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1. INTRODUCTION

To obtain a deep understanding about the fractional calculus and respectively the

fractional differential equations in details see the monographs of Kilbas et al. [12],

Kiryakova [13], Podlubny [26], Feckan et al. [9] and Abbas et al. [1]. For distributed

order fractional differential equations see [11], for an application-oriented exposition

Diethelm [7] and for fractional evolution equations in Banach spaces Bajlecova [4].

The impulsive differential and functional differential equations with fractional deriva-

tives and some applications are considered in the monograph of Stamova and Stamov

[28]. Also it is worth noting some new interesting results for fractional differential

equations and systems obtained in [2], [20],[29], [35], [38] and [39].

The first detailed study of linear differential equations and system with distributed

delay (fundamental theory, variation of constants formula, stability, etc.) was done
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by A.D. Myshkis in his fundamental monograph [22]. It may be noted that fractional

systems of retarded and neutral type with distributed delays are studied (basically

existence and stability) in [14], [21], [31]–[34] for single order fractional derivatives

and in [5] for Caputo-type distributed order fractional derivatives. Note that a lot of

results are obtained from many authors, using the definition of Caputo type derivative

applicable only in the particular case when the functions are absolutely continuous.

In this work, we use the definition of Caputo-type derivative without the assumption

that the functions are absolutely continuous.

It is well known that the problem of establishing a formula for the general solution

for linear fractional differential equations and/or systems with delay, as well as its

integral representation (variation of constants formula) need theorem for existing of

fundamental matrix, i.e. theorem for existence and uniqueness of the solutions of

initial problem (IP) in the case of discontinuous initial functions (see for example

[6], [10], [37]). It must be noted that this problem is more complicated in compare

with the integer order differential equations with delay. We point out that this is

conditioned that a distinguishing feature of the fractional differential equations with

delay is that the evolution of the processes described by such equations depends on

the past history inspired from two sources, first of them is the impact conditioned of

the delays and the other one the impact conditioned from the availability of Volterra

type integral in the definitions of the fractional derivatives, i.e. the memory of the

fractional derivative. It must be noted that the first of them (conditioned by the

delays) is independent from the derivative type (integer or fractional).

In the present work, we consider a nonautonomous linear fractional system with

distributed delay and derivatives in Caputo sense of incommensurate type. For this

system, we study the important problem for existence and uniqueness of the solutions

of initial problem (IP) in the case of bounded Lebesgue measurable initial conditions.

As far as we know, there are only a few results concerning IP for fractional dif-

ferential equations with delay and discontinuous initial function. In [15] is studied

an IP with bounded Lebesgue measurable initial conditions for autonomous linear

system with distributed delay in the case when all differentiations orders are equal.

In [6] are obtained results for existence and uniqueness for nonautonomous fractional

system with distributed delay and piecewise continuous initial functions with finite

many jumps. The results in [6] are generalized in [37] for neutral systems. It must

be noted, that the technique of the proofs in the present paper (inspired from [15])

is different in compare with the technique used in [6]. Since in our obtained results

the fractional differentiation orders are of incommensurate type then our result ex-

tends the corresponding one in [15] even in the autonomous case too. The proposed

conditions coincide with the conditions which guaranty the same result in the case of

integer order linear differential equations with distributed delay.
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The results obtained in this article would be a good basis for building models of

different processes from the real world. Good examples of new studies with application

in modeling are [3], [16]–[19],[23]–[25],[27], [30].

The paper is organized as follows. In Section 2, we recall some needed definitions

of Riemann-Liouville and Caputo fractional derivatives, as well as the needed part

of their properties. In this section also we present a slightly modified version of the

Weissinger generalization of the Banach’s fixed point theorem ([36], Fixpunktsatz,

p. 195) which will be used by the proof of the main results and is presented the

problem statement too. In Section 3 as main result are obtained sufficient conditions

for the existence and the uniqueness of the solutions of the Cauchy problem for linear

incommensurate fractional differential system with distributed delays in the cases of

Caputo derivatives and with Lebesgue measurable, bounded initial function.

2. PRELIMINARIES AND PROBLEM STATEMENT

For convenience and to avoid possible misunderstandings, below we recall only the

definitions of Riemann-Liouville and Caputo fractional derivatives and some needed

their properties. For details and other properties we refer to [12, 13, 26].

