(t,yt))||E ≤ ε for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k

||y(t)− gi(t, y(ti))||E ≤ ε, t ∈ (ti, si], i = 1, 2, . . . , k,
(5)

and

||y′(t)− f(t, yρ(t,yt))||E ≤ Φ(t) for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k

||y(t)− gi(t, y(ti))||E ≤ Ψ, t ∈ (ti, si], i = 1, 2, . . . , k,
(6)

and

||y′(t)− f(t, yρ(t,yt))||E ≤ εΦ(t) for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k

||y(t)− gi(t, y(ti))||E ≤ εΨ, t ∈ (ti, si], i = 1, 2, . . . , k,
(7)

Definition 3. ([6], [9]) The problem (1) is Ulam-Hyers stable if there exists a real

number cf,gi > 0 such that for each ε > 0 and for each solution y ∈ PC of the

inequality (5) there exists a solution x ∈ PC of the problem (1) with

||y(t)− x(t)||E ≤ ε cf,gi , t ∈ [0, T ]. (8)



NON-INSTANTANEOUS IMPULSIVE DIFFERENTIAL EQUATIONS 51

Definition 4. ([6], [9]) The problem (1) is generalized Ulam-Hyers stable if there

exists function Kf,gi ∈ C(R+,R+) with Kf,gi(0) = 0 such that for each ε > 0 and

for each solution y ∈ PC of the inequality (5) there exists a solution x ∈ PC of the

problem (1) with

||y(t)− x(t)||E ≤ Kf,gi(ε), t ∈ [0, T ]. (9)

Definition 5. ([6], [9]) The problem (1) is Ulam-Hyers-Rassias stable with respect

to Φ,Ψ if there exists a real number cf,gi > 0 such that for each ε > 0 and for each

solution y ∈ PC of the inequality (7) there exists a solution x ∈ PC of the problem

(1) with

||y(t)− x(t)||E ≤ ε cf,gi(Ψ + Φ(t)), t ∈ [0, T ]. (10)

Definition 6. ([6], [9]) The problem (1) is generalized Ulam-Hyers-Rassias stable

with respect to Φ,Ψ if there exists a real number cf,gi > 0 such that for each solution

y ∈ PC of the inequality (6) there exists a solution x ∈ PC of the problem (1) with

||y(t)− x(t)||E ≤ cf,gi(Ψ + Φ(t)), t ∈ [0, T ]. (11)

Remark 3. If assumptions A1, A3, A4 are satisfied then the function y ∈ PC is a so-

lution of the inequality (5) if and only if there exist a function G ∈ C(
⋃k

i=0[si, ti+1], E)

and a sequence Gi ∈ E, i = 1, 2, . . . , k which depend on y such that

(i) ||G(t)||E ≤ ε, for t ∈
⋃k

i=0[si, ti+1], and ||Gi||E ≤ ε, i = 1, 2, . . . , k;

(ii) y′(t) = f(t, yρ(t,yt)) +G(t), for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k;

(iii) y(t) = gi(t, y(ti)) +Gi, t ∈ (ti, si], i = 1, 2, . . . , k.

Remark 4. If assumptions A1, A3, A4 are satisfied then the function y ∈ PC is a so-

lution of the inequality (6) if and only if there exist a function G ∈ C(
⋃k

i=0[si, ti+1], E)

and a sequence Gi ∈ E, i = 1, 2, . . . , k which depend on y such that

(i) ||G(t)||E ≤ Φ(t) for t ∈
⋃k

i=0[si, ti+1], and ||Gi||E ≤ Ψ, i = 1, 2, . . . , k;

(ii) y′(t) = f(t, yρ(t,yt)) +G(t) for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k;

(iii) y(t) = gi(t, y(ti)) +Gi, t ∈ (ti, si], i = 1, 2, . . . , k.

Remark 5. If assumptions A1, A3, A4 are satisfied then the function y ∈ PC is a so-

lution of the inequality (7) if and only if there exist a function G ∈ C(
⋃k

i=0[si, ti+1], E)

and a sequence Gi ∈ E, i = 1, 2, . . . , k which depend on y such that

(i) ||G(t)||E ≤ εΦ(t) for t ∈
⋃k

i=0[si, ti+1], and ||Gi||E ≤ εΨ, i = 1, 2, . . . , k;

(ii) y′(t) = f(t, yρ(t,yt)) +G(t) for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k;
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(iii) y(t) = gi(t, y(ti)) +Gi, t ∈ (ti, si], i = 1, 2, . . . , k.

