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ABSTRACT: This study proposes a model that describes the dynamics of rotavirus

and malaria co-epidemics with vaccination using systems of nonlinear ordinary dif-

ferential equations. We first study the sub-model of rotavirus-only in order to gain

insights into how vaccination impacts on transmission dynamics of rotavirus sepa-

rately, thereafter we study the full model. The basic reproduction numbers of the

sub-models of rotavirus-only and malaria-only are determined and used to establish

the existence and analyze the stabilities of equilibria. The model is extended to explore

the effects of rotavirus and its vaccination on rotavirus-malaria co-infection dynam-

ics. Results show that the rotavirus-only model is globally asymptotically stable when

the reproduction number, Rr is less than one while the co-infection model is found

to exhibit a backward bifurcation. Further analysis indicate rotavirus vaccination

would effectively reduce co-infections with malaria. We carry out numerical simula-

tions to illustrate the potential impact of the vaccination scenarios and to support

our analytical findings.
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1. INTRODUCTION

Malaria and rotavirus co-infection continues to pose public health burden worldwide

and is endemic in developing countries [2]. Malaria is a vector-borne infectious dis-

ease that is caused by the protozoa plasmodium transmitted to vertebrates by an

infected female genus Anopheles mosquito [14]. The infected female genus Anopheles

mosquito ingests gametocytes (parasites) from a malaria infected person when it feeds

on human blood. There are four species of parasites that account for most human

malaria infections worldwide, namely; plasmodium malariae, plasmodium falciparum,

plasmodium ovale and plasmodium vivax. But the one that causes the greatest num-

ber of deaths and clinical cases in Africa and the most common cause of malaria in

the tropics is plasmodium falciparum [15]. Malaria is the highest parasitic killer in the

world with around 350 - 500 million episodes of clinical malaria reported and about

700,000 - 2.7 million deaths attributed to it every year, 75% of whom are African

children under the age of five [1]. In Kenya, it is the leading cause of mortality and

morbidity in children [17]. The disease accounts for 30% to 50% of all outpatient vis-

its, 20% of all hospitalizations and 20% of all deaths in children below the age of five.

Malaria symptoms include fever, severe headache, nausea, vomiting, loss of appetite,

back pains, increased sweating and chills [19]. The disease is however preventable

and curable. Prevention against malaria transmission can be achieved through use of

treated mosquito nets and insect repellents in regions where the disease is endemic.

Other mosquito control strategies such as draining of stagnant water and spraying of

insecticides where mosquitoes breed can also help reduce malaria transmission.

Rotavirus on the other hand is a virus of the gastrointestinal tract that causes acute

gastroenteritis infections and diarrhea in children under the age of five [20]. It is an

infectious disease that leads in mortality and morbidity among children in develop-

ing countries. The disease accounts for 6% of diarrhea cases and 20% of deaths in

children globally [21]. Rotavirus causes severe infection which can lead to severe de-

hydration and electrolyte imbalance, and even death if the situation is not promptly
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corrected. Over 2.5% of all children admissions to health facilities worldwide are due

to rotavirus infection with over 600,000 deaths caused by it every year[6]. The disease

transmission occurs by the fecal-oral route if contact occurs and through contaminated

environment to person and possibly by respiratory route [22, 23]. Majority of children

globally naturally acquire rotavirus infection once before they turn five, and infection

can occur despite good hygiene and clean water supply [14]. In most cases rotavirus

infection is diagnosed clinically. 38% of children are protected against any subsequent

rotavirus infections once a single natural infection occurs [9]. Studies show that re-

infection does occur, though subsequent infections are said to be less severe due to the

immunity that develops with each infection [7]. Infants below 3 months old are less

likely to be infected due to protection by maternal antibodies while being breastfed

[6]. Usually, about 1 to 3 days after exposure to rotavirus infection, symptoms which

include fever, vomiting, watery diarrhea, abdominal cramps and nausea do appear

which may last eight days [3]. Previous studies show that rotavirus prevention and

control may not only be achieved by maintaining high standards of hygiene, water

supply or sanitation but also by using recommended rotavirus vaccines to prevent

acute infections [20].

Because of the great burden of rotavirus and malaria diseases globally, it is important

to understand the biological complexity of their transmission dynamics and to come

up with effective measures for their control. Despite the incalculable pain caused

and the countless challenges by the coexistence of rotavirus and malaria infections

worldwide, very little literature is available on the mathematical models for their

co-infection dynamics. Previous works exploring the synergy between rotavirus and

malaria in sub-Saharan Africa indicate that infection with malaria contributes to the

increase in incidence of rotavirus in the region [14, 3, 7]. Recent research conducted in

Ghana showed that out of the 243 children who were examined for rotavirus-malaria

infections, 43 were found to be co-infected [24]. There is an increase in susceptibility

to bacterial infections in children with malaria especially in malaria endemic areas,

and this is due to immunosuppression resulting from acute malarial parasitemia [7].

This synergy between malaria and rotavirus has not been fully explored by the use of

mathematical models. Only a handful models exist in the literature that attempted

to investigate the dynamics of malaria and rotavirus co-infections.

Recently, Omondi et al. [7] modelled malaria and rotavirus co-infection but ignored

a key element of the epidemiology of the two epidemics, basically the inclusion of

vaccination for the rotavirus disease. Also, a mathematical model for rotavirus and

malaria co-infections was developed in [14] that focused on the estimation of the ba-

sic reproduction number. In [3], a mathematical model for rotavirus infection with

vaccination was formulated and studied. In an attempt to determine the innate char-
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acteristic of rotavirus infection in a population, the authors fitted real data to the

model and established that vaccination does control rotavirus infection, and further

recommended that vaccination be implemented at birth if possible so as to effectively

control the disease. A rotavirus epidemic model was studied in [25] with application

of optimal control theory where it was established that multiple control strategies are

more effective than a single control strategy. This study is thus aimed at deriving a

model for rotavirus-malaria co-infection dynamics with vaccination so as to examine

the effects of vaccination in altering population dynamics.

The rotavirus-malaria co-infection model that we analyze in this study is an extension

of the equations introduced by Omondi et al. [7] and Mbete et al. [14]. Our model is

distinct from the ones discussed in [14, 7] in that we have included vaccination for the

rotavirus disease and excluded the direct recovered-to-susceptible recovery that the

model of Mbete et. al [14] contains. This assumption is realistic because most infected

people recover with temporary immunity from infection before becoming susceptible

again. The works by Omondi et al. [7] have included a class for individuals who are

latently infected with rotavirus, which in our case is excluded. This is because the

incubation period for rotavirus is very short (24 to 72 hours) [3]. Unlike the model

presented in [7], the malaria component of our model takes the form of a susceptible-

infected-recovered (SIR) model for the human hosts and only susceptible-infected (SI)

model for the vector hosts.

The structure of the paper is as follows. In this section we have given a brief back-

ground to the study including related previous works and our motivation behind the

execution of this study. In the next section we formulate and describe the model.

In Section 3, we present the basic properties (invariant region, positivity and bound-

edness of solutions) of the full model. Dynamics of rotavirus-only sub-model are

discussed in Section 4. In Section 5, we carry out an analysis of the full model. Sec-

tion 6 presents our numerical simulations results and discussions. Finally, we conclude

this work in Section 7.

2. MODEL DESCRIPTION AND FORMULATION

The malaria component of the co-infection model derived in this paper follows that of

Ross-Lotka model [26] where both human and vector hosts take the form susceptible-

infected (SI). We exclude exposure stage for the malaria model because we assume

that humans exposed to malaria have a high probability of surviving till infectious

state or showing symptoms of infection with malaria. This assumption is viable since

malaria-exposed humans are neither infectious nor die as a result of the disease.
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We subdivide the total human population, Nh at time t into six distinct sub-populations,

namely: susceptible humans to all pathogens, Sh humans vaccinated against rotavirus

VR, humans infectious with malaria IM , humans infectious with rotavirus IR, those

infectious with both malaria and rotavirus IMR and removed or recovered, R. Our

model assumes that infected humans recover with temporary immunity from infec-

tion before becoming susceptible again, and so we exclude the direct recovered-to-

susceptible recovery in our model. Susceptible humans are infected with malaria

after infective bites by malaria infectious female anopheles mosquitoes with force of

infection λM . Susceptible humans are assumed to acquire rotavirus infection through

contact with rotavirus infectious humans with a force of infection λR. We exclude

the exposure stage for rotavirus infection due to the very short incubation period

(24 to 72 hours) of the disease [3]. The model explores the impact of rotavirus vac-

cination to newborns and vaccination of susceptible population. Some babies may

develop some immunity to infection with rotavirus from maternal antibodies because

of breastfeeding [27]. We thus have,

Nh = Sh + VR + IM + IR + IMR +R (1)

