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1. INTRODUCTION
Consider the first-order linear differential equation with several variable deviating
arguments of either delay (DDE)
dO+ Y e () =0, Vi, (B)
or advanced type (ADE)
21 =" at)r (@) =0, t>t, (")



218 G.E. CHATZARAKIS AND I. JADLOVSKA

where p;, ¢;, 1 < i < m, are nonnegative real functions, and 7;, 0;, 1 < i < m, are

positive real functions such that

Ti(t) <t, t>ty and lim 7(t) =00, 1<i<m (1.1)
t— o0
and
Ui(t) >t, t>ty, 1<i<m, (].2)
respectively.

A solution of (E) of (E') is an absolutely continuous on [tg, c0) function satisfying
(E) or (E’) for almost all ¢ > tg.

A solution of (E) or (E’') is oscillatory, if it is neither eventually positive nor
eventually negative. If there exists an eventually positive or an eventually negative
solution, the equation is monoscillatory. An equation is oscillatory if all its solutions
oscillate.

The problem of establishing sufficient conditions for the oscillation of all solutions
of equations (E) or (E’) has been the subject of many investigations. The reader
is referred to [1—4, 6—18, 20—24] and the references cited therein. Most of these
papers concern the special case where the arguments are nondecreasing, while a small
number of these papers are dealing with the general case where the arguments are
not necessarily monotone. See, for example, [1—4, 8, 13] and the references cited
therein. Apart from the pure mathematical interest, the importance of considering
non-monotone arguments is justified by the fact that they approximate the natural
phenomena described by equations of the type (F) or (E’). That is because there
are always natural disturbances (e.g. noise in communication systems) that affect all
the parameters of the equation and therefore the fair (from a mathematical point of
view) monotone arguments become non-monotone almost always.

Throughout this paper, we are going to use the following notation:

t m a(t) m
Q= htrgg)lf/T(t) Zizlpi(s)ds, B = htrgégf t Z¢:1 qi(s)ds
and
0, ifw>1/e
D(w) := .
l—w—vVI—2w—
d 5 YT ifwel0,1/e].
1.1. DDES

By Remark 2.7.3 in [19], it is clear that if 7;(¢), 1 < i < m are nondecreasing and

t m
1imsup/ g 4 1pi(s)ds > 1, (1.3)
7(t) =

t—o0
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where 7(t) = maxi<;<m{7:(t)}, then all solutions of (E) oscillate. This result is
similar to Theorem 2.1.3 [19] which is a special case of Ladas, Lakshmikantham and
Papadakis’s result [16].

In 1978 Ladde [18] and in 1982 Ladas and Stavroulakis [17] proved that if

o 1
hglorolf/(f) 27_ s)ds > (1.4)

then all solutions of (E) oscillate.
In 1984, Hunt and Yorke [9] proved that if t — 7;(¢t) < 70, 1 < i < m, and

lim inf mwﬁﬂpwﬁn>g (1.5)

t—o0 1=

then all solutions of (E) oscillate.

Assume that 7;(t), 1 <14 < m are not necessarily monotone. Set

hi(t) = sup 7i(s), t>tp and  h(t) = max hi(t), t>to (1.6)
to<s<t 1<i<m

1U,$:=exp{/¢§:f_pAOdC}
Gria(ty8) = exp{ / S O g,n(c>>d<}.

Clearly, h;i(t), h(t) are nondecreasing and 7;(¢) < h;(t) < h(t) <t for all t > ¢,.
In 2016, Braverman, Chatzarakis and Stavroulakis [1] proved that if for some
reN

and

imsp [ 37 piQa (0,70 > 1, (1.8
lim su " i(O)ar(h(t), d 1 - D(a), 1.9
Hoop/h(t) S piQar (1) 7)) > 1~ D(a) (1.9)
or . N .
lim inf i(QO)ar(h(t), d -, 1.10
min /h(t)zi_lp(o (h(0), ()G > - (1.10)

then all solutions of (E) oscillate.
In 2017, Chatzarakis and Péics [3] proved that if
. L 1+1InA
timsup [ 37 piQan Q7O > SR < D), (1)
t—oo  Jh(t) = 0
where \g is the smaller root of the transcendental equation e®* = \, then all solutions

of (E) oscillate.
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In the same year, Chatzarakis [4] proved that if

1 P(s)ex t?uex uﬁj_l d¢ | du | ds|,
R p<[“)<> p<[w) @){) ) ]

with Po(t) = P(t) = >~ pi(t), then for some j € N either one of the conditions

P, (1) = (1)

t h(t)
lim sup P(s)exp (/ Pj(u)du> ds > 1, (1.12)
t—o0 h(t) 7(s)
t h(t)
limsup/ P(s)exp < Pj(u)du> ds >1— D(a), (1.13)
t—oo  Jh(t) 7(s)
t o h(s)_ 1 In A\
lim sup/ P(s)exp / Pj(u)du | ds > R D(w), (1.14)
t=o0 Jn(t) ~(s) Ao
t t 1
lim sup P(s)exp / Pj(u)du | ds > —— 1.15
t—oo  Jh(t) (®) 7(s) () D(a) ( )
and
t h(s) 1
lim inf P(s)exp / Pj(u)du | ds > —, (1.16)
e Jh(n) 7(s) ¢