Let α ∈ (0, 1) be an arbitrary number and denote by Lloc
1 (R,R) the linear space

of all locally Lebesgue integrable functions f : R → R. Then for each t > a, a ∈ R

and f ∈ Lloc
1 (R,R) the left-sided fractional integral operator and the corresponding

left side Riemann-Liouville and Caputo fractional derivatives of order α are defined

by

(D−α
a+ f)(t) =

1

Γ(α)

t
∫

a

(t− s)α−1f(s)ds,

RLD
α
a+f(t) =

d

dt

(

D
−(1−α)
a+ f(t)

)

CD
α
a+f(t) = RLD

α
a+[f(s)− f(a)](t) = RLD

α
a+f(t)−

f(a)

Γ(1− α)
(t− a)−α

respectively. We will use also the following relations (see [12]):

(i) (D0
a+f)(t) = f(t) ;

(ii) CD
α
a+D

−α
a+ f(t) = f(t) ;

(iii) D−α
a+ CD

α
a+f(t) = f(t)− f(a).

We will need a slightly modified version of the Weissinger generalization of the

Banach’s fixed point theorem (see [36], Fixpunktsatz, p. 195).



494 A. ZAHARIEV, H. KISKINOV, AND E. ANGELOVA

Theorem 1. Let Ω be a complete metric space with metric dΩ and let the following

conditions hold:

1. There exists a sequence γq ≥ 0, q ∈ N with
∞
∑

q=1
γq < ∞.

2. The operator T : Ω → Ω satisfies for each q ∈ N and for arbitrary x, y ∈ Ω the

inequality

dΩ(T
qx, T qy) ≤ γqdΩ(x, y)

Then T has a unique fixed point x∗ ∈ Ω and for every x ∈ Ω we have that

lim
q→∞

T qx = x∗.

Remark 1. This modification of the Weissinger generalization of the Banach’s fixed

point theorem is not new, it is used in [8] in the case when Ω is a Banach space. But

it is simply to be seen that the original Weissinger proof is correct in the presented

in Theorem 1 case too, with some elementary modifications.

Consider the nonautonomous linear nonhomogeneous fractional system of incom-

mensurate type with distributed delay in the following form

Dα
a+X(t) =

m
∑

i=0

0
∫

−σi

[dθU
i(t, θ)]X(t+ θ) + F (t), (1)

and the corresponding homogeneous one

Dα
a+X(t) =

m
∑

i=0

0
∫

−σi

[dθU
i(t, θ)]X(t+ θ), (2)

where α = (α1, . . . , αn), αk ∈ (0, 1), k ∈ 〈n〉 = {1, 2, . . . , n}, σi ∈ (0, σ], σ > 0,

F : Ja → R
n, X : J∗ → R

n, U i : Ja × R → R
n×n, Ja = [a,∞), a ∈ R, J∗ = [a− σ,∞),

X(t) = (x1(t), . . . , xn(t))
T , F (t) = (f1(t), . . . , fn(t))

T , U i(t, θ) = {ui
kj(t, θ)}

n
k,j=1,

i ∈ 〈m〉0 = 〈m〉 ∪ {0},m ∈ N, Dα
a+X(t) = (Dα1

a+x1(t), . . . , D
αn

a+xn(t))
T and Dαk

a+

denotes the left side Caputo fractional derivative CD
αk

a+ .

We will use also the following notations: R+ = (0,∞), R̄+ = [0,∞). Let Y : Ja ×

R → R
n×n, Y (t, θ) = {yij(t, θ)}

n
i,j=1 and |Y (t, θ)| =

n
∑

k,j=1

|ykj(t, θ)|. With BV [−σ, 0]

we will denote the linear space of matrix valued functions Y (t, θ) with bounded vari-

ation in θ on [−σ, 0] for every t ∈ Ja and V ar[−σ,0]Y (t, ·) =
n
∑

k,j=1

V ar[−σ,0]ykj(t, ·).

For W (t) = (w1(t), . . . , wn(t))
T : Ja → R

n, β = (β1, . . . , βn), βk ∈ [−1, 1], k ∈ 〈n〉 we

will use the notation Iβ(W (t)) = diag((w1(t))
β1 , . . . , (wn(t))

βn).

With C
∗
a we denote the Banach space of initial vector functions Φ = (φ1, . . . , φn)

T :

[a− σ, a] → R
n, a ∈ R, which are bounded and Lebesgue measurable on the interval
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[a− σ, a] with norm

||Φ|| = sup
t∈[a−σ,a]

|Φ(t)| =

n
∑

k=1

sup
t∈[a−σ,a]

|φk(t)| < ∞.

Consider the following initial conditions for the system (1) ((2)) :

X(t) = Φ(t) (xk(t) = φk(t), k ∈ 〈n〉), t ∈ [a− σ, a],Φ ∈ C
∗
a (3)

We say that for the kernels U i : Ja × R → R
n×n the conditions (S) are fulfilled if

for each i ∈ 〈m〉0 the following conditions hold:

(S1) The function (t, θ) → U i(t, θ) is measurable in (t, θ) ∈ Ja×R and normalized

so that U i(t, θ) = 0 for θ ≥ 0 and U i(t, θ) = U i(t,−σi) for θ ≤ −σi, t ∈ Ja.