Likewise, the mosquito population, Nv at any time t is subdivided into susceptibles

Sv, the mosquito population that is not infected with malaria but may if it bites a

malaria infectious human and Iv, malaria infectious mosquitoes, those that can infect

susceptible humans if they bite them. Again, at any given time, each mosquito exists

in only one of the two stated classes. Thus, we have

Nv = Sv + Iv (2)

Susceptible humans are infected with malaria given that a bite by a malaria infectious

mosquito occurs at a force of infection denoted by

λM =
βmbmIv

Nh
(3)

where βm is the probability of transmission for malaria in humans and bm is the rate at

which the infectious female Anopheles mosquito bites. The rate at which susceptible

mosquitoes are recruited is Λv, and they get infected with malaria after effectively

biting malaria infectious humans to progress to infectious mosquito compartment, Iv

at a rate

λv = βvbm
(IM + θvIMR)

Nh
(4)

where βv is the probability of transmission for malaria in mosquitoes and θv models

the increased probability of infection of mosquitoes by humans who are infectious with

both malaria and rotavirus as opposed to getting infected by those infectious with

malaria only [28]. We assume that the dually infectious humans can infect mosquitoes
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with malaria parasites only.

Susceptible humans acquire rotavirus infection at a rate

λR = βR
(IR + ϑIMR)

Nh
(5)

where βR is the effective contact rate with humans infectious with rotavirus and the

parameter ϑ ≥ 1 accounts for the fact that the rotavirus-malaria dually infectious

humans are more infectious than those infected with rotavirus only [7].

We assume that disease transmission occurs in an open environment as the human

population keeps changing due to immigration and emigration and birth and death

that do take place in the population. Therefore, recruitment rate of susceptible hu-

mans is given by (1 − ρ)Λh, where 0 < ρ < 1 represents the proportion that is

vaccinated at birth. Vaccination of susceptible takes place at a rate γ. Rotavirus

vaccinated humans are assumed to be infected with rotavirus via a force of infection

(1 − ψ)λR, where 0 < ψ < 1 is the efficacy of the vaccine. Because of waning effect

of vaccines [29], vaccinated humans will loose their immunity and become susceptible

again at a rate ω. Since, in this model, vaccination is only given against rotavirus, the

vaccinated humans are susceptible to malaria and therefore acquire malaria infection

through bites by infectious mosquitoes with force of infection λM .

Malaria-infected humans can be infected with rotavirus at a rate τλR, and transfer

Figure 1: A schematic of the co-infection model for malaria and rotavirus

diseases with vaccination.

to the co-infection compartment IMR. The parameter, τ > 1, models the expected

increase in becoming susceptible to infection with rotavirus for humans with malaria,

especially young children. This is due to the fact that malaria infection has a de-



ROTAVIRUS-MALARIA CO-EPIDEMIC MODEL 377

pressant effect on the immune system. In malaria endemic areas, children may suffer

from severe bacterial infections (or protozoal diseases) as either super-infections or

co-infections due to immunosuppression resulting from acute malarial parasitemia

[30]. Similarly, humans with rotavirus can be infected with malaria at a rate ζλM .

Hence, they move to the class of humans with dual infection, IMR. The parameter,

ζ > 1, is assumed to account for the increased susceptibility to infection as a result

of low immunity due to rotavirus disease. It is assumed that the co-infected humans

recover from malaria only at a rate αM and transfer to the compartment of humans

who are infectious with rotavirus only, IR. Likewise, the co-infectious humans recover

from rotavirus only at a rate αR and move to the compartment of humans who are

infectious with malaria only, IM . Our model assumes that infected humans recover

with temporary immunity from malaria and rotavirus infections respectively, at the

rates πM and πR and move to the recovered or removed compartment, R. Natural

mortality is assumed to occur in all human and mosquito subpopulations at the rates

µh and µv, respectively irrespective of their infectious status, and that mosquitoes

only die naturally. Disease induced death rates for malaria, rotavirus and dual infec-

tions are given by σM , σR and σMR, respectively.

The state variables in the compartmental model are given in Table 1 while the param-

eter values used in the model are displayed in Table 2. The flow diagram presented in

Fig. 1 summarizes all the assumptions made for simplicity in formulating our model,

which include the following:

(i) the model has no vertical transmission, all recruitments are healthy births with

no disease and no infective immigrant, and all parameters are nonnegative.

(ii) susceptible human population is general population that is at risk of getting

malaria infection at a rate proportional to the density of malaria infected hu-

mans and susceptible mosquito population is at risk of acquiring malaria infec-

tion at a rate proportional to density of infected mosquitoes.

(iii) susceptible humans cannot at the same time acquire malaria and rotavirus in-

fection as the transmission mechanics of the two diseases are different.

(iv) the dually-infected humans cannot simultaneously recover from malaria and

rotavirus.

(v) a person in the co-infectious compartment, IMR can transmit both diseases.

Applying the above assumptions, definitions and parameters, the model which de-

scribes the dynamics of malaria-rotavirus co-infection with vaccination is written as
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Table 1: State variables of model (6).

Symbol Description

Sh Susceptible humans

VR Vaccinated humans against rotavirus

IM Malaria infected humans

IR Rotavirus infected humans

IMR Humans co-infected with both rotavirus and malaria

R Recovered or removed humans

Sv Susceptible mosquitoes

Iv Infected mosquitoes

follows:

dSh
dt

=(1− ρ)Λh + ωVR − λMSh − λRSh − (γ + µh)Sh

dVR
dt

=ρΛh + γSh − λMVR − (1− ψ)λRVR − (µh + ω)VR

dIM
dt

=λMSh + λMVR + αRIMR − τλRIM − (πM + µh + σM )IM

dIR
dt

=λRSh + (1− ψ)λRVR + αMIMR − ζλM IR − (πR + µh + σR)IR

dIMR

dt
=τλRIM + ζλMIR − (αM + αR + µh + σM + σR + σMR)IMR

dR

dt
=πMIM + πRIR − µhR

dSv
dt

=Λv − λvSv − µvSv

dIv
dt

=λvSv − µvIv.















































































































. (6)

with

Sh(0) = Sh0 > 0, VR(0) = VR0 ≥ 0, IM (0) = IM0 ≥ 0, IR(0) = IR0 ≥ 0, IMR(0) =

IMR0 ≥ 0, R(0) = R0 ≥ 0, Sv(0) = Sv0 ≥ 0 and Iv(0) = Iv0 ≥ 0.

3. BASIC PROPERTIES OF THE CO-INFECTION MODEL

Here, we determine the feasibility of the co-infection model (6), that is, its invariant

region, positivity and boundedness of the solutions.
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3.1. POSITIVITY AND BOUNDEDNESS OF SOLUTIONS

For the co-infection model (6) to be mathematically meaningful and well-posed, we

must prove that all the state variables are non-negative for all t > 0.

Lemma 1. Let the initial data set be {(Sh, Sv)(0) > 0, (VR, IM , IR, IMR, R, Iv)(0) ≥ 0}

∈ Ω. Then, the solution set {Sh, VR, IM , IR, IMR, R, Sv, Iv} (t) of model (6) is positive

and bounded for all time, t > 0.

Proof. From equation one of model (6), we have

dSh

dt
= (1− ρ)Λh + ωVR − (γ + λM + λR + µh)Sh

≥ −(γ + λM + λR + µh)Sh (7)

Integrating equation (7) with respect to t yields

Sh(t) ≥ Sh(0)e
−

∫
(γ+λM+λR+µh)dt ≥ 0,

since

(γ + λM + λR + µh) > 0. (8)

If we let the initial data Sh(0) > 0, then Sh(t) > 0.

From the second equation of model (6), we have

dVR

dt
= ρΛh + γSh − (λM + ψλR + µh + ω)VR

≥ −(λM + ψλR + µh + ω)VR. (9)

Integrating (9) with respect to t yields,

VR(t) ≥ VR(0)e
−

∫
(λM+ψλR+µh+ω)dt ≥ 0,

since

(λM + ψλR + µh + ω) > 0. (10)

If we let the initial data VR(0) > 0, then VR(t) > 0.

From the second last equation of model (6), we have

dSv

dt
= Λv − (λv + µv)Sv ≥ −(λv + µv)Sv.

Integrating equation (11) with respect to t yields

Sv(t) ≥ Sv(0)e
−

∫
(λv+µh)dt ≥ 0,
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since

(λv + µv) > 0. (11)

If we let the initial data Sv(0) > 0, then Sv(t) > 0.

Following the same procedure, it can be shown that the remaining state variables are

also positive for all time, t > 0.