implies that all solutions of (F) are oscillatory.
1.2. ADES

For Eq. (E'), the dual condition of (1.3) is

o) __m
lim su i(s)ds > 1, 1.17
wsup [ 37" aits) (1.17)
where 0;(t), 1 < i < m are nondecreasing and o(t) = mini<;<m,{0;(t)}, see [19],
paragraph 2.7.
In 1978 Ladde [18] and in 1982 Ladas and Stavroulakis [17] proved that if
T e 1
htrgégf t Zi:l qi(s)ds > o (1.18)
then all solutions of (E’) oscillate.
In 1990, Zhou [24] proved that if 0;(t) — ¢t < 0g, 1 <7 < m, and

iminf S gi(t) (0:(t) — £) > -, (1.19)

t—o0 =1 e

then all solutions of (E’) oscillate. (See also [5, Corollary 2.6.12])
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Assume that o;(t), 1 < i < m are not necessarily monotone. Set

pi(t) = érg} oi(s), t>ty and p(t)= \in pi(t), t>to (1.20)

and

by (t,s) := exp {/t Zm:l qi(C)dC}

bra(t, s) i= exp {/t Zzl 4:(O)be(t, Ji(C))dQ} , (1.21)

Clearly, p;(t), p(t) are nondecreasing and o;(t) > p;(t) > p(t) >t for all t > ¢,.
In 2016, Braverman, Chatzarakis and Stavroulakis [1] proved that if for some
reN

p(t) m
tmsup [ 30 0O (ple). (€ dC > 1. (1.22)
. o0
ti sup /t S GO (p(0).03(C)) d > 1 - D(B). (1.23)
o p(t) m 1
tmint [ 377 Qb (o000 d > (1.21)

then all solutions of (E’) oscillate.
In 2017, Chatzarakis [4] proved that if

U(t)_ U(S)_ o’(u)_
1+ [ @en (/ Q(u)exp< Qj1(£)d£> du) ds],

with Qy(t) = Q(t) = >_i", ¢i(t), then, for some j € N either one of the conditions

Q;(t) =Q(t)

p(t) o(s) _
limsup/ Q(s) exp Q;(u)du | ds > 1, (1.25)
t—oo Jt p(t)
p(t) o(s)
lim sup (s) exp / Q;(w)du | ds > 1— D(B), (1.26)
t—oo  Jt p(t)
p(t) _ o(s) _ 1
lim su s)ex (u)du | ds > ——, 1.27
ws [ Qe ([ G 55 (1.27)
p(t) a(s) _ 141
1imsup/ Q(s) exp ( Qﬂu)du) ds > l+lnk D(B) (1.28)
t—o0 t p(s) )\0

and

o p(t) o(s) 1
htrglogf ) Q(s) exp /p(s) Q;(u)du ds>g, (1.29)
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implies that all solutions of (E’) are oscillatory.
The purpose of this paper is to derive sufficient conditions for all solutions of (E)
and (E') to be oscillatory when the arguments are not necessarily monotone. Our

results essentially improve several known criteria existing in the literature.

2. MAIN RESULTS
2.1. DDES

Based on an iterative technique, we further study (F) and derive new sufficient os-
cillation conditions, involving lim sup and liminf, which essentially improve several
results in the literature.

We now cite three lemmas which will be used in the proof of our next results.
The proofs of them are similar to the proofs of Lemmas 2.1.1, 2.1.3 and 2.1.2 in [5],
respectively.

Lemma 1. Assume that h(t) is defined by (1.6). Then

t m t m
htrglorgf /T(t) Zi:l pi(s)ds = hgg)lf /h(t) Zi:l pi(s)ds. (2.1)

Lemma 2. Assume that x is an eventually positive solution of (E) and h(t) is
defined by (1.6). Then

Lo a(t)
htrgglf W0 > D(w). (2.2)

Lemma 3. Assume that x is an eventually positive solution of (E) and h(t) is
defined by (1.6). Then

.. x
htrgloglf ot

), o

where \g is the smaller root of the transcendental equation \ = e™.

Based on the above lemmas, we establish the following theorems.

Theorem 4. Assume that h(t) is defined by (1.6) and for some £ € N

t h(t) u
lim sup P(s)exp </ P(u) exp < Gd{)df) du) ds > 1, (2.4)

t—oo  Jh(t) (s) 7(u)

where

Go(t) = P(t)

1+ /T(t) P(s)exp (/T(S) P(u)exp ( o Ge1(£)d£> du) ds‘| . (2.5)
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with Go(t) = P(t {1 —|—f ) exp (/\0 fT(S (u)du) ds}, Pt) = Y pi(t) and

al

Ao is the smaller root of the tmnscendental equation A = e**. Then all solutions of

(E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solu-
tion z(t) of (E). Since —x(t) is also a solution of (E), we can confine our discussion
only to the case where the solution z(t) is eventually positive. Then there exists a
t1 > to such that x(¢) and = (7;(¢)) > 0 for all t > ¢;. Thus, from (E) we have

Pt ==3" pi®)r(n(t) <0 foralt>t,

which means that z(¢) is an eventually nonincreasing function of positive numbers.
Now we divide (E) by = (t) > 0 and integrate on [s, t], so

/ /21 7)%,

[ e [ (0, o) 2
. () o2 ()
/S () du < —/S P(u) () du.
Therefore
m 2 tP( )x(T(“))d
x(s) =/, x(u) ’
x(s) > x(t) exp (/ P(u)x:(;ég))du) . (2.6)
Since 7(s) < s < t, (2.6) gives
x(7(s)) > x(t) exp (/( )P(u)ng))du> . (2.7)

Integrating (F) from 7(t) to t, we have

" /(f)z7 1 7i(s))ds =0

t

z(t) —x(r(t)) + /(t) P(s)x (7(s))ds < 0. (2.8)

or

Combining (2.7) and (2.8), we have

x(t) — x(7(t)) + =(t) / P(s)exp (/ P(u)x;g))du> ds < 0.

