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ABSTRACT: In this paper we study the one–sided Hausdorff approximation of

the generalized cut function by sigmoidal modified three–stage growth model. The

model has a certain right of existence insofar as the theory of sigmoidal functions

is well developed. The estimates of the value of the best Hausdorff approximation

obtained in this article can be used in practice as one possible additional criterion

in ”saturation” study. We examine the small data for modeling the growth of red

abalone Haliotis Rufescens in Northern California. Numerical examples are presented

using CAS MATHEMATICA.
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1. INTRODUCTION

Let us examine the following three–stage growth model

A
k1−→ B

k2−→ C
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Figure 1: Three–stage growth model C̃(t) (sigmoidal; red) for n = k2 − k1,

k1 = 1, k2 = 1.001 and three–stage model C(t) (first order; green) for n =

k1 = k2, k1 = 1, k2 = 2500.

with two steps (k1 and k2) depending on the ratio of the growth parameters k1

k2

.

For the mechanism the following system of ODEs is known [1]:

dA(t)/dt = −k1A(t),

dB(t)/dt = k1A(t)− k2B(t),

dC(t)/dt = k2B(t),

A(0) = A0, B(0) = 0, C(0) = 0.

Noticing that dA/dt + dB/dt + dC/dt = 0, hence A + B + C = A0, and at any

time, we find

C(t) = A0 −B(t)−A(t)

or [4]:

C(t) = A0

(

1−
k1

k1 − k2

(

e−k1t − e−k2t
)

− e−k1t

)

.

For some details, see [2], [3]. In [4], the authors debated to the following modified

model for the individual growth of marine invertebrates:

C̃(t) = A0

(

1−
k1
n

(

e−k1t − e−k2t
)

− e−k2t

)

where n = k2 − k1, and
k1

k2

is close to 1.

The model C̃ predicts sigmoidal growth (see, Figure 1), i.e. in a three–stage

growth model, the shape is controlled by the ratio k1

k2

.

For 3D–surface plot for the three–stage mechanism in the range n = k2 − k1, or

n = k1 − k2, see, Figure 2.
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Figure 2: 3D–surface plot for the three–stage mechanism in the range n =

k2 − k1, or n = k1 − k2.

2. MAIN RESULTS

Without loosing of generality, for A0 = 1 and n = k2 − k1 > 0, k1

k2

→ 1 we consider

the following family:

C̃(t) = 1−
k1
n

(

e−k1t − e−k2t
)

− e−k2t. (2.1)

We find that the sigmoid (1) has an inflection at point:

t∗ =
1

n
ln





(

−k22 +
k1k

2

2

n

)

n

k31



 .

Definition 1. The associate to the (1) cut function C̃∗ is defined by

C̃∗(t) =



















0, if t < t1,

C̃′(t∗)(t− t∗) + C̃(t∗), if t1 ≤ t < t2,

1, if t ≥ t2.

(2.2)

The straight line y = C̃′(t∗)(t− t∗) + C̃(t∗) cross the lines y = 0 and y = 1 at the

points t1 and t2.

Definition 2. [6] The one–sided Hausdorff distance −→ρ (f, g) between two interval

functions f, g on Ω ⊆ R, is the one–sided Hausdorff distance between their completed

graphs F(f) and F(g) considered as closed subsets of Ω× R. More precisely,

−→ρ (f, g) = sup
B∈F(g)

inf
A∈F(f)

||A−B||,

where || · || is a norm in R
2.
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We recall that completed graph of f is the closure of the graph of f as a subset

of Ω × R. If the graph of an interval function f equals F(f), then the f is called

S-continuous.

The Hausdorff distance ρ(f, g) = max{−→ρ (f, g),−→ρ (g, f)} defines a metric in the

set of the S-continuous interval functions [7]–[10].

2.1. APPROXIMATION OF THE CUT

FUNCTION (2) BY SIGMOID FUNCTION (1)

The one–sided Hausdorff distance d between the functions (1) and (2) satisfies the

relation

C̃(t2 + d) = 1− d. (2.3)

The following theorem gives upper and lower bounds for d

Theorem 1. Let

p = −e−k2t2 −
k1
n
e−k1t2 +

k1
n
e−k2t2 ,

q = 1 + k2e
−k2t2 +

k21
n
e−k1t2 −

k1k2
n

e−k2t2 ,

r = −2
q

p
; n = k2 − k1 > 0;

k1
k2

→ 1;
2k1 − k2

k1
< et2(k2−k1).

For the one–sided Hausdorff distance d between C̃∗(t) and the sigmoidal function

(1) the following inequalities hold for: r > e2

dl =
1

r
< d <

ln r

r
= dr. (2.4)

Proof. Let us examine the function:

F (d) = C̃(t2 + d)− 1 + d. (2.5)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = p+ qd. (2.6)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Figure 3).

In addition G′(d) > 0.

From the conditions of the theorem, we see that p < 0 and q > 0 and G(dl) =
1
2p < 0.
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Figure 3: The functions F (d) and G(d) for k1 = 1; k2 = 1.01.

Figure 4: The cut function C̃∗(t) and the sigmoidal function C̃(t) with k1 = 1,

k2 = 1.01, t∗ = 0.985033, t1 = 0.27045, t2 = 2.97525; H– distance d =

0.174444, dl = 0.0865764, dr = 0.211829.

Further, for r > e2 we have G(dr) > 0.

This completes the proof of the theorem.

The model (1) for k1 = 1, k2 = 1.01, t∗ = 0.985033, t1 = 0.27045, t2 = 2.97525 is

visualized on Figure 4.

From the nonlinear equation (3) and inequalities (4) we have: d = 0.174444,

dl = 0.0865764, dr = 0.211829.

2.2. NUMERICAL EXAMPLE

We examine the following data. (The small data for modeling the growth of red

abalone is shown in Table 1. For more details, see [5]).
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Age Length(mm)

1 16.1

2 33.9

3 54.3

4 76.2

5 97.8

6 117.1

7 133.3

8 146.5

9 157.2

10 166

11 173.3

12 179.6

Table 1: The small data for modeling the growth of red abalone Haliotis

Rufescens in Northern California [5]

The model (2) based on the data of Table 1 for the estimated parameters:

A0 = 179.6; k2 = 0.4384; k1 = 0.434133; t∗ = 2.26955; t1 = 0.62341; t2 = 6.854

is plotted on Figure 5.

Specifically, we will note that the growth model functions is checked by an addi-

tional six criteria, the consideration of which go beyond this article.

For example, for the predictive power (PP) criterion

PP =

n
∑

i=1

(

C̃(ti)− yi
yi

)2

measures the distance of model actual data from the estimates against the actual

data, we find PP = 0.243413.

Remarks. The model C̃(t) has a certain right of existence insofar as the theory of

sigmoidal functions is well developed.

Of course, its use in approximating such data is associated with a loss of accu-

racy when using the operator of the programming environment (for example, CAS

Mathematica) to find a local extreme.

The estimates of the value of the best Hausdorff approximation obtained in this

article can be used in practice as one possible additional criterion in ”saturation”

study.
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Figure 5: The model C̃(t)

For some approximation, computational and modelling aspects, see [11]–[32].

The results obtained in this paper can be used when controlling growth in Software

Reliability Models, see [33], [34].
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