Lemma 2. Solutions of model (6) are bounded in the region Ω = Ωh × Ωv.

Proof. We show that all the feasible solutions are uniformly bounded in Ω. We do

that by splitting model (6) into both the human component (Nh) and the mosquito

component (Nv) given by equations (1) and (2), respectively.

Let

(Sh, VR, IM , IR, IMR, R) ∈ ℜ6
+ (12)

be any solution of the system with nonnegative initial conditions. Then, the time

derivative of Nh along a solution path of model (6) gives

N
′

h < Λh − µhNh. (13)

We employ Birkhoff and Rota’s theorem on differential inequality [31] as t→ ∞ and

obtain

0 ≤ Nh ≤
Λh
µh

+Nh(0)e
−µht (14)

where Nh(0) is the value of (1) computed at the initial values of each variable. There-

fore, as t→ ∞, we have

0 ≤ Nh ≤
Λh
µh
. (15)

Thus, all possible solutions of the human-only component of model (6) enter the

region

Ωh =

{

(Sh, VR, IM , IR, IMR, R) : Nh ≤
Λh
µh

}

. (16)

Similarly, if we let

(Sv, Iv) ∈ ℜ2
+. (17)

By using same procedure in (13) and (14), it can be shown that

0 ≤ Nv ≤
Λv
µv

+Nv(0)e
−µvt (18)

where Nv(0) is the value of (2) calculated at the initial values of the each variable.

Thus, as t→ ∞, we have

0 ≤ Nv ≤
Λv
µv
. (19)
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Therefore, all possible solutions of the mosquito-only component of model (6) enter

the region

Ωv =

{

(Sv, Iv) : Nv ≤
Λv
µv

}

. (20)

Hence, it follows from equations (16) and (20) that all possible solutions of model (6)

will enter the region

Ω = Ωh × Ωv. (21)

Thus, Ω is positively invariant under the flow induced by model (6). We can use

the theory of permanence [43] to show that all solutions on the boundary of Ω enter

the interior of Ω and that the existence, uniqueness and continuation results hold for

model (6) [44]. Hence, the model is mathematically well-posed and makes biological

sense, and it is sufficient to analyze model (6) in Ω.

In order to lay foundation for comprehensive analysis of the impact of vaccina-

tion on rotavirus-malaria co-infections, we first study rotavirus-only sub-model to

enable us understand how vaccination impacts on rotavirus transmission dynamics

separately, then we study the full co-infection model.

4. ROTAVIRUS-ONLY SUB-MODEL

We obtain the rotavirus-only sub-model by setting the malaria infectious and co-

infectious states equal to zero in model (6). Thus,

dSh
dt

=(1 − ρ)Λh + ωVR − βR
IR

Nh
Sh − (γ + µh)Sh

dVR
dt

=ρΛh + γSh − (1− ψ)βR
IR

Nh
VR − (µh + ω)VR

dIR
dt

=βR
IR

Nh
Sh + (1− ψ)βR

IR

Nh
VR − (πR + µh + σR)IR

dR

dt
=πRIR − µhR















































. (22)

where Nh = Sh + VR + IR +R.

4.1. WELL-POSEDNESS OF ROTAVIRUS-ONLY SUB-MODEL

For sub-model (22) to make biological sense and be mathematically well-posed, it is

important to show that the associated state variables are nonnegative for all t ≥ 0

and that the solutions with nonnegative initial data will remain nonnegative for all

t ≥ 0.
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Lemma 3. If Sh(0), VR(0), IR(0) and R(0) are nonnegative, then so are Sh(t), VR(t),

IR(t) and R(t) for all time t ≥ 0. Moreover, lim supt→∞
Nh(t) =

Λ
h
. Furthermore, if

Nh(0) =
Λh
µh

, then Nh(0) =
Λh
µh

.

Proof. Consider the first equation of the sub-model (22) at time t

dSh

dt
= (1− ρ)Λh + ωVR − (γ + λR + µh)Sh

then,
dSh

dt
≥ −(γ + λR + µh)Sh (23)

integrating equation (23) yields,
∫

dSh

dt
≥ −

∫

(γ + λR + µh)d(t)

Sh(t) ≥ Sh(0)e
−

∫
(γ+λR+µh)d(t) ≥ 0

Since

γ + λR + µh > 0 (24)

we can apply the same procedure and show that all the state variables are positive

for all t > 0.

Lemma 4. The solutions of the sub-model (22) are uniformly bounded in the region

ΩR.

Proof. Let

{(Sh, VR, IR, R)(t)} ∈ ℜ4
+ (25)

be any solution with nonnegative initial conditions. The time derivative of Nh along

a solution path of the model (22) gives

dNh

dt
< Λh − µhNh. (26)

The sub-model (22) has a varying human population size dNh
dt

6= 0 and so, a trivial

equilibrium is not feasible. Whenever Nh >
Λh
µh

, then dNh
dt

< 0. Since dNh
dt

is bounded

by Λh − µhNh, a standard comparison theorem [31] shows that

0 ≤ Nh(t) ≤ Nh(0)e
−µht +

Λh
µh

(1− e−µht). (27)

Where Nh(0) represents the value of Nh(t) evaluated at the initial values of the

respective variables. Thus, as t→ ∞, we have

0 ≤ Nh(t) ≤
Λh
µh
. (28)
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Hence, Nh is bounded and all the possible solutions of sub-model (22) starting in the

region ΩR approach, enter or stay in the region, where,

ΩR =

{

(Sh, VR, IR, R) : Nh(t) ≤
Λh
µh

}

. (29)

4.2. STABILITY ANALYSIS OF THE ROTAVIRUS-ONLY

SUB-MODEL

In this subsection, we discuss the rotavirus-only sub-model to analyze the stability of

its equilibria.

4.2.1. DISEASE-FREE EQUILIBRIUM POINT OF ROTAVIRUS-ONLY

SUB-MODEL

We can define the disease-free equilibrium point of a model as the model’s steady

state solutions in the absence of infection or disease. Since the first three equations

of the sub-model (22) have no terms in R, we proceed to analyze the new sub-model

(30) shown below.

dSh
dt

=(1− ρ)Λh + ωVR − λRSh − (γ + µh)Sh

dVR
dt

=ρΛh + γSh − (1− ψ)λRVR − (µh + ω)VR

dIR
dt

=λRSh + (1− ψ)λRVR − (πR + µh + σR)IR



























. (30)

Therefore, we set all the infectious compartments of the rotavirus-only sub-model

to zero to obtain the disease-free equilibrium. Because the rotavirus vaccine is ad-

ministered at birth to newborns, it can be shown that Sh + VR = Λh
µh

. Hence, the

disease-free equilibrium point of the rotavirus-only sub-model is given by

Er0 =
(

S0
h, V

0
R, I

0
R

)

=

{

Λh[(1− ρ)µh + ω]

µh(µh + γ + ω)
,

Λh(γ + ρµh)

µh(γ + ω + µh)
, 0

}

. (31)

4.2.2. THE EFFECTIVE REPRODUCTION NUMBER OF

ROTAVIRUS-ONLY SUB-MODEL

Using the next generation matrix method [10] as described in [32], we define the basic

reproduction number, R0, as the number of new infections produced by a single infec-

tive human introduced into a completely susceptible population over the duration of

his or her infectious period . The effective reproduction number, Rr for the rotavirus-

only sub-model, represents the average number of new infections caused by a typical
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rotavirus infected human in the presence of rotavirus vaccination in a population

where everyone else is susceptible. Employing ideas of Driessche and Watmough [10],

we derive the effective reproduction number, Rr for the rotavirus-only sub-model.

Thus, if the matrix

F =
(

ΛhβR[(1−ρ)µh+ω+(1−ψ)(γ+ρµh)]
Nhµh(γ+ω+µh)

)

,

represents the new infection terms and the matrix

V =
(

πR + µh + σR

)

,

the remaining transfer terms, then the effective reproduction number, Rr for the

sub-model (22), is given by

Rr = ρ
(

FV −1
)

,

where ρ is the spectral radius of the next generation operator matrix FV −1. There-

fore,

Rr = βRΛh

{

ω + (1− ψ)(ρµh + γ) + µh(1 − ρ)

µh(σR + πR + µh)(µh + γ + ω)

}

. (32)

If there is no vaccination in the population, then R0 is given by

R0 =
βRΛh

µh(σR + πR + µh)
. (33)

Using expression (33), the effective reproduction number when there is vaccination,

Rr in (32) can be expressed as

Rr = R0

{

γ + ω + µh − ψ(γ + µhρ)

µh + γ + ω

}

. (34)

It follows from (34) that γ+ω+µh−ψ(γ+µhρ)
µh+γ+ω

< 1 since (1 − ψ) ∈ [0, 1], which implies

that Rr < R0. In the absence of vaccination, Rr = R0. Thus, from the expression of

the effective reproduction number, Rr in (34), it can be concluded that administering

vaccines both at birth and to susceptibles will have positive effect on new infections

in the population.