7(t) 7(s)
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Multiplying the last inequality by P(t), we take

P(t)z(t) — P(t)z(r(t)) + P(t)x(t) / . P(s) exp ( / ( )P(u)xiT(S;)) du> ds < 0.

Furthermore,

Pl ==Y pt)r(n(t) < -z ()Y

Combining the inequalities (2.9) and (2.10), we have

m

pi(t) = —=P(t)x (7(t)) . (2.10)

i=1

2/ (t) + P(t)x(t) + P(t)z(t) /ét) P(s)exp </( )P(u)%du) ds < 0.

Since 7(u) < h(u), clearly

t t h
2 (t) + P(t)x(t) + P(t)x(t) P(s)exp / P(U)Mdu ds <0.
() (5) x(u)
Taking into account the fact that (2.3) of Lemma 3 is satisfied, the last inequality
becomes

t

2/ (t) + P(t)x(t) + P(t)z(t) P(s)exp (()\0 —€)

t

(1)

P(u)du) ds <0.
7(s)

Thus
S0+ P |1+ / L (()\0 ) /T ) P(u)du) ds] (1) <0,
() + Golt, )a(t) <0, (2.11)
with

Gott.) =P |14 [ P(s)exp <(/\0—e) ' P(u)du) ds].

(t) (s)
Applying the Gronwall inequality in (2.11), we obtain

¢
x(s) > x(t) exp (/ Go(f,e)d§> , t>s.
Thus
z(7(u)) > x(u) exp < Go(f,e)d§> . (2.12)
7(u)
Now we divide (E) by « (t) > 0 and integrate on [s, t], so

_ /St Z((;L)) du = /St Zilpl(u)x S—E(q;))du > /St P(u)x (T(u))du,
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o) t U)— - au t u) ex ' € ”
0 Z/S Plu=y 4 z/s P(u) p( T(U)Go(& )dg)a.

x(s) > x(t) exp (/ P(u)exp < ? )Go(é,e)d£> du) . (2.13)

Setting s = 7 (s) in (2.13) we take

x(7 (s)) > x(t) exp (/( )P(u) exp (/1: )Go(f,e)d§> du) . (2.14)

Combining (2.8) and (2.14) we obtain

t

z(t) — x(7(t)) + x(t) o P(s)exp (

t u

P(u)exp ( Go(f,e)d£> du) ds <0.

7(s) 7(u)

Multiplying the last inequality by P(t), we find
P(t)x(t) — P(t)x(7(t))

+ P(t)xz(t) /(t) P(s)exp (/( )P(u) exp (/1: )Go(f,e)d§> du) ds <0,

which, in view of (2.10), becomes

2 (O)+P(t)x(t)+P(t)x(t) /(t) P(s)exp ( ( )P(u) exp ( ' )Go(f,e)d£> du) ds <0.

T T(u

Hence, for sufficiently large ¢

1+ /T(t) P(s)exp (/T(S) P(u) exp (/T(u) Go(f,e)d§> du> ds‘| 2(t) <0,

2/ (t) + Gy (t, e)z(t) <0, (2.15)

Z'(t) + P(1)

or

where

1+ t P(s)exp ( t P(u)exp ( ' Go(f,e)d£> du) ds] :
7(t) 7(s) 7(u)

It becomes apparent, now, that by repeating the above steps, we can build inequalities

Gl(ta 6) = P(t)

on ' (t) with progressively higher indices Gy(t), ¢ € N. In general, for sufficiently large
t, the positive solution x(t) satisfies the inequality

xl(t) + Ge(t,e)z(t) <0, (£€N),
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where

Ge(t,e) = P(t) |1+ 1+/ P(s)exp ( ~ Plu)exp ( ’ Ge—l(&e)df) dU> dSH
7(t) 7(s) 7(u)
and
h(t) u
x(7(8)) > x(h(t)) exp ( " P(u) exp ( ( )Ge(§,€)d§> du) . (2.16)

Integrating (E) from h(t) to ¢, and using (2.16), we have

0 = a(t)— o (h(t)) + /h o L o)t (9)ds = () —2(h(0) + /h Pl (o)ds

t h(t) u
o) —ah@®) +2(h(t)) [ P(s)exp </ Pu) exp </( )Gg(f,e)d£> du> ds < 0.

h(t) (s)
(2.17)
The inequality is valid if we omit x(¢) > 0 in the left-hand side. Therefore

t h(t) uw
P(s)exp </ P(u) exp < Gg({,e)d{) du) ds — 11 <0,
h(t) 7(s) ()

which means that

t h(t) u
limsup/ P(s)exp / P(u)exp Ge(€,e)dE | du | ds < 1.
t—=oo Jh(t) 7(s) 7(u)

Since € may be taken arbitrarily small, this inequality contradicts (2.4).

a(h(t))

The proof of the theorem is complete. O

Theorem 5. Assume that h(t) is defined by (1.6) and for some £ € N

t=o0 Jh(t) (s) (u

where Gy is defined by (2.5). Then all solutions of (E) are oscillatory.

t h(t) u
lim sup P(s)exp (/ P(u) exp ( )Gg(f)d§> du) ds >1— D(a), (2.18)

Proof. Let & be an eventually positive solution of (E). Then, as in the proof of
Theorem 1, (2.17) is satisfied, i.e.,

t h(t) u
z(t) —x(h(t)) +z(h(t)) - P(s)exp </( : P(u)exp < ( )Gd{,e)d{) du) ds <0.