Note a similar remark for the inequality (7) applies.

4. ULAM TYPES STABILITY

Based on Remark 3 and Definition 1 we get the following result:

Lemma 1. Suppose assumptions A1, A3, A4 are satisfied. If y ∈ PC is a solution

of inequalities (5) then it satisfies the following integral-algebraic inequalities



































||y(t)− φ(0)−

∫ t

0

f(s, yρ(s,ys))ds||E ≤ εt, t ∈ (0, t1],

||y(t)− gi(t, y(ti))||E ≤ ε, t ∈ (ti, si], i = 1, 2, . . . , k,

||y(t)− gi(si, y(ti))−

∫ t

si

f(s, yρ(s,ys))ds||E

≤ ε+ ε(t− si), t ∈ (si, ti+1], i = 1, 2, . . . , k.

(12)

Proof. From Remark 3 it follows that for any i = 1, 2, . . . , k and t ∈ (si, ti+1] we

have

y(t)− gi(si, y(ti))−

∫ t

si

f(s, yρ(s,ys))ds = Gi +

∫ t

si

G(s)ds. (13)

This proves the claim of Lemma 1.

Lemma 2. Suppose assumptions A1, A3, A4 are satisfied. If y ∈ PC is a solution

of inequalities (6) then it satisfies the following integral-algebraic inequalities



























































||y(t)− φ(0)−

∫ t

0

f(s, yρ(s,ys))ds||E

≤

∫ t

0

Φ(s)ds, t ∈ (0, t1],

||y(t)− gi(t, y(ti))||E ≤ Ψ, t ∈ (ti, si], i = 1, 2, . . . , k,

||y(t)− gi(si, y(ti))−

∫ t

si

|f(s, yρ(s,ys))ds||E

≤ Ψ+

∫ t

si

Φ(s)ds, t ∈ (si, ti+1], i = 1, 2, . . . , k.

(14)

The proof of Lemma 2 is based on Remark 4.

Lemma 3. Suppose assumptions A1, A3, A4 are satisfied. If y ∈ PC is a solution
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of inequalities (7) then it satisfies the following integral-algebraic inequalities



























































||y(t)− φ(0)−

∫ t

0

f(s, yρ(s,ys))ds||E

≤ ε

∫ t

0

Φ(s)ds, t ∈ (0, t1],

||y(t)− gi(t, y(ti))||E ≤ εΨ, t ∈ (ti, si], i = 1, 2, . . . , k,

||y(t)− gi(si, y(ti))−

∫ t

si

|f(s, yρ(s,ys))ds||E

≤ εΨ+ ε

∫ t

si

Φ(s)ds, t ∈ (si, ti+1], i = 1, 2, . . . , k.

(15)

Now we will study the existence of a solution of (1), given by Definition 1, using

the Banach contraction principle.

Theorem 1. (Existence result). Suppose the following conditions are satisfied:

1. Assumption A1 is satisfied and there exists a constant Lf > 0, such that for any

t ∈
⋃k

i=1[si, ti+1] and any functions u, v ∈ PC the inequality

||f(t, uρ(t,ut))− f(t, vρ(t,vt))||E ≤ Lf ||uρ(t,ut) − vρ(t,vt)||PC0

holds.

2. Assumption A4 is satisfied and there exist constants Lgi > 0, i = 1, 2, . . . , k,

such that

||gi(t, x)− gi(t, y)||E ≤ Lgi ||x− y||E , t ∈ [ti, si], x, y ∈ E, i = 1, 2, . . . , k.

3. Assumptions A2, A3 are satisfied.

4. The inequality

γ = max
i=1,2,...,k

Lgi + ηLf < 1 (16)

holds where η = max{ti+1 − si, i = 0, 1, . . . , k} represents the maximal length

of the intervals without impulses.

Then the initial value problem (1) has a unique solution x ∈ PC (as defined in Defi-

nition 1).