4.2.3. GLOBAL STABILITY OF DISEASE-FREE EQUILIBRIUM OF

ROTAVIRUS-ONLY SUB-MODEL

In this subsection, we prove the global stability of the disease-free equilibrium, Er0

using a suitable Lyapunov function [33] and La Salle’s invariant principle [13].

Theorem 1. The disease-free equilibrium, Er0 of the sub-model (22) is globally

asymptotically stable in ΩR if Rr < 1.
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Proof. We consider the reduced sub-model (30), where Sh + VR = Λh
µh

.

Define L : {(Sh, VR, IR) ∈ ΩR : Sh, VR > 0} → ℜ by

L : {(Sh, VR, IR) = (ω + µh)IR. (35)

Then, if R0 ≤ 1,

L
′

≤ (ω + µh)[βRIRSh + (1 − ψ)βRVRIR − (πR + µh + σR)IR]

≤ (ω + µh)[βR(Sh + (1− ψ)VR)− (πR + µh + σR)]IR

≤ (ω + µh)[βR(Sh + VR)− (πR + µh + σR)]IR

≤ (ω + µh)[
βRΛh
µh

− (πR + µh + σR)]IR

≤ (ω + µh)[R0 − 1](πR + µh + σR)IR

≤ (R0 − 1)(ω + µh)(πR + µh + σR)IR

≤ (Rr − 1)(ω + µh)(πR + µh + σR)IR

since R0 > Rr in ψ ∈ [0, 1] from (34).

If Rr ≤ 1, then L
′

≤ 0. Note that L
′

= 0 iff Sh = S0
h, VR = V 0

R and IR = 0, or if

Rr = 1, Sh = S0
h, VR = V 0

R and IR = 0. Therefore, the largest compact invariant set

in {(Sh, VR, IR) ∈ ΩR : L
′

= 0} is the singleton {Er0}, where {Er0} is the disease-

free equilibrium. La Salle’s invariant principle then implies that {Er0} is globally

asymptotically stable in ΩR. Theorem 1 is thus proved.

4.2.4. ENDEMIC EQUILIBRIUM POINT OF ROTAVIRUS-ONLY

SUB-MODEL

The disease-endemic equilibrium point of a model is a state where the disease es-

tablishes in the population. We apply Theorem (2) to calculate the disease-endemic

equilibrium of rotavirus-only sub-model (22).

Theorem 2. A disease-endemic equilibrium, Er∗ exists provided that Rr > 1.

Proof. At disease-endemic steady states, the reduced sub-model (30) becomes,

(1 − ρ)Λh + ωV ∗

R − βR
I∗R
Nh

S∗

h − (γ + µh)S
∗

h = 0,

ρΛh + γS∗

h − (1 − ψ)βR
I∗R
Nh

V ∗

R − (µh + ω)V ∗

R = 0, (36)
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βR
I∗R
Nh

+ (1 − ψ)βR
I∗R
Nh

V ∗

R − (πR + µh + σR)I
∗

R = 0.

Again, because of the limiting value, we substitute Nh = Λh
µh

and only consider the

first three equations of the sub-model (22) as they do not contain the term in R∗.

We solve for S∗

h, V
∗

R and I∗R in (36) and obtain the disease-endemic equilibrium point

of rotavirus-only sub-model (22) as,

Er∗ = (S∗

h, V
∗

R , I
∗

R),

where,

S∗

h =
(πR + µh + σR)

β
− (1 − ψ)

{

βρΛ + γ(πR + µh + σR)

β((1 − ψ)βI∗R + ω + µh + (1− ψ)γ)

}

. (37)

V ∗

R =

{

βρΛ + γ(πR + µh + σR)

β((1 − ψ)βI∗R + ω + µh + (1− ψ)γ)

}

. (38)

And,

I∗R > 0 (39)

or

AI∗2R +BI∗R + C = 0 (40)

where,

A = (1− ψ)β2(πR + µh + σR),

B = [γ(1− ψ)βR(πR + µh + σR) + βRω(πR + µh + σR) + µhβR(πR + µh + σR) + (1−

ψ)µhβR(πR + µh + σR)− (1− ψ)β2Λh],

C = {γµh(πR+µh+σR)+µhω(πR+µh+σR)+µ
2
h(σR+µh+πR)+ρµhβR−βRΛh[ω+

(1− ψ)γ + µh + ρµh(1− ψ)]}.

The coefficient A is always nonnegative and C is nonnegative if R0 < 1, respectively.

Therefore, we find the sign of C by expressing it as,

C = µh[ρβRΛh+(γ+ω+µh)(πR+µh+σR)]−βRΛh[ω+(1−ψ)γ+µh+ρµh(1−ψ)]. (41)

If βRΛh[ω+ (1−ψ)γ +µh+ ρµh(1−ψ)] > µh[ρβRΛh+ (γ +ω+µh)(πR +µh+ σR)],

then C is negative, and so we express equation (40) as AI∗2R + BI∗R − C = 0 or

AI∗2R +BI∗R −C = 0. Thus, there is only one positive root of equation (40) and that

implies that I∗R > 0. Hence Theorem 2 is proved.
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4.2.5. GLOBAL STABILITY OF THE DISEASE-ENDEMIC

EQUILIBRIUM OF ROTAVIRUS-ONLY SUB-MODEL

We use Lyapunov functionals [13, 33] to investigate the global asymptotic stability of

disease-endemic equilibrium, Er∗ of the rotavirus-only sub-model.

Theorem 3. The disease-endemic equilibrium of sub-model (22), Er∗ = (S∗

h, V
∗

R , I
∗

R,

R∗), is globally asymptotically stable if Rr > 1.

Proof. To prove the theorem, we begin by constructing a suitable Lyapunov linear

and quadratic function of the form:

L = Σ4
i=1Ui(xi − x∗i lnxi) (42)

where Ui is a properly selected constant, xi is the population of ith compartment, ithi
is the equilibrium value of xi and Ui > 0.

The Lyapunov function denoted by L is continuous and differentiable. We have

L(Sh, VR, IR, R) = U1(Sh − S∗

h lnSh) + U2(VR − V ∗

R ln VR) + U3(IR − I∗R ln IR

+ U4(R− R∗ lnR). (43)

The global asymptotic stability of the disease-endemic equilibrium holds if dL
dt

≤ 0.

The time derivative of the Lyapunov function L is given by

dL

dt
= U1(1−

S∗

h

Sh
)
dSh

dt
+ U2(1−

V ∗

R

VR
)
dVR

dt
+ U3(1−

I∗R
IR

)
dIR

dt
+ U4(1−

R∗

R
)
dR

dt
.

dL

dt
= −U1(1−

S∗

h

Sh
)2(γ+µh)Sh+U1(1−

S∗

h

Sh
)(
I∗R
IR

S∗

h

Sh
−1)

βR

Nh
ShIR−U2(1−

V ∗

R

VR
)2(µh+ω)VR

+U2(1−
V ∗

R

VR
)(
V ∗

R

VR

IR∗

IR
−1)(1−ψ)

βR

Nh
VRIR−U3(1−

I∗R
IR

)2(πR+µh+σR)−U4(1−
R∗

R
)2µhR.

(44)

Applying the approach by McCluskey et. al [34], we have the following expression

dL

dt
= −U1(1−

S∗

h

Sh
)2(γ+µh)Sh−U2(1−

V ∗

R

VR
)2(µh+ω)VR−U3(1−

I∗R
IR

)2(πR+µh+σR)

−U4(1−
R∗

R
)2µhR + Zr(E

r) (45)

where,

Zr(E
r) = +U1(1−

S∗

h

Sh
)(
I∗R
IR

S∗

h

Sh
−1)

βR

Nh
IRSh+U2(1−

V ∗

R

VR
)(
V ∗

R

VR

IR∗

IR
−1)(1−ψ)

βR

Nh
IRVR ≤ 0.

(46)
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Zr(E
r) is negative if we follow the methods used in [35, 36, 37, 34]. Thus, Zr(E

r) ≤ 0

for all Zr(E
r) ≥ 0. Hence, dL

dt
≤ 0 in (Er) and when (Er) = (Er∗). Therefore, the

largest invariant set in (Er) such that dL
dt

≤ 0 is the singleton (Er∗), which is our

disease-endemic equilibrium point. By La Salle’s invariant principle, we can conclude

that the disease-endemic equilibrium, (Er∗), is globally stable whenever Rr > 1.