That is,

t h(t) U J,‘(t)
/h(t) P(s)exp </T(S) P(u)exp < " Gg({,e)d{) du) ds <1-— )’
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which gives

t h(t) w x(t)
1imsup/ P(s)exp P(u)exp Ge(& e)dE | du | ds < 1—liminf ———.
t—oo  Jh(t) (#) < 7(s) @) 7(u) &) t—oo z(h(t))
(2.19)

By combining Lemmas 1 and 2, it becomes obvious that inequality (2.2) is fulfilled.
So, (2.19) leads to

t h(t) u
lim sup P(s)exp / P(u)exp Ge(€,e)dE | du | ds <1 — D(w).
t—o0 h(t) 7(s) 7(u)

Since € may be taken arbitrarily small, this inequality contradicts (2.18).

The proof of the theorem is complete. O

Theorem 6. Assume that h(t) is defined by (1.6) and for some £ € N
t t u 1
lim sup P(s)exp / P(u) exp Ge(&)d¢ | du | ds > —— — 1, (2.20)
t—oo Jn(t) (s) (u) D(a)

where Gy is defined by (2.5). Then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solu-
tion x of (E) and that z is eventually positive. Then, as in the proof of Theorem 1,

for sufficiently large t we have

(s) 7(u)
Integrating (F) from h(t) to t and in view of (2.21), we have

0 =a(t) = a(h(t) + | o o o) () ds 2 (0) = (A1)

+ P(s)x(1(s)) ds

(7 (s)) > xz(t) exp (/ P(u) exp ( ' Gg(f,ﬁ)df) du) . (2.21)

h(t) z(h(t)) (s) (u)
That is, for all sufficiently large ¢ it holds

' ' “ z(h(t)
/h(t) P(s)exp </T(S) P(u)exp < . Ge(§,€)d§> du) ds < o) 1

and therefore

lim sup /h ~ P(s)exp < P(u) exp < ’ Ge(§a€)d§> du> ds < limsup 010

=00 (t) 7(s) 7(u) t—oo  x(t)

(2.22)

+ z(h(t)) P(s) z(t) exp </ P(u) exp < ' Gg(f,ﬁ)df) du) ds.
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By combining Lemmas 1 and 2, it becomes obvious that inequality (2.2) is fulfilled.

So, (2.22) leads to

t t u 1
lim sup P(s)exp / P(u)exp Gy(&e)dE | du | ds < —— —
t—oo  Jh(t) (s) (u) D(e)

Since € may be taken arbitrarily small, this inequality contradicts (2.20).

The proof of the theorem is complete.

Theorem 7. Assume that h(t) is defined by (1.6) and for some £ € N

t h(s) u
lim sup P(s)exp </ P(u)exp < Gg(f)d£> du) ds > 1—1—/\17n)\0
) T ) 0

t—o0 h(t (s) T(u

_D(a)!

(2.23)

where Gy is defined by (2.5) and Ao is the smaller root of the transcendental equation

X = e, Then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory so-

lution z of (E) and that x is eventually positive. Then, as in the previous theorems,

(2.21) holds.
Observe that (2.3) implies that for each € > 0 there exists a t. such that

N (10)

(t)
Noting that by nondecreasing nature of the function z(h®) 4y s, it holds

z(h(t))
z(t)

for all t > ..

IN

te <h(t)<s<t,

(2.24)

in particular for € € (0, Ao — 1), by continuity we see that there exists a t* € (h(t), ]

such that
1< )X—€e=

By (2.21), it is obvious that

h(s)

(1 (s)) > z(h(s)) exp (/( : P(u)exp < 1: )Gd{,e)d{) du) .

Integrating (F) from t* to ¢ and using (2.26) we have
t m

0 = a(t)—at )+/t Zizlpi(s)x(n(S))ds
¢

(Zil Pi(s)) x(7(s))ds

Y

x(t) — x(t*) + /

t*

(2.25)

(2.26)
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= z(t)—z(t") + /f P(s)x(7(s))ds

u

Y

tr (s)

h(s)
x(t) — z(t*) + x(h(t))/ P(s)exp </ P(u)exp < »

Go(¢, e)df) du) ds

or

t h(s) u x(t” x
/t* P(s)exp </( ) P(u)exp </( )Ge(ﬁye)d§> du) ds < x(l(f(ti) - x(h(g))

In view of (2.25) and Lemma 2, for the e considered, there exists ¢. > t. such that

t h(s) u 1
/ P(s)exp </ P(u)exp ( Gg(f,e)df) du) ds < —D(a)+e, (2.27)
t* 7(s) 7(u) Ao — €

for t > t.
Dividing (F) by x(t) and integrating from h(t) to t* we find

o (s)
- /h(t) z(s) s
- /h(t) Z:lpi(s)x(;i(s()s))ds > / (Zzlpi(s)) x(;(S))ds (2.28)

h(t)

t* T 3 h(s) u
> P(s) (h(s)) exp </ P(u)exp < Gg(f,&)df) du) ds.