54 R. AGARWAL, S. HRISTOVA, AND D. O’REGAN

Proof. Define the operator Ω : PC → PC by

Ω(y(t)) =











































φ(t), t ∈ [−r, 0],

φ(0) +

∫ t

0

f(s, yρ(s,ys))ds, t ∈ (0, t1],

gi(s, y(ti − 0)), t ∈ (ti, si], i = 1, 2, . . . , k,

gi(si, y(ti − 0))

+

∫ t

si

f(s, yρ(s,ys))ds, t ∈ (si, ti+1], i = 1, 2, . . . , k.

(17)

We use induction w.r.t. the intervals to prove the claim.

Let y, y∗ ∈ PC and t ∈ [0, t1]. Then for any t ∈ [0, t1] it follows that yt, y
∗
t ∈ PC0,

ρ(t, yt), ρ(t, y
∗
t ) ∈ [0, T ] and yρ(t,yt), y

∗
ρ(t,y∗

t )
∈ PC0. Then we obtain

||Ω(y(t)) − Ω(y∗(t))||E ≤

∫ t

0

Lf ||yρ(s,ys) − y∗ρ(s,y∗

s )
||PC0

ds ≤ Lf t1||y − y∗||PC . (18)

For any y, y∗ ∈ PC and t ∈ (ti, si] we obtain

||Ω(y(t))− Ω(y∗(t))||E ≤ Lgi ||y − y∗||PC . (19)

For any y, y∗ ∈ PC and t ∈ (si, ti+1] we obtain

||Ω(y(t))− Ω(y∗(t))||E ≤
(

Lgi + (ti+1 − si)Lf

)

||y − y∗||PC

≤
(

Lgi + ηLf

)

||y − y∗||PC .
(20)

From inequalities (18), (19) and (20) it follows that ||Ω(y) − Ω(y∗)||PC ≤ γ||y −

y∗||PC , i.e. the operator Ω is a contraction.

We will use Definition 1 to study the Ulam types stability of problem (1).

Theorem 2. (Stability results). Suppose the conditions of Theorem 1 are satisfied.

(i) Assume for any ε > 0 inequality (5) has at least one solution. Then problem

(1) is Ulam-Hyers stable.

(ii) Assume for any ε > 0 inequality (5) has at least one solution. Then problem

(1) is generalized Ulam-Hyers stable.

(iii) Assume there exist constants Ψ ≥ 0, ΛΦ > 0 and a function

Φ ∈ C(

k
⋃

i=1

[si, ti+1], [0,∞))

such that for any t ∈ [si, ti+1], i = 0, 1, 2, . . . , k, inequality

∫ t

si

Φ(s)ds ≤ ΛΦΦ(t)
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holds and for any ε > 0 inequality (7) has at least one solution. Then problem

(1) is Ulam-Hyers-Rassias stable with respect to Φ,Ψ.

(iv) Assume there exist constants Ψ ≥ 0, ΛΦ > 0 and a function

Φ ∈ C(
k
⋃

i=1

[si, ti+1], [0,∞))

such that for any t ∈ [si, ti+1], i = 0, 1, 2, . . . , k, inequality

∫ t

si

Φ(s)ds ≤ ΛΦΦ(t)

holds and inequality (6) has at least one solution. Then problem (1) is general-

ized Ulam-Hyers-Rassias stable with respect to Φ,Ψ.

Proof. (i). Let ε > 0 be an arbitrary number and y ∈ PC be a solution of inequality

(5) satisfying y(t) = φ(t), t ∈ [−r, 0]. Therefore, the integral-algebraic inequalities

(12) hold.

For any t ∈ [0, T ] we define the function γ(t) = sups∈[−r,t] ||x(s) − y(s)||E .

We use induction w.r.t. the intervals to prove that

γ(t) ≤ cf,giε, t ∈ [0, T ], (21)

where

cf,gi =



































































1 + (1 + η)
(

p−1
∑

j=1

ejLfη

j−1
∏

m=0

Lgp−m

)

+ηepLfη

p
∏

j=1

Lgj , t ∈ (tp, sp], p = 1, 2, . . . , k,

(1 + η)

p
∑

j=1

(

j−2
∏

m=0

Lgp−m

)

ejLfη

+ηe(p+1)Lfη

p
∏

j=1

Lgj , t ∈ (sp, tp+1], p = 0, 1, 2, . . . , k,

η = max{ti+1 − si, i = 0, 1, . . . , k}.