Proof of Theorem 3 is thus completed.

5. STABILITY ANALYSIS OF ROTAVIRUS-MALARIA

CO-INFECTION MODEL

In order to carry out stability analysis of the equilibria of model (6), we first establish

the model’s equilibrium point then we calculate its basic reproduction number, Rmr.

5.1. DISEASE-FREE EQUILIBRIUM POINT OF THE

CO-INFECTION MODEL

To establish the disease-free equilibrium point of model (6), we set the right-hand

side of the model equations to zero and then solve for each state variable. Hence, we

have

E0 = (S0
h, V

0
R, I

0
M , I

0
R, I

0
MR, R

0, S0
v , I

0
v )

=

{

Λh[(1− ρ)µh + ω]

µh(µh + γ + ω)
,

Λh(γ + ρµh)

µh(γ + ω + µh)
, 0, 0, 0, 0,

Λv
µv
, 0

}

. (47)

5.1.1. BASIC REPRODUCTION NUMBER OF THE CO-INFECTION

MODEL

It is important to note that in this paper we have not discussed the dynamics of

malaria-only sub-model as numerous models for malaria sub-model transmission are

available in the literature.

We denote the basic reproduction number for malaria epidemic by Rm. It measures

the number of new malaria infections in human or mosquito populations caused by

a single malaria infectious human (or mosquito) brought in an entirely susceptible

human (or mosquito) population during his or its infectious duration. Following the

same procedure as implemented in [10], we obtain the next generation matrices for

the malaria-sub-model, F and V as

F =

(

0 βmbm
βvbmµhΛv
µvΛh

0

)
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and

V =

(

πM + σM + µh 0

0 µv

)

.

The basic reproduction number, Rm, is the spectral radius of the next generation

operator matrix (FV −1). The eigenvalues of (FV −1) are

±

√

b2mβmβvΛvµh
Λhµ2

v(πM + µh + σM )
.

It follows, therefore, that the basic reproduction number, Rm for malaria-only sub-

model is given by

Rm = ρ(FV −1) =

√

b2mβmβvΛvµh
Λhµ2

v(πM + µh + σM )
. (48)

Note that in vector-host models, the initial transmission of the disease when an in-

fectious human or mosquito is introduced into an entirely susceptible population, the

reproduction number is given by R2
m. The square root in the expression for R2

m rep-

resents the two ’generations’ required for an infectious host or vector to transmit the

infection [10].

The term βvbm
µv

in Rm represents the number of new malaria infections in human

population generated by a single malaria infectious mosquito, while the term

bmβmΛvµh
Λhµ2

v(πM + µh + σM )

represents the number of new malaria infections in mosquito population caused by a

single malaria infectious human.

From subsection 5.1.1, the basic reproduction number for the rotavirus-only sub-

model (22) is

Rr = βRΛh

{

ω + (1− ψ)(ρµh + γ) + µh(1 − ρ)

µh(σR + πR + µh)(µh + γ + ω)

}

. (49)

Similarly, Rr measures the number of new rotavirus infections in humans caused by

a single rotavirus infectious human introduced to a completely virgin population in

the presence of vaccination.

It follows therefore that the basic reproduction number for the co-infection model (6),

denoted by Rmr, is

Rmr = max {Rm, Rr} (50)
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5.2. LOCAL STABILITY OF THE DISEASE-FREE EQUILIBRIUM

In this subsection, we use the eigenvalues or the trace-determinant of the Jacobian

matrix approach to investigate the local stability of the disease-free equilibrium of the

co-infection model (6).

Theorem 4. The disease-free equilibrium of model (6) is locally asymptotically

stable if Rmr < 1 and unstable otherwise.

Proof. The Jacobian matrix of model (6) at disease-free equilibrium is given by

J(E0) =











−(γ + µh) ω 0 −pβR −pβRϑ 0 0 −pβmbm

γ −(ω + µh) 0 −βR(1 − ψ)l −βRϑ(1 − ψ)l 0 0 βmbml

0 0 −j1 0 0 0 0 −βmbm

0 0 0 j2 j3 0 0 0

0 0 0 0 −j4 0 0 0

0 0 πM πR 0 −µh 0 0

0 0 −βvbmk 0 −βvbmθvk 0 −µv 0

0 0 βvbmk 0 βvbmθvk 0 0 −µv











(51)

where,

j1 = πM + µh + σM , j2 = βR

{

(1−ρ)µh+ω+(1−ψ)(γ+ρµh)
µh+γ+ω

− j1

}

,

j3 = βR
(1−ρ)ϑµh+ω+(1−ψ)(γ+ρµh)

µh+γ+ω
, j4 = (αM +αR+µh+ σM + σR + σMR), k = Λvµh

µvΛh
,

l = γ+ρµh
µh+γ+ω

and p = (1−ρ)µh+ω
µh+γ+ω

.

An equilibrium point is locally asymptotically stable if the Jacobian matrix computed

at that point has a negative trace and all eigenvalues with negative real parts or a

positive determinant. We calculate the eigenvalues of J(E0) in (51) using the following

expression

{λ+ (γ + µh)} {λ+ (ω + µh)} (λ+ j1)(λ − j2)(λ + µh)(λ+ µv)

{(λ+ j1)(λ + µv)− βvbmθvk} = 0. (52)

Clearly, it follows from equation (52) that the first six eigenvalues are negative if

and only if (1−ρ)µh+ω+(1−ψ)(γ+ρµh)
µh+γ+ω

< (πM + µh + σM ). To obtain the other two

eigenvalues, we solve the following equation.

λ2 + (µv + πM + µh + σM )λ+ µv(πM + µh + σM )−
βvbmθvΛvµh

µvΛh
= 0. (53)

From equation (53), if βvbmθvΛvµh
µvΛh

< µv(πM + µh + σM ), then the remaining two

eigenvalues have negative real parts. Hence, the disease-free equilibrium of the co-

infection model (6) is locally asymptotically stable.
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5.3. GLOBAL STABILITY OF THE DISEASE-FREE EQUILIBRIUM

We examine the global asymptotic stability of the co-infection model (6) using Castillo-

Chavez et. al theory [11]. We begin by expressing the system in the form:

dX

dt
= H(X,Z), (54)

dZ

dt
= G(X,Z), G(X, 0) = 0

in which X = (Sh, VR, Sv) denotes the uninfected compartments and Z = (IM , IR,

IMR, R, Iv) represents the infected compartments.

E0 = (X0, 0), X0 =

(

Λh[(1 − ρ)µh + ω]

µh(µh + γ + ω)
,

Λh(γ + ρµh)

µh(γ + ω + µh)
,
Λv
µv

)

(55)

is the disease-free equilibrium. The conditions, L1 and L2 given below must be

satisfied to guarantee global asymptotic stability.

L1 : For dX
dt

= H(X, 0), X0 is globally asymptotically stable.

L2 : G(X,Z) = BZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0for(X,Z) ∈ Ω.

where B = DzG(X
0, 0) is an M-matrix (that is, the off-diagonal elements of B are

nonnegative).

The result state in Theorem 5 below holds if and only if model system (6) meets the

the two conditions stated above.

Theorem 5. The fixed point, E0 = (X0, 0) is globally asymptotically stable equilib-

rium if R0 < 1 and the conditions stated in L1 and L2 are met.

Proof. From model (6), we have,

H(X, 0) =







(1 − ρ)Λh + ωVR − (γ + µhSh)

ρΛh + γSh − (µh + ω)VR)

Λv − µvSv







G(X,Z) = BZ − Ĝ(X,Z)

where,

B =

















−k1 0 αR 0 k2

0 k3 k4 0 0

0 0 −k5 0 0

πM πR 0 −µh 0

k6 0 k7 0 −µv



















392 R.A. NYANG’INJA, G.O. LAWI, M.O. OKONGO, AND T.O. ORWA

where,

k1 = (πM + µh + σM ), k2 = βmbm, k3 = βR[
µh(1−ψρ)+γ(1−ψ)+ω

µh+γ+ω
] − (πR + µh + σR),

k4 = βRϑ[
µh(1−ψρ)+γ(1−ψ)+ω

µh+γ+ω
] + αM , k5 = (αM + αR + µh + σM + σR + σMR),

k6 = βvbmΛvµh
Λhµv

and k7 = βvbmθvΛvµh
Λhµv

Ĝ(X,Z) =

















Ĝ1(X,Z)

Ĝ2(X,Z)

Ĝ3(X,Z)

Ĝ4(X,Z)

Ĝ5(X,Z)

















=

















βmbmIv{(1−
Sh
Nh

) + (1 − VR
Nh

)}+ τβR(IR+ϑIMR)
Nh

IM
βR(IR+ϑIMR)

Nh
(1− Sh

Nh
) + (1−ψ)βR(IR+ϑIMR)

Nh
(1− VR

Nh
) + ( ζβmbmIv

Nh
)IR

− τβR(IR+ϑIMR)
Nh

IM − ( ζβmbmIv
Nh

)IR

0
βvbm(IM+θvIMR)

Nh
(1− Sv

Nh
)

















.