0 (s) (s) (u)

By (2.25), for s > h(t) > t., we have % > Ao — €, so from (2.28) we get

t* h(s) “w : a'(s)
(Mo — €) » P(s) exp (/T(S) P(u) exp ( " Ge(f,e)d§> du) ds < — /h(t) 205) ds.

Hence, for all sufficiently large ¢ we have

t* h(s) u
P(s)exp </ P(u)exp < Gg({,e)d{) du) ds
h(t) 7(s) 7(u)

1 Tals) 1 a(h(t) (A —e)
/h ds = In

S T 20 T e N alt) T ho—c

ie.,

¢ h(s) v In (Ao — €)
/h(t) P(s)exp </T(S) P(u)exp (/T(u) Gg(f,e)df) du) ds < Y (2.29)

Adding (2.27) and (2.29), and then taking the limit as ¢ — oo, we have
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t h(s) u
lim sup P(s)exp (/ P(u) exp ( Gg(f,ﬁ)df) du) ds
t—o00 h(t) 7(s) 7(u)

- l1+ln(do—¢) 1-a—-V1-2a-a?
- Ao — € 2

+ €.

Since € may be taken arbitrarily small, this inequality contradicts (2.23).

The proof of the theorem is complete. O

Theorem 8. Assume that h(t) is defined by (1.6) and for some £ € N

t h(s) u 1
lim inf P(s)exp </ P(u)exp < Gg(f)d{) du) ds > . (2.30)
) )

t—o0 h(t 7(s) T(u

where Gy is defined by (2.5). Then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solu-
tion z(t) of (E). Since —x(t) is also a solution of (F), we can confine our discussion
only to the case where the solution z(t) is eventually positive. Then there exists
t1 > to such that z(t), x (7;(¢)) >0, 1 <i <m for all t > ¢;. Thus, from (E) we have

2(t) = — Zflpi(t)x (r:(t)) <0, forallt>t,

which means that z(t) is an eventually nonincreasing function of positive numbers.
Furthermore, as in previous theorem, (2.26) is satisfied.
Dividing (F) by «(t) and integrating from h(t) to t, for some to > t1, we have

(aln(t n(s)
n () = [, Srpe g
w6 [ G
= /h(t) (Zizlpz(s)) z (s) ds-/h(t)P( ) x(s) ds.
Combining the inequalities (2.26) and (2.31) we obtain
n z(h(t)) t s z(h(s)) ex " u)ex ' € u | ds
( x(t) )z/h(t)PU e p(/T@ P(u) p< [ aue )d&)d ) d

From (2.30), it follows that there exists a constant ¢ > 0 such that for a sufficiently
large ¢ holds

t h(s) u
P(s)exp (/ P(u)exp ( Gg(f)d{) du) ds >c> 1
h(t) (s) (u) ¢

Choose ¢ such that ¢ > ¢’ > 1/e. For every € > 0 such that ¢ — e > ¢/ we have

(2.31)

t h(s) u 1
P(s)exp </ P(u)exp < Gg(f,e)df) du) ds>c—e>c >=. (2.32)
h(t) 7(s) 7(u) e
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Hence
z(h(t)) /
ln( o) )Zc, t>ts
Thus
AL0) S
x(t) — 7 ’

which implies for some t > t4 > t3
x(h(t)) > (ec)x(t).

Repeating the above procedure, it follows by induction that for any positive integer
k,

z(h(t) > (ed)*, for sufficiently large t.
(t)
Since ec’ > 1, there is k € N satisfying k£ > 2(In(2) — In(¢’))/(1 4+ In(¢)) such that for
t sufficiently large
() o oy (2Y
> — ] . 2.
o) > (ec)” > " (2.33)

Taking the integral on [h(t),t], which is not less than ¢/, we split the interval into two
parts where integrals are not less than ¢’/2, let t,,, € (h(t),t) be the splitting point:

Sy PGsyexp ([15) Pwyexp ([, Gel€ e)de) du) ds > 5,
(2.34)

fttm P(s)exp (f‘l'h((‘?;) P(u)exp (fTu(u) Gu(&, €)d§) du) ds > 5.

Integrating (F) from t,, to t, gives

o) = altn) + [ 7 plshal(s) = 0

2(t) — 2(tm) +/tt (37 mils)) alr(s)) <.
Thus .
x(t) — x(tm) + /tm P(s)x(r(s)) <0,

t h(s) u
x(t) — x(tm) + x(h(t))/t P(s)exp </( : P(u)exp ( ( )Gg(f,e)df) du) ds <0.

m

The strict inequality is valid if we omit z(¢) > 0 in the left-hand side:

t h(s) U
—2(tm) + z(h(t)) /tm P(s)exp (/T(S) P(u)exp ( o Gg({,e)d{) du) ds < 0.
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Together with the second inequality in (2.34), implies
x(tm) > —x(h(t)). (2.35)

Similarly, integration of (E) from h(t) to t, with a later application of (2.26)
leads to

tm h(s) u
() —x(h(t))+2(h(tm)) - P(s)exp (/( : P(u) exp ( ( )Gg(ﬁ,ddf) du) ds <0.