Let t ∈ [0, t1] be an arbitrary fixed point. Denote by t∗ ∈ [−r, t] the point such

that ||x(t∗) − y(t∗)||E ≥ ||x(s) − y(s)||E for all s ∈ [−r, t]. If t∗ ∈ [−r, 0] then

||x(t∗) − y(t∗)||E = 0 and γ(t) = 0. If t∗ ∈ (0, t] then according to Definition 1,
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Lemma 1, condition 1 of Theorem 1 and inequalities (12) we obtain

||x(t∗)− y(t∗)||E ≤||

∫ t∗

0

(

f(s, xρ(s,xs))− f(s, yρ(s,ys))
)

ds||E

+ ||y(t∗)− φ(0)−

∫ t∗

0

f(s, yρ(s,ys))ds||E

≤Lf

∫ t∗

0

||xρ(s,xs))− yρ(s,ys))||PC0
ds+ εt∗.

(22)

From the definition of xt and the function ρ we get

||xρ(s,xs))− yρ(s,ys))|| = sup
ξ∈[−r,0]

||x(ρ(s, xs) + ξ)− y(ρ(s, ys) + ξ)||E

≤ sup
ξ∈[−r,s]

||x(ξ)− y(ξ)||E = γ(s)

and from (22) it follows that for any t ∈ [0, t1],

γ(t) ≤ εt1 + Lf

∫ t

0

γ(s)ds.

Therefore, according to Gronwall’s inequality we have

γ(t) ≤ εt1e
Lf t1 , t ∈ [0, t1]. (23)

Let t ∈ (t1, s1] be an arbitrary fixed point. Denote by t∗ ∈ [−r, t] the point such

that ||x(t∗) − y(t∗)||E ≥ ||x(s) − y(s)||E for all s ∈ [−r, t]. If t∗ ∈ [−r, t1] then

from above ||x(t∗) − y(t∗)||E ≤ εt1e
Lf t1 and γ(t) ≤ εt1e

Lf t1 ≤ ε(1 + Lg1t1e
Lf t1). If

t∗ ∈ (t1, s1] from Definition 1, Lemma 1, condition 2 of Theorem 1 and inequalities

(12) and (23) for t = t1 we get

||x(t∗)− y(t∗)||E ≤ ||y(t∗)− g1(t
∗, y(t1))||E + ||g1(t

∗, x(t1))− g1(t
∗, y(t1))||E

≤ ε+ Lg1 ||x(t1)− y(ti)||E ≤ (1 + Lg1t1e
Lf t1)ε

or

γ(t) ≤ (1 + Lg1t1e
Lf t1)ε, t ∈ (t1, s1]. (24)

Let t ∈ (s1, t2] be an arbitrary fixed point. Denote by t∗ ∈ [−r, t] the point such

that ||x(t∗) − y(t∗)||E ≥ ||x(s) − y(s)||E for all s ∈ [−r, t]. If t∗ ∈ [−r, s1] then

from above ||x(t∗) − y(t∗)||E ≤ ε(1 + Lg1t1e
Lf t1) and γ(t) ≤ ε(1 + Lg1t1e

Lf t1) <

ε((1+η)eLfη+Lg1t1e
2Lfη). If t∗ ∈ (s1, t2] then from Definition 1, Lemma 1, conditions
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1,2 of Theorem 1 and inequalities (12), and (23) for t = t1 we obtain

||x(t∗)− y(t∗)||E ≤||y(t∗)− g1(s1, y(t1))−

∫ t∗

s1

f(s, yρ(s,ys))ds||E

+ ||g1(s1, x(t1))− g1(s1, y(t1))||E

+ ||

∫ t∗

s1

(

f(s, xρ(s,ys))− f(s, yρ(s,ys))
)

ds||E

≤ε+ ε(t∗ − s1) + Lg1 ||x(t1)− y(t1)||E

+ Lf

∫ t

s1

||xρ(s,ys))− yρ(s,ys))||PC0
ds

≤ε+ εη + Lg1t1e
Lf t1ε+ Lf

∫ t∗

s1

||xρ(s,ys))− yρ(s,ys))||PC0
ds.