It is clear that X0 is unstable globally as Ĝ3(X,Z) < 0. It follows that the

two conditions, L1 and L2 are not met. Therefore, when Rmr < 1, the disease-free

equilibrium of the co-infection model (6) is not globally asymptotically stable. This

implies that the model may undergo a bifurcation.

5.4. DISEASE-ENDEMIC EQUILIBRIUM POINT OF THE

CO-INFECTION MODEL

The disease-endemic equilibrium point of model (6) is given by

E∗ = (S∗

h, V
∗

R , I
∗

M , I
∗

R, I
∗

MR, R
∗, S∗

v , I
∗

v ). (56)

Where,

S∗

h =
(1 − ρ)Λh + ωV ∗

R

λM + λR + γ + µh
,

V ∗

R =
ρΛh + γS∗

h

λM + (1− ψ)λR + µh + ω
,

I∗M =
λMS

∗

h + λMV
∗

R + αRI
∗

MR

τλR + πM + µh + σM
,

I∗R =
λRS

∗

h + (1− ψ)λRV
∗

R + αMRI
∗

MR

ζλM + πR + µh + σR
,

I∗MR =
τλRI

∗

M + ζλM I
∗

R

2αM + 2αR + µh + αMR

,

R∗ =
πMI

∗

M + πRI
∗

R

µh
,
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S∗

v =
Λv

λv + µv
and I∗v =

Λvλv
µv(λv + µv)

with λM =
βmbmI

∗

v

Nh
,

λv =βvbm
(I∗M + θvI

∗

MR)

N∗

h

λR = βR
(I∗R + ϑI∗MR)

N∗

h

,

N∗

h =S∗

h + V ∗

R + I∗M + I∗R + I∗MR +R∗ and N∗

v = S∗

v + I∗v .

We adopt Center Manifold Theory [45, 12] to study the disease-endemic equilibrium

of model (6) and establish the type of bifurcation the model may undergo. To apply

this theory, we first consider the case when Rmr = 1 and choose the transmission

probability for malaria in humans, βm = β∗

m and the transmission rate for rotavirus,

βR = β∗

R as bifurcation parameters. Solving for βm and βR from Rmr = Rm = Rr = 1

gives

βm = β∗

m =
Λhµ

2
v(πM + σM + µh)

b2mβvΛvµh
(57)

and

βR = β∗

R =
1

Λh

{

µh(σR + πR + µh)(µh + γ + ω)

ω + (1− ψ)(ρµh + γ) + µh(1− ρ)

}

. (58)

We then change the variables as follows:

Let Sh = x1, VR = x2, IM = x3, Sh = x1, IR = x4, IMR = x5, R = x6, Sv = x7, Iv =

x8, Nh = x1 + x2 + x3 + x4 + x5 + x6 and Nv = x7 + x8. In addition, using vector

notation X = [x1, x2, x3, x4, x5, x6, x7, x8]
T , model (6) can then be rewritten in the

form,

dx
dt

= F (X), with F = [f1, f2, f3, f4, f5, f6, f7, f8]
T , as shown in system (59).

dx1

dt
=f1 = (1 − ρ)Λh + ωx2 − λMx1 − λRx1 − (γ + µh)x1

dx2

dt
=f2 = ρΛh + γx1 − λMx2 − (1 − ψ)λRx2 − (µh + ω)x2

dx3

dt
=f3 = λMx1 + λMx2 + αRx5 − τλRx3 − (πM + µh + σM )x3

dx4

dt
=f4 = λRx1 + (1 − ψ)λRx2 + αMx5 − ζλMx4 − (πR + µh + σR)x4

dx5

dt
=f5 = τλRx3 + ζλMx4 − αMx5 − αRx5 − (µh + σM + σR + σMR)x5

dx6

dt
=f6 = πMx3 + πRx4 − µhx6

dx7

dt
=f7 = Λv − λvx7 − µvx7

dx8

dt
=f8 = λvx7 − µvx8















































































































. (59)
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We evaluate the Jacobian of the transformed system (59) at disease-free equilibrium

and obtain,

J(E0) =































−(γ + µh) ω 0 −k1 −k2 0 0 −k3

γ −(ω + µh) 0 −k4 −k5 0 0 −k6

0 0 −k7 0 0 0 0 −βmbm

0 0 0 k8 k9 0 0 0

0 0 0 0 −k10 0 0 0

0 0 πM πR 0 −µh 0 0

0 0 −k11 0 −k12 0 −µv 0

0 0 k13 0 k14 0 0 −µv































(60)

where,

k1 = βR[
(1−ρ)µh+ω
(µh+γ+ω)

], k2 = βRϑ[
(1−ρ)µh+ω
(µh+γ+ω)

], k3 = βmbm[ (1−ρ)µh+ω(µh+γ+ω)
], k4 = [ (1−ψ)(γ+ρµh)βR(µh+γ+ω)

],

k5 = [ (1−ψ)(γ+ρµh)βRϑ(µh+γ+ω)
], k6 = [βmbm(γ+ρµh)

(µh+γ+ω)
], k8 = βR{[

(1−ρ)µh+ω+(1−ψ)(γ+ρµh)
(µh+γ+ω)

] −

(πM + µh + σM )},

k7 = (πM + µh + σM ), k9 = βR[
(1−ρ)ϑµh+ω+(1−ψ)(γ+ρµh)

(µh+γ+ω)
], k10 = (αM + αR + µh +

σM + σR + σMR),

k11 = βvbmΛvµh
µvΛh

, k12 = βvbmθvΛvµh
µvΛh

, k13 = βvbmΛvµh
µvΛh

and k14 = βvbmθvΛvµh
µvΛh

.

The Jacobian, J(E0) in (60) has a simple zero eigenvalue and other eigenvalues with

negative real parts. Therefore, the Center Manifold Theorem can be applied. For

this, we start by calculating the right and the left eigenvectors of J(E0) in (60) at

disease-free equilibrium. We obtain the right eigenvector of J(E0)|(βm=β∗

m,βr=β
∗

r )
, as

W = [w1, w2, w3, w4, w5, w6, w7, w8]
T where,

w1 =
k7w3 (k3 (µh + ω) + k6ω)

bmµhβm (γ + µh + ω)
, w2 =

k7w3 (k6 (γ + µh) + γk3)

bmµhβm (γ + µh + ω)
,

w4 = 0, w5 = 0, w6 =
πmw3

µh
, w7 =

k11w3

µv
, w8 = −

k7w3

bmβm
, w3 = free

and the left eigenvector of J(E0)|(βm=β∗

m,βr=β
∗

r )
as V = [v1, v2, v3, v4, v5, v6, v7v8]

T ,

where,

v2 =
v1 (γ + µh)

γ
, v3 = −

k13

(

k6v1(γ+µh)
γ

+ k3v1

)

k13bmβm + k7µv
, v4 =

v1 (k4 (γ + µh) + γk1)

γk8
,

v5 =
−k7k14v1(k6(γ+µh)+γk3)

γ(k13bmβm+k7µv)
+ k9v1(k4(γ+µh)+γk1)

γk8
− k5v1(γ+µh)

γ
− k2v1

k10
,

v6 = 0, v7 = 0,
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v8 = −
k7v1 (k6 (γ + µh) + γk3)

γ (k13bmβm + k7µv)
, v1 = free.

We then evaluate the associated partial derivatives (non-zero) of F (X)|J(E0) and

obtain

∂2f1

∂x1∂x8
=−

bmΛhµhβm (γ + ρµh) (γ + µh + ω)

(Λh (γ + µh) + ω) 2
,

∂2f1

∂x2∂x8
=
bmµhβm (γ + µh + ω) (ω − (ρ− 1)Λhµh)

(Λh (γ + µh) + ω) 2
,

∂2f1

∂x3∂x8
=
bmµhβm (γ + µh + ω) (ω − (ρ− 1)Λhµh)

(Λh (γ + µh) + ω) 2
,

∂2f1

∂x6∂x8
=
bmµhβm (γ + µh + ω) (ω − (ρ− 1)Λhµh)

(Λh (γ + µh) + ω) 2
,

∂2f2

∂x1∂x8
=
bmΛhµhβm (γ + ρµh) (γ + µh + ω)

(Λh (γ + µh) + ω) 2
,

∂2f2

∂x2∂x8
=
bmµhβm (γ + µh + ω) ((ρ− 1)Λhµh − ω)

(Λh (γ + µh) + ω) 2
,

∂2f2

∂x3∂x8
=
bmΛhµhβm (γ + ρµh) (γ + µh + ω)

(Λh (γ + µh) + ω) 2
,

∂2f3

∂x3∂x8
=−

bmµhβm (γ + µh + ω)

Λh (γ + µh) + ω
,

∂2f3

∂x6∂x8
=−

bmµhβm (γ + µh + ω)

Λh (γ + µh) + ω
.