The strict inequality is valid if we omit x(t,,) > 0 in the left-hand side:

tm h(s) "
—x(h(t)) + z(h(tm)) P(s)exp / P(u) exp Ge(€,e)dE | du | ds < 0.
h(t) 7(s) ()

Together with the first inequality in (2.34) implies

/

z(h(t)) > %x(h(tm)). (2.36)

Combining the inequalities (2.35) and (2.36) we obtain
2 2\?
e(h(tn)) < Sa(h) < (2) altn)

which contradicts (2.33).
The proof of the theorem is complete. O

2.2. ADVANCED DIFFERENTIAL EQUATIONS

Similar oscillation conditions for the (dual) advanced differential equation (E’) can
be derived easily. The proofs are omitted, since they are quite similar to the delay

equation.

Theorem 9. Assume that p(t) is defined by (1.20) and for some £ € N

p(t) a(s) o(u)
lim sup/ Q(s)exp < Q(u) exp (/ Rd{)df) du) ds > 1, (2.37)
t P u

t—o00 (t)

where

Ry(t) = Q1)

p(t) o(s) o(u)
1+ (s)exp < (u) exp ( / R“(é)d5> dU> ds] ;
t t u

(2.38)
with Ro(t) = Q(t) [1+ [V Q(s)exp (o [ Qu)du) ds], Q(t) = 7L, ailt) and
o is the smaller root of the transcendental equation A\ = e>. Then all solutions of

(E") are oscillatory.
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Theorem 10. Assume that p(t) is defined by (1.20) and for some £ € N

p(t) o(s) o (u)
limsup/t Q(s) exp < Q(u) exp </ Rg(f)d{) du) ds >1-D(p), (2.39)
P u

t—o00 (t)

where Ry is defined by (2.38) Then all solutions of (E') are oscillatory.

Theorem 11. Assume that p(t) is defined by (1.20) and for some £ € N

i p(t) o(s) o(u) R d d d 1 1

(2.40)
where Ry is defined by (2.38) Then all solutions of (E') are oscillatory.

Theorem 12. Assume that p(t) is defined by (1.20) and for some £ € N

(t) o(s) o(u)
lim sup /p t Q(s) exp < Q(u) exp (/ Rg(f)d{) du) ds > M—D(ﬁ),
t—oo Jt p(s) i Ao
(2.41)

where Ry is defined by (2.38) and X\g is the smaller root of the transcendental equation
X = ePr. Then all solutions of (E') are oscillatory.

Theorem 13. Assume that p(t) is defined by (1.20) and for some £ € N

p(s)

p(t) a(s) o (u) 1
lifrginf Q(s)exp < (u) exp (/ Rd{)df) du) ds > o (2.42)

where Ry is defined by (2.38) Then all solutions of (E') are oscillatory.
2.3. DIFFERENTIAL INEQUALITIES

A slight modification in the proofs of Theorems 1 [6]—5 [10] leads to the following
results about differential inequalities.

Theorem 14. Assume that all the conditions of Theorem 1 [6] or 2 [1] or 8 [8] or
4 [9] or 5 [10] hold. Then

(i) the delay [advanced] differential inequality

)+ @) <0 [ -3 at)z (@) > 0], vi>t,
has no eventually positive solutions;

(i1) the delay [advanced] differential inequality

O+ )20 [0 -

has no eventually negative solutions.

m

" @iz (i) < 0], V=,
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3. EXAMPLES

In this section, examples illustrate cases when the results of the present paper imply
oscillation while previously known results fail. The calculations were made by the use
of MATLARB software.

Example 15. Consider the DDE

177 59
/ — p— > .1
' (t) + 20003:(7’1(75)) + 20003:(7’2(75)) 0, t>0, (3.1)
with (see Fig. 1, (a))
—3t+ 24k — 2, ift € [6k,6k + 1]
5t — 24k — 10, if t € [6k + 1,6k + 2]
k if ¢ k+ 2,6k
iy =4 % ifte(bk+2,6k+3 g () =71 (t) — 0.5
—2t+ 18k +6, ift € [6k+ 3,6k + 4]
6t — 30k — 26, if t € [6k + 4,6k + 5]
6k + 4, if t € [6k + 5,6k + 6]

where k € Ny and Ny is the set of non-negative integers.

rs
T s
¢
& 34 t
i Tﬁﬁ?lﬁdlﬂlll!

13/3

5 6 7 B Y W 11 12

(r) ()

Figure 1: The graphs of 71 (¢) and hq(t)
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By (1.6), we see (Fig. 1, (b)) that

6k — 2, if t € [6k, 6k + 8/5]
5t — 24k — 10, if t € [6k + 8/5,6k + 2]
hi(t) =< 6k, if t € 6k +2,6k+13/3]  and ha(t) = hi(t) — 0.5
6t — 30k — 26, ift e [6k+ 13/3,6k+ 5]
6k + 4, if t € [6k + 5,6k + 6]

and consequently

h(t) = max {h;(t)} = hi(t) and 7(t) = max {r(t)} = 7 (t).

1<i<2 1<i<2

Observe that the function Fy : [0,00) — R4 defined as

t h(t) u
Fyi(t) = /h(t) P(s)exp </( ) P(u)exp < ( )Gg(f)d§> du) ds

attains its maximum at ¢ = 6k + 13/3, k € Ny, for every ¢ > 1. Specifically, by
using algorithms on MATLAB software and taking into account the fact that P(t) =
25:1 pi(t) = 0.118, we obtain

6k

P(u)exp ( ' Gl(f)d§> du) ds
7(s) 7(u)

~ 1.0461.