(25)

From (25) it follows that for any t ∈ (s1, t2],

γ(t) ≤ ε(1 + η + Lg1t1e
Lf t1) + Lf

∫ t

s1

γ(s)ds.

Therefore, according to Gronwall’s inequality we have

γ(t) ≤ ε((1 + η)eLfη + Lg1t1e
2Lfη), t ∈ [s1, t2]. (26)

Continue this process to prove inequality (21). Inequality (21) proves (i).

(ii) The proof is similar to the one in (i) where the function Kf,gi(x) = cf,gix with

the constant cf,gi defined in the proof of (i).

(iii) The proof is similar to the one in (i) where instead of Lemma 1 we apply

Lemma 2 to prove

γ(t) ≤































































eLfη
(

1 +

p−1
∑

i=1

i−1
∏

m=0

(Lgp−m
eLfη)

)

Ψ

+ΛΦ

(

p
∑

i=1

i−1
∏

m=0

(Lgp−m
eLfη)

)

Φ(t), t ∈ (tp, sp], p = 1, 2, . . . , k,

eLfη
(

1 +

p−1
∑

i=1

i−1
∏

m=0

(Lgp−m
eLfη)

)

Ψ

+ΛΦe
Lfη

(

1 +

p
∑

i=1

i−1
∏

m=0

(Lgp−m
eLfη)

)

Φ(t), t ∈ (sp, tp+1], p = 0, 1, 2, . . . , k.

(27)

(iv) Let ε > 0 be an arbitrary number and y ∈ PC be a solution of inequality (7)

satisfying y(t) = φ(t), t ∈ [−r, 0]. Therefore, the integral-algebraic inequalities (15)

hold. The rest of the proof is similar to the one in (i)where instead of Lemma 1 we
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apply Lemma 3 to prove that

γ(t) ≤































































εeLfη
(

1 +

p−1
∑

i=1

i−1
∏

m=0

(Lgp−m
eLfη)

)

Ψ

+εΛΦ

(

p
∑

i=1

i−1
∏

m=0

(Lgp−m
eLfη)

)

Φ(t), t ∈ (tp, sp], p = 1, 2, . . . , k,

εeLfη
(

1 +

p−1
∑

i=1

i−1
∏

m=0

(Lgp−m
eLfη)

)

Ψ

+εΛΦe
Lfη

(

1 +

p
∑

i=1

i−1
∏

m=0

(Lgp−m
eLfη)

)

Φ(t), t ∈ (sp, tp+1], p = 0, 1, 2, . . . , k.

Remark 6. The case of instantaneous impulses is a special case of non-instantaneous

impulses with ti = si ∈ [0, T ] : t0 = 0, tk+1 = T, 0 < ti = si < ti+1, i = 1, 2, . . . , k

and from the above results we obtain new results for impulsive differential equation.

Remark 7. Note in the case of a system of impulsive differential equations with-

out delays the generalized Ulam-Hyers-Rassias stability for the impulsive differential

equations is studied in [7].

5. APPLICATION

Consider the special case E = R, r = 1.5, q = 0.5, s0 = 0, t1 = 1, s1 = 2, t2 = T = 3,

φ(t) = 1, t ∈ [−1.5, 0], ρ(t, y) = t sin2(y) ≤ t for (t, y) ∈: [0, 3]×R, g(t, y) = 0.25ty, t ∈

[1, 2], f(t, y) = 0.5y. Let xt(s) = x(t − 1.5) for all s ∈ [−1.5, 0]. Then yρ(t,yt) =

t sin2(y(t− 1.5))− 1.5 < t.

In this particular case the problem (1) could be written in the form

x′(t) = 0.5x(t sin2(x(t− 1.5))− 1.5) for t ∈ (0, 1]
⋃

(2, 3]

x(t) = 0.25x(1), t ∈ (1, 2],

x(t) = 1 for t ∈ [−1.5, 0],

(28)

Then Lg = 0.25, Lf = 0.5, η = 1 and the inequality (16) holds. i.e. the IVP (28)

has a unique solution. We will give the formula for the exact solution of (28).