(61)

From equation (61), the associated bifurcation coefficient a is expressed as follows:

a = v1w1w8
∂2f1

∂x1∂x8
+ v1w2w8

∂2f1

∂x2∂x8
+ v1w3w8

∂2f1

∂x3∂x8
+ v1w6w8

∂2f1

∂x6∂x8

+ v2w1w8
∂2f2

∂x1∂x8
v2w2w8

∂2f2

∂x2∂x8
+ v2w3w8

∂2f2

∂x3∂x8
+ v2w6w8

∂2f2

∂x6∂x8

+ v3w3w8
∂2f2

∂x3∂x8
+ v3w6w8

∂2f2

∂x6∂x8
. (62)

which can be simplified as

a =

8
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0). (63)

Upon substituting the partial derivatives in (61) and the values of the left and right

eigenvectors of J(E0), we have

a =
k7v1w

2
3

(Λh(γ + µh) + ω)2
[∆P −∆N ],
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where,

∆P =
k7(k6(γ + µh) + γk3)((1− ρ)Λhµh + ω)

bmβm

+
k7(γ + µh)(k6(γ + µh) + γk3)((1 − ρ)Λhµh + ω)

γbmβm

+
k13(πm − µh)(γ + µh + ω)(k6(γ + µh) + γk3)(Λh(γ + µh) + ω)

γ(k13bmβm + k7µv)

+ πm(γ + µh + ω)((1− ρ)Λhµh + ω)

∆N =
(Λhµh(γ + µh)(γ + ρµh)(γ + µh + ω))(k7Λh(γ + ρµh)(k3(µh + ω) + k6ω))

γ(bmβm)

+
k7Λh(γ + µh)(γ + ρµh)(k3(µh + ω) + k6ω)

γbmβm

+ µh(γ + µh + ω)((1− ρ)Λhµh + ω)

+
πmΛh(γ + µh)(γ + ρµh)(γ + µh + ω)

γ
.

We thus have the following cases for values of a.

Case 1: a > 0 if ∆P > ∆N , Case 2: a < 0 if ∆P < ∆N .

We repeat the above procedure to obtain the bifurcation coefficient b, which is defined

by

b =

8
∑

k,i=1

vkwi
∂2fk

∂xi∂β∗

m

(0, 0). (64)

The basic reproduction number is the maximum of the individual disease reproduction

numbers. Therefore, we establish the non-zero derivatives associated with b for Rm

and Rr. But since the bifurcation coefficient b is always non-negative, it follows

from [12] that the transformed model (59) will exhibit a backward bifurcation if

the backward bifurcation coefficient, a is non-negative. This further confirms that

the disease-free equilibrium of model (6) is not globally asymptotically stable. The

implication is that there will be a disease outbreak in the community and the infection

will persist. If a < 0, then from [12], it follows that there will be no backward

bifurcation at Rm = Rr = 1, only the disease-free equilibrium will exist when Rm < 1

and when Rr < 1, which means there will be no infection or disease in the population.

We thus, state the following theorem from item (4) in [12] without proof.

Theorem 6. The co-infection model (6) has a unique disease-endemic equilibrium,

E∗ = (S∗

h, V
∗

R , I
∗

M , I
∗

R, I
∗

MR, R
∗, S∗

v , I
∗

v ), which is locally asymptotically stable if Rmr <

1 and unstable otherwise.



ROTAVIRUS-MALARIA CO-EPIDEMIC MODEL 397

5.5. GLOBAL STABILITY OF THE DISEASE-ENDEMIC

EQUILIBRIUM

We investigate global asymptotic stability of the disease-endemic equilibrium point

of system (6) using Lyapunov method [33] and La Salle’s invariance principle[13]. We

present the following stability theorem.

Theorem 7. The endemic equilibrium of model (6), E∗ = (S∗

h, V
∗

R , I
∗

M , I
∗

R, I
∗

MR, R
∗,

S∗

v , I
∗

v ), is globally asymptotically stable if Rmr > 1.

Proof. We begin by constructing a suitable Lyapunov function of the form:

L = Σ8
i=1Ai(xi − x∗i lnxi) (65)

where Ai is a properly selected constant, xi is the population of ith compartment, ithi
is the equilibrium value of xi and Ai > 0. The Lyapunov function denoted by L is

continuous and differentiable. We have:

L(Sh, VR, IM , IR, IMR, R, Sv, Iv) = A1(Sh − S∗

h lnSh) +A2(VR − V ∗

R lnVR)

+A3(IM − I∗M ln IM ) +A4(IR − I∗R ln IR) +A5(IMR − I∗MR ln IMR)

+A6(R −R∗ lnR) +A7(Sv − S∗

v lnSv) +A8(Iv − I∗v ln Iv). (66)

The global stability of the disease-endemic equilibrium, E∗ = (S∗

h, V
∗

R , I
∗

M , I
∗

R, I
∗

MR, R
∗,

S∗

v , I
∗

v ), holds if
dL
dt

≤ 0. The time derivative of the Lyapunov function L is given by

dL

dt
= A1(1−

S∗

h

Sh
)
dSh

dt
+A2(1−

V ∗

R

VR
)
dVR

dt
+A3(1−

I∗M
IM

)
dIM

dt
+A4(1−

I∗R
IR

)
dIR

dt

+A5(1−
I∗MR

IMR

)
dIMR

dt
+A6(1−

R∗

R
)
dR

dt
+A7(1−

S∗

v

Sv
)
dSv

dt
+A8(1−

I∗v
Iv

)
dIv

dt
. (67)

dL

dt
= −A1(1 −

S∗

h

Sh
)2(γ + µh)Sh +A1(1−

S∗

h

Sh
)(
I∗v
Iv

S∗

h

Sh
− 1)

βmβv

Nh
IvSh

+A1(1−
S∗

h

Sh
)(
I∗R
IR

S∗

h

Sh
− 1)

βR

Nh
IRSh

−A2(1−
V ∗

R

VR
)2(µh + ω)VR +A2(1 −

V ∗

R

VR
)(
I∗v
Iv

V ∗

R

VR
− 1)

βmβv

Nh
IvVR

+A2(1 −
V ∗

R

VR
)(
V ∗

R

VR

IR∗

IR
− 1)

(1− ψ)βR
Nh

IRVR

−A3(1−
I∗M
IM

)2(µh + σM + πM )IM +A3(1 −
I∗M
IM

)(
I∗M
IM

IR∗

IR
− 1)

τβR

Nh
IRIM
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−A4(1−
I∗R
IR

)2(µh + σR + πR)IR +A4(1−
I∗R
IR

)(
I∗v
Iv

I∗R
IR

− 1)
ζβmβv

Nh
IvIR

−A5(1−
I∗MR

IMR

)2(αM + αR + µh + σM + σR + σMR)IMR −A6(1−
R∗

R
)2µhR

−A7(1−
S∗

v

Sv
)2µvSv +A7(1−

S∗

v

Sv
)(
I∗M
IM

S∗

v

Sv
− 1)

βvbm

Nh
IMSv −A8(1−

I∗v
Iv

)2Ivµv. (68)

By adopting the approach by [34], we have the following expression:

dL

dt
= −A1(1−

S∗

h

Sh
)2(γ+µh)Sh−A2(1−

V ∗

R

VR
)2(µh+ω)VR−A3(1−

I∗M
IM

)2(µh+σM+πM )IM

−A4(1−
I∗R
IR

)2(µh+σR+πR)IR−A5(1−
I∗MR

IMR

)2(αM +αR+µh+σM +σR+σMR)IMR

−A6(1−
R∗

R
)2µhR−A7(1 −

S∗

v

Sv
)2µvSv −A8(1−

I∗v
Iv

)2Ivµv + Z(E0) (69)

where,

Z(E0) = +A1(1 −
S∗

h

Sh
)(
I∗v
Iv

S∗

h

Sh
− 1)

βmβv

Nh
IvSh +A1(1−

S∗

h

Sh
)(
I∗R
IR

S∗

h

Sh
− 1)

βR

Nh
IRSh

+A2(1−
V ∗

R

VR
)(
I∗v
Iv

V ∗

R

VR
− 1)

βmβv

Nh
IvVR +A2(1 −

V ∗

R

VR
)(
V ∗

R

VR

IR∗

IR
− 1)

(1− ψ)βR
Nh

IRVR

+A3(1−
I∗M
IM

)(
I∗M
IM

IR∗

IR
− 1)

τβR

Nh
IRIM +A4(1−

I∗R
IR

)(
I∗v
Iv

I∗R
IR

− 1)
ζβmβv

Nh
IvIR

+A7(1−
S∗

v

Sv
)(
I∗M
IM

S∗

v

Sv
− 1)

βvbm

Nh
IMSv ≤ 0. (70)

Z(E0) is negative by following the approaches implemented in [36, 37, 34]. Thus,

Z(E0) ≤ 0 for all Z(E0) ≥ 0. Hence, dL
dt

≤ 0 in (E0) and when (E0) = (E∗). Hence

the largest invariant set in (E0) such that dL
dt

≤ 0 is the singleton (E∗), which is

our disease-endemic equilibrium point. We can conclude that the disease-endemic

equilibrium, (E∗), is globally stable if Rmr > 1.

6. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, we present some numerical results of model (6) to support our an-

alytical results obtained above using the set of parameter values listed in Table 2.

Figure 2 depicts local stability of disease-endemic equilibrium of rotavirus-infected,

Fig. 2a and co-infected populations, Fig. 2b, respectively of the co-infection model

(6) plotted at various initial values with Rmr = 3.2276. From the figures we observe
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Table 2: Parameter values for the malaria-only and rotavirus-only sub-models

with vaccination.

Parameter Symbol Value Source

The recruitment rate of humans Λh 9.6274 × 10−5day−1 [39]

The recruitment rate of mosquitoes Λv 7.1× 10−2day−1 [40]

Natural mortality rate of humans µh 2.537× 10−5day−1 [39]

Natural mortality rate of mosquitoes µv 4.0× 10−5day−1 [55]

Malaria-induced mortality rate for humans σM 4.49312 × 10−4day−1 [41]

Rotavirus-induced mortality rate for humans σR 4.466× 10−4day−1 [6]

Mortality rate of humans from co-infection σMR 6.0× 10−3day−1 Assumed

The probability of transmission of malaria in-

fection in humans

βm 0.06− 0.27 [49]

The probability of transmission of malaria in-

fection in mosquitoes

βv 7.2× 10−2day−1 [50]

The per capita biting rate of female Anopheles

mosquito

bm 4.0× 10−1day−1 [51]

The effective contact rate for infection with ro-

tavirus

βR 0.00160 − 0.050 Variable

The rate of recovery from malaria infection for

humans

πM 7.808× 10−1day−1 [52]

The rate of recovery from rotavirus infection

for humans

πR 2.0× 10−1day−1 [53, 54]

The rate of recovery from co-infection (ro-

tavirus)

αR 5.75 × 10−4day−1 Assumed

The rate of recovery from co-infection

(malaria)

αM 1.56 × 10−3day−1 Assumed

The recruitment rate of vaccinated humans ρ 1.884× 10−3day−1 [42]

The rate of vaccination for susceptible humans γ 1.884× 10−3day−1 [42]

The effectivity of the vaccine-induced protec-

tion

ψ 0− 1.0 Variable

The vaccine efficacy waning rate ω 2.778× 10−3day−1 [29]

Modification parameters ϑ, ζ, τ, θv 1.5, 1.5, 1.5, 1.5 Assumed

an outbreak of rotavirus infection in the population, which has also affected the co-

infected population. This could be attributed to the fact that there is an increased

susceptibility to infection with malaria for humans infected with rotavirus because

of the compromised immunity [7]. Therefore, rotavirus vaccination should be im-

plemeted immediately to prevent further infections.

In Fig. 3, we plot global stability of disease-free equilibrium of co-infection model (6)

for (3a) the vaccinated population and (3b) the rotavirus-malaria co-infected humans

with Rmr = 0.1860. From the figures, we observe that the vaccinated population goes

to the boundary equilibrium at disease-free equilibrium as t→ ∞ while the suscepti-

ble population rapidly increases then comes down to a stable equilibrium after some

days. This implies that there is still no infection in the population and so vaccination
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Figure 2: Local stability of disease-endemic equilibrium with Rmr = 3.2276

for: (2a) rotavirus infected population, (2b) co-infected population at various

initial values. Used parameter values are available in Table 2.
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Figure 3: Simulations of model (22) showing global stability of disease-free

equilibrium with Rr = 0.1860 for (3a) vaccinated population and (3b) sus-

ceptible population. Used parameters are given in Table 2.

is not necessary. The figures also indicate that in a disease-free population, suscepti-

ble population increases as all other compartments approach or are equal to zero as

t→ ∞ irrespective of the initially infected population and the disease eventually dies

out. This result confirms our theoretical findings.

Figure 4 shows global asymptotic stability of the disease-endemic equilibrium when

Rmr = 1.8634 for (4a) malaria-infected humans and for (4b) susceptible and infected

mosquito populations. From the figures, we observe an outbreak of malaria in the

community. As the population of susceptible mosquitoes increases, we note many peo-

ple are getting infected with malaria. Also, in Fig. 4b, it can be seen that there are

fewer infectious mosquitoes than susceptible ones. Therefore, we recommend imple-

mentation of control interventions to help eliminate the large number of mosquitoes
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Figure 4: The disease-endemic equilibrium of model (6) with Rmr = 1.8634.

(4a): Plot for malaria infected human population. (4b): Plot for susceptible

and infected mosquito population. Used parameter values are in Table 2.

in the population, which will as a result reduce the number of new malaria infection

cases in the community. When malaria infection is considered independently of ro-

tavirus in Fig. 4a, we note that vaccination does not greatly change the number of

new malaria episodes in the community but it does change disease dynamics such

that when we increase the vaccination rate then there can be slight delay in disease

prevalence over time but it will not affect the infection duration Fig. 2b.

In Fig. 5, we simulate the rotavirus-malaria model by varying the vaccination rate,

ψ = 0.2, 0.4, 0.7, 0.9, to see its effects on rotavirus-malaria co-infected populations

when there is no disease in the population, Rmr = 0.1476 (Fig. 5a) and when the

disease is established in the population, Rmr = 1.8634 (Fig. 5b). The figures indicate

key interactions between rotavirus vaccination rate and the co-infections. From the

figures, we note a reduction in the number of rotavirus-malaria co-infected humans as

the vaccine effectivity increases. Hence, we can conclude that vaccination positively

impacts on the co-infections, and therefore recommend increasing the availability of

efficacious vaccines for rotavirus as they will help contain rotavirus dynamics and also

aid reduce acute co-infections with malaria.

7. CONCLUSION

This paper aimed at deriving a model for rotavirus-malaria co-infection dynamics with

vaccination involved so as to examine the effects of vaccination in altering popula-

tion dynamics, especially in developing countries where rotavirus-malaria coexistence

is endemic. The model was extended to explore malaria prevalence as a result of

rotavirus infection and vice versa. We further investigated the effects of rotavirus
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Figure 5: Effectivity of rotavirus vaccine on the co-infections. (5a): new

rotavirus infection cases as a function of time for ψ = 0.2, 0.4, 0.7, 0.9 with

Rmr = 0.1860. (5b): number of new co-infection cases as a function of

time for ψ = 0.2, 0.4, 0.7, 0.9 with Rmr = 1.8634. Other parameters are as

displayed in Table 2.

vaccination on malaria infections and the role vaccination plays in altering transmis-

sion dynamics. We recommend continued efforts in increasing access to rotavirus

vaccination, strengthening the awareness and education campaigns and emphasizing

on the importance of clearing bushes and draining stagnant water around homes and

use of treated mosquito nets as a means of fighting effects of rotavirus and malaria

co-infections.

Finally, in this paper we considered an SIR model and SI model for the malaria com-

ponent of the full model, with vaccination for rotavirus disease only. However, it

would be interesting to see the results when the model is improved to capture other

features of malaria transmission for example incorporating incubation period/exposed

class for the malaria model and so we leave that for our future works. Other future

goals include application of optimal control theory to the model with control measures

for both diseases considered. The model assumed homogeneous mixing, however, hu-

man contact process in real world is not uniform collision as different people contact

persons may be unique each time. We propose to incorporate into the model complex

networks [46, 47, 48] which consider disease transmission dynamics in big social and

biological networks with unique heterogeneities, and so we leave that for our future

research too.
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