6k+13/3

Fi(t = 6k + 13/3) = /6 P(s) exp (

k

Thus
limsup Fy(t) ~ 1.0461 > 1,

t—o0
that is, condition (2.4) of Theorem 1 is satisfied for £ = 1, and therefore all solutions
of (3.1) oscillate.

Observe, however, that

6k+13/3 _ o
limsup/ Z P ds = hmsup/ Z 1pi(s)ds =0.5113 < 1,
h(t) i= 6

t—o0 k—s 00 k 1=

6k+5 o

1
= liminf s)ds = liminf i(s)ds =0.118 < —,
¢S /(t Zl 1P R 6k+4 Zi:lp (s)ds e

lim inf ’ pi(t) (t — (1))

t—o0 =1

177 59
005 (0 + g (= ()~ 05) |

= liminf [0.118 (¢ — 1(¢)) + 0.01475] = lim inf [0.118 (¢ — 71(1))] + 0.01475

t—o00

= liminf {
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1
= 0.118- liminf (1 — (1)) +0.01475 = 0.118 - 1 + 0.01475 = 0.13275 < —.

Also, observe that the function @, : [0,00) — R defined as

0. = [ ST miQan(ht) w()ic

attains its maximum at ¢ = 6k 4+ 13/3 and its minimum at ¢t = 6k + 5, k € Ny, for
every r € N. Specifically,

6k+13/3

6k + 13/3) = / [p1()ar (6%, 71(0)) + pa(C)a (6, 72())] dC

6k

Oyt

6k+1
- / [p1(O)ar (65, 71(€)) + pa(Q)ar (6, 72(C))) dC

k

6k+2
T / [P (C)ar (6%, 70(C)) + pa(C)ar (6k, 72(0))] dC

k+1

6k+3
" / [p1(O)ar (6k,71(0)) + pa(Q)ar (6k, 72(C))] dC

k+2

6k+4
" / [p1(O)ar (6k,71(0)) + pa(Q)ar (6k, 72(0))] dC

k+3

6k+13/3
+ / [p2(Q)an (6%, 71(0)) + pa(Q)ar (6k, 72(0))] dC

k+4
0.6452

12

and

6k+5
Dy (t 6k +5) 2/6 [p1(Q)a1(6k +4,71(C)) + p2(Q)ar (6k + 4, 72(C))] d¢

k+4

2

~ 0.1743.

Thus
limsup,_, . P1(¢) ~ 0.6452 < 1

lm infy_ o0 Gy (t) ~ 0.1743 < 1/e

and
0.6452 < 1 — D(ar) ~ 0.9920.

Also, it is obvious that

t
lim sup /h . S p(Qar(h(Q). 7(C))dC < limsup @ (1) = 0.6452

t—00 t—o0
1+1InA
1A

— D(a) ~ 0.9837,
Ao

where \g = 1.14461 is the smaller root of ¢%118* = ).
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Finally, by using algorithms on MATLAB software, we obtain

t h(t)
1imsup/ P(s)exp </ Pj(u)du> ds ~ 0.7961 < 1,
h T

t=o0 Jh(t) (s)

0.7961 < 1 — D(a) ~ 0.9920,

t—o0 (t) (s) 0

b hle) 1+1n\

1imsup/ P(s)exp </ Pj(u)du> ds ~ 0.6384 < % — D(«) ~ 0.9837,
h T

where \g = 1.29586 is the smaller root of e = X\,

t o t - 1
limsup/ P(s)exp / Pj(u)du | ds ~2.5211 < —— ~ 125.5436
t—oo  Jn(t) 7(s) D(a)

and
t h(s) 1
lim inf P(s)exp / Pj(u)du> ds ~0.1259 < —.
ER O 7(s) ¢
That is, none of the conditions (1.3), (1.4), (1.6), (1.8) (for r = 1), (1.9) (for r = 1),
(1.10) (for r = 1), (1.11) (for r = 1), (1.12) (for j = 1), (1.13) (for j = 1), (1.14) (for
j=1), (1.15) (for j = 1) and (1.16) (for j = 1) is satisfied.

Notation. It is worth noting that the improvement of condition (2.4) to the
corresponding condition (1.3) is significant, approximately 104.6%, if we compare
the values on the left-side of these conditions. Also, the improvement compared to
conditions (1.8) and (1.12) is very satisfactory, around 62.14% and 31.4%, respectively.
In addition, observe that conditions (1.8)—(1.9) and (1.10)—(1.16) do not lead to
oscillation for first iteration. On the contrary, condition (2.4) is satisfied from the first
iteration. This means that our condition is better and much faster than (1.8)—(1.9)
and (1.10)—(1.16).

Example 16. Consider the ADE

2 (t) — %x(al (t) — 2—10x(02(t)) =0, t>0, (3.2)

with (see Fig. 2, (a))

At —21k+1, ift € [Tk, Tk + 1]
—t+14k+6, ifte[Tk+1,7k+2
Tk +4, ifte[tk+2,7k+3
o1(t)=4¢ 3t—14k—5, ifte[Tk+3,7k+4 and  o3(t) = o1(t) + 0.5
—t+14k+11, ifte[Tk+4,7k+5
2t — Tk — 4, ifte[Tk+5,7Tk+6
[

7k + 8, ift e [7hk+6,7k+7
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]
L 2 1 4 567 59 W@ R B8 T 3&33 67 8 0 B2 O ilie

1

Figure 2: The graphs of o1 (t) and p(¢)

where k£ € Ny and Ny is the set of non-negative integers.
By (1.20), we see (Fig. 2, (b)) that

At —21k+1, ifte [Tk, Thk+3/4]

[
Th + 4, it t € [Tk +3/4,7k + 3]
3t — 14k — 5, if ¢ € [Th+3,7k +11/3]
t) = d t) = t)+0.5
PO =N e etz kes 4 @ =n0
% —Th—4, iftc[Th+5,7Tk+ 06|
Tk +8, if ¢ € [Tk + 6,7k + 7]

and consequently

pt) = min {pi(t)} = p1(t) and  o(t) = min {oi(t)} = ou(t).