(S2) For each t ∈ Ja the kernel U i(t, θ) is continuous from the left in θ on (−σi, 0)

and U i(t, ·) ∈ BV [−σi, 0].

(S3) The Lebesgue decomposition of the kernel U i(t, θ) for t ∈ Ja and θ ∈ [−σi, 0]

has the form:

U i(t, θ) = ℵi(t, θ) +

θ
∫

−σi

B(t, s)ds+Υ(t, θ),

where ℵi(t, θ) = {aikj(t)H(θ + σi(t))}
n
k,j=1, the functions

Ai(t) = {aikj(t)}
n
k,j=1 ∈ Lloc

1 (Ja,R
n) are locally bounded on Ja,

Υ(t, θ) = {gkj(t, θ)}
n
k,j=1 ∈ C(Ja×R,Rn×n), σi(t) ∈ C(Ja, R̄+) for i ∈ 〈m〉, σ0(t) ≡ 0

for every t ∈ Ja, H(t) is the Heaviside function and the function

B(t, θ) = {bkj(t, θ)}
n
k,j=1 ∈ Lloc

1 (Ja × R,Rn×n) is locally bounded on Ja × R.

(S4) There exists a locally bounded function zu ∈ Lloc
1 (Ja,R+) such that

V ar[−σi,0]U
i(t, ·) ≤ zu(t) for each t ∈ Ja.

(S5) For each t ∈ Ja the following relation holds:
0
∫

−σi

|U i(t, θ)− U i(t∗, θ)|dθ → 0, when t → t∗.

(S6) The sets Si
Φ = {t ∈ Ja|t − σi(t) ∈ SΦ} for every i ∈ 〈m〉 do not have limit

points, where with SΦ is denoted the set of all jump points of the initial function Φ .

Definition 1. The vector function X(t) = (x1(t), . . . , xn(t))
T is a solution of the

IP (1), (3) in [a, a+ b], b > 0(Ja) if X ∈ C([a, a+ b],Rn)(X ∈ C(Ja,R
n)) satisfies the

system (1) for all t ∈ (a, a+b](t ∈ (a,∞)) and the initial condition (3) for t ∈ [a−σ, a].

Consider the following auxiliary system

X(t) = Φ(a) + I−1(Γ(α))

t
∫

a

Iα−1(t− s)F (s)ds

+ I−1(Γ(α))

t
∫

a

Iα−1(t− s)

m
∑

i=0

0
∫

−σ

[dθU(s, θ)]X(s+ θ)ds

(4)
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or in more detailed form for k ∈ 〈n〉

xk(t) = φk(a) +
1

Γ(αk)

t
∫

a

(t− s)αk−1fk(s)ds

+
1

Γ(αk)

t
∫

a

(t− s)αk−1[
m
∑

i=0

(
n
∑

j=1

0
∫

−σ

xj(s+ θ)dθu
i
kj(s, θ))]ds

(5)

with the initial condition (3), where I−1(Γ(α)) = diag(Γ−1(α1), . . . ,Γ
−1(αn)).

Definition 2. The vector function X(t) = (x1(t), . . . , xn(t))
T is a solution of the

IP (4), (3) in [a, a+ b], b > 0(Ja) if X ∈ C([a, a+ b],Rn)(X ∈ C(Ja,R
n)) satisfies the

system (4) for all t ∈ (a, a+b](t ∈ (a,∞)) and the initial condition (3) for t ∈ [a−σ, a].

Lemma 1. Let the following conditions hold:

1. Conditions (S) hold.

2. The function F ∈ Lloc
1 (Ja,R

n) is locally bounded.

Then for each initial function Φ ∈ C
∗
a every solution X(t) of IP (1), (3) is a

solution of the IP (4), (3) and vice versa.

The proof is analogical of the proof of Lemma 3.3 in [6] and will be omitted.

3. MAIN RESULTS

In this section we will obtain sufficient conditions for existence and uniqueness of the

solutions of IP (1), (3). In virtue of Lemma 1 it is enough to study the IP (4), (3).

Let for every initial function Φ(t) = (φ1(t), . . . , φn(t)) ∈ C
∗
a define the sets

ΩΦ
1 = {G : [a−σ, a+1] → R

n | G|[a,a+1] ∈ C([a, a+1],Rn);G(t) = Φ(t), t ∈ [a−σ, a]}

and introduce in them a metric function dΦ1 : ΩΦ
1 × ΩΦ

1 → R̄+ for each G, Ḡ ∈ ΩΦ
1 as

follows:

dΦ1 (G, Ḡ) =
n
∑

k=1

sup
t∈[a,a+1]

|gk(t)− ḡk(t)|.

Obviously the set ΩΦ
1 equipped with dΦ1 is a complete metric space in respect to the

introduced metric function.

Introduce for each G = (g1, . . . , gn)
T ∈ ΩΦ

1 the operator
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(RG)(t) = (R1g1(t), . . . ,Rngn(t))
T for k ∈ 〈n〉 with

Rkgk(t) = φk(a)

+
1

Γ(αk)
[

t
∫

a

(t− s)αk−1[

m
∑

i=0

(

n
∑

j=1

0
∫

−σ

gj(s+ θ)dθu
i
kj(s, θ))]ds

+

t
∫

a

(t− s)αk−1fk(s)ds]

(6)

for t ∈ (a, a+ 1] and with Rkgk(t) = φk(t) for t ∈ [a− σ, a].

Theorem 2. Let the following conditions be fulfilled:

1. Conditions (S) hold.

2. The function F ∈ Lloc
1 (Ja,R

n) is locally bounded.

Then for every initial function Φ ∈ C
∗
a the IP (4), (3) has a unique solution in

[a, a+ 1].

Proof. Let Φ ∈ C
∗
a be an arbitrary initial function. Then since Φ is bounded and

Lebesgue measurable, then from conditions (S) it follows that for every t ∈ [a, a+1] the

functions t →
0
∫

−σ

gj(t+θ)dθu
i
k,j(t, θ) are bounded and at least Lebesgue integrable for

each k, j ∈ 〈n〉, i ∈ 〈m〉0. Then (6) implies that the functions Rkgk(t) are continuous

for each t ∈ (a, a + 1] and lim
t→a+

Rkgk(t) = φk(a) for k ∈ 〈n〉. Thus Rkgk(t) ∈

C([a, a+ 1],Rn) for k ∈ 〈n〉 and hence RΩΦ
1 ⊂ ΩΦ

1 , i.e. the operator R maps ΩΦ
1 into

ΩΦ
1 .

We remind that Γ(z), z ∈ R+ has a local minimum at zmin ≈ 1.46163, where

it attains the value Γ(zmin) ≈ 0.885603. Introduce the notations αm = min
k∈〈n〉

αk,

αM = max
k∈〈n〉

αk, q0 = [2α−1
m ] + 1 and for every q ∈ 〈q0〉 denote with αq that number

among the numbers α1, ..., αn for which Γ(1 + qαq) = min
k∈〈n〉

Γ(1 + qαk).

Let G, Ḡ ∈ ΩΦ
1 be arbitrary. Then from (6) for every t ∈ [a, a+ 1] and k ∈ 〈n〉 we
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have the estimation

|Rkgk(t)−Rkḡk(t)|

≤
1

Γ(αk)

t
∫

a

(t− s)αk−1[

m
∑

i=0

(

n
∑

j=1

|

0
∫

−σ

(gj(s+ θ)− ḡj(s+ θ))dθu
i
kj(s, θ)|)]ds

≤
(t− a)αk

Γ(1 + αk)

m
∑

i=0

(

n
∑

j=1

sup
s∈[a,a+1]

V arθ∈[−σ,0]u
i
k,j(s, θ) sup

t∈[a,a+1]

|gj(t)− ḡj(t)|)

≤
(t− a)αk

Γ(1 + αk)

n
∑

j=1

( sup
t∈[a,a+1]

|gj(t)− ḡj(t)|

m
∑

i=0

n
∑

l,j=1

sup
s∈[a,a+1]

V arθ∈[−σ,0]u
i
l,j(s, θ))

≤
(t− a)αk

Γ(1 + αk)
U1d

Φ
1 (G, Ḡ)

(7)

where U1 =
m
∑

i=0

n
∑

l,j=1

sup
s∈[a,a+1]

V arθ∈[−σ,0]u
i
l,j(s, θ).

Let assume that for k ∈ 〈n〉 and every t ∈ [a, a+ 1] the estimate

|Rq
kgk(t)−R

q
kḡk(t)| ≤

(t− a)qαkU
q
1

Γ(1 + qαk)
dΦ1 (G, Ḡ) (8)

holds for some q ∈ N . Note that inequality (7) implies that (8) holds for q = 1 and

every t ∈ [a, a+ 1], k ∈ 〈n〉. Using the notations RqG(t) = Y (t) = (y1(