Case 1. Let t ∈ [0, 1]. Then t sin2(t − 1.5) − 1.5 ∈ [−1.5, 0] and x(t sin2(y(t −

1.5))− 1.5) = 1. Therefore, x′(t) = 0.5 for t ∈ [0, 1] and we get x(t) = 1 + 0.5t.

Case 2. Let t ∈ (1, 2]. Then x(t) = 0.25x(1) = 0.375.

Case 3. Let t ∈ (2, 3]. Because of the delay we consider two cases.
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Figure 1: Graph of the solution x(t) of

(28) and the solution y(t) of (31) for ε =

0.1

Figure 2: Graph of the difference |x(t)−

y(t)| for ε = 0.1 and the upper bound

cf,gε

Case 3.1. If t ∈ (2, 2.5] then t − 1.5 ∈ (0.5, 1], x(t − 1.5) = 1 + 0.5(t− 1.5) =

0.5t+0.25, t sin2(x(t−1.5))−1.5 ∈ (0.5, 1], x(t sin2(x(t−1.5))−1.5) = 1+0.5(t sin2(t−

0.5) − 1.5) = 0.5t sin2(t − 0.5) + 0.25 and x′(t) = 0.5
(

0.5t sin2(t − 0.5) + 0.25
)

=

0.25t sin2(t− 0.5) + 0.125 for t ∈ (2, 2.5] with x(2) = 0.375.

Case 3.2. If t ∈ (2.5, 3] then t − 1.5 ∈ (1, 2], x(t − 1.5) = 0.5, t sin2(x(t −

1.5))− 1.5 ∈ (1, 2] and x(t sin2(x(t− 1.5))− 1.5) = 0.25x(1) = 0.25(1 + 0.5) = 0.375.

Therefore, x′(t) = 0.375 for t ∈ (2.5, 3]. The initial condition is chosen such that the

solution is continuous at 2.5.

Then the exact solution of the IVP (28) is (see Figure 1)

x(t) =


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













































































1, t ∈ [−1.5, 0],

1 + 0.5t, t ∈ (0, 1],

0.375, t ∈ (1, 2],

0.375 +

∫ t

2

(

0.25s sin2(s− 0.5) + 0.125
)

ds

= 0.125− 0.125t+ 0.25
(

− 1.05319+ 0.25t2

+(−0.0675378+ 0.210368t) cos(2t)

+(−0.105184− 0.135076t) sin(2t), t ∈ (2, 2.5],

0.375 +

∫ 2.5

2

(

0.25s sin2(s− 0.5) + 0.125
)

ds

+0.375(t− 2.5) = −0.233996+ 0.375t, t ∈ (2.5, 3].

(29)

Also,

cf,gi =











e0.25, t ∈ (0, t1],

1 + e0.250.25, t ∈ (t1, s1],

(1 + 1)e0.25 + 0.25e0.5, t ∈ (s1, t2].

(30)

According to Theorem 2 (i) problem (28) is Ulam-Hyers stable, i.e. the inequality

||y(t)−x(t)||E ≤ ε cf,gi , t ∈ [0, 3] holds where y(t) is a solution of the inequalities (5),
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i.e. it is a solution of

y′(t) = 0.5x(t sin2(y(t− 1.5))− 1.5) + ε for t ∈ (0, 1]
⋃

(2, 3],

y(t) = 0.25y(1) + ε, t ∈ (1, 2],

y(t) = 1 for t ∈ [−1.5, 0],

(31)

with a solution (see Figure 1 for ε = 0.1)

y(t) =







































































1, t ∈ [−1.5, 0],

1 + (0.5 + ε)t, t ∈ (0, 1],

0.375 + 1.25ε, t ∈ (1, 2],

0.375 + 1.25ε

+

∫ t

2

(

0.25s sin2(s− 0.5) + 0.125 + ε
)

ds, t ∈ (2, 2.5],

0.375 + 1.25ε

+

∫ 2.5

2

(

0.25s sin2(s− 0.5) + 0.125 + ε
)

ds

+(0.375 + ε)(t− 2.5), t ∈ (2.5, 3].

(32)

Conclusion: Problem (28) is Ulam-Hyers stable, i.e. the inequality |x(t) − y(t) ≤

cf,giε holds (see Figure 2 for ε = 0.1).
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