Observe, that the function Fy : Ry — R defined as
p(t) a(s) o(u)
Fy(t) = (s) exp wesp ( [ Ri(e)de | du ) s
t p(t) w

attains its minimum at ¢ = 7k + 3/4, k € Ny, for every ¢ € N. Specifically, by using
an algorithm on MATLAB software and taking into account the fact that Q(t) =
Zle qi(t) = 0.2, we obtain

Tk+4

a(s) o(u)
Fi(t=Tk+3/4) = /7k+3/4 Q(s) exp < " (u) exp </ Ry (£)d§> du) ds
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~ 1.01496

and therefore
limsup Fy(t) ~ 1.01496 > 1.

t—o0
That is, condition (2.37) of Theorem 6 is satisfied for £ = 1, and therefore all solutions
of (3.2) oscillate.

Observe, however, that

p(t) 2 Tk+4
lim sup/ Z qi(s)ds = lim sup/ 0.2ds = 0.65 < 1,
t 7

t—o00 =1 k—o00 k+3/4

o(t) m Tk+4 1
lim inf i = lim inf 0.2ds =0.2 < —,
imin /t Zizlq (s)ds = limin /7 s <<

t— 00 k—oco k43

o 2 o 3 1
htrgégf - qi(t) (o:(t) —t) = htrglogf [2—0 (o1(t) —t)+ 20 (o1(t) +0.5—1)

= litrginf [0.2 (o1 (¢) — t) + 0.025]
= litrginf [0.2 (o1 (t) — ¢)] + 0.025

1
= 0.2-1+0.025=0.225< .

Also, observe that the function W, : [0, 00) — R defined as

p(t)
Wiy = [ alb o000 dc

1=

attains its maximum at ¢t = 7k + 3/4 and its minimum at ¢t = 7Tk+ 3, k € Ny, for every
r € N. Specifically,

Tk+4

Wit =Tk +3/4) = /Ck+3/4[q1(<)b1(7k +4,01(¢)) + @2(O)b1(Tk + 4, 02(¢))] dC

Thtl
/7 [q1(Q)b1(Tk 4 4,01(C)) + q2()b1(Tk + 4, 02(C))] d¢

k+3/4

Th+2
+/ [q1(Q)b1(Tk 4+ 4,01(C)) + q2(Q)b1 (Tk + 4, 02(C))] dC
Tht1

Tk+3
+ / [91()bn (Tk +4,1(C)) + q2(C)br (Th + 4, 52(0))] dC
Tk+2

Tk+4
+ / [g1(O)b (Th + 4,01(C)) + a2(C)br (Th + 4, 02(C))] d
Tk+3

~ 0.7705

Tk+4

Wit =Tk+3) = /7 Ly OB Th+ 4.01(0) + Q)b (Th -+ 4, 02(C))] dC = 0.28125
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Thus
limsup,_, . Wi(t) ~0.7705 < 1

lim inf,_ 00 Wi (£) ~ 0.28125 < 1/e

and
0.7705 < 1 — D(B) ~ 0.9742.

Finally, by using an algorithm on MATLAB software, we obtain

ot _ os) _
lim sup/ Q(s) exp ( Ql(u)du> ds ~ 0.8687 < 1,
t P

t—o00 (t)

0.8687 < 1 — D(B) ~ 0.9742,

p(t) o(s) 1
lim sup (s)exp Qi (u)du | ds ~3.7953 < —— ~ 38.71,
t—o00 t t D(ﬁ)

where \g = 1.29586 is the smaller root of e* = ).

t— 00 + (g) 0

p(t) o(s) 141
lim sup (s) exp ( Ql(u)du> ds ~0.7234 < 4‘)\711)\0 — D(pB) ~0.9458
P

and
p(t) o(s) 1
lim inf Q(s) exp Q(u)du | ds ~0.2144 < —.
t=eo Jy < p(s) ) €
That is, none of the conditions (1.17), (1.18), (1.19), (1.22) (for » = 1), (1.23) (for
r=1), (1.24) (for r = 1), (1.25) (for j = 1), (1.26) (for j = 1), (1.27) (for j = 1),
(1.28) (for j = 1) and (1.29) (for j = 1) is satisfied.

Notation. It is worth noting that the improvement of condition (2.37) to the
corresponding condition (1.17) is significant, approximately 56.14%, if we compare
the values on the left-side of these conditions. Also, the improvement compared to
conditions (1.22) and (1.25) is very satisfactory, around 31.73% and 16.84%, respec-
tively. In addition, observe that conditions (1.22)—(1.24) and (1.25)—(1.29) do not
lead to oscillation for first iteration. On the contrary, condition (2.37) is satisfied
from the first iteration. This means that our condition is better and much faster than
(1.22)—(1.24) and (1.25)—(1.29).

Remark 17. Similarly, one can construct examples to illustrate the other main
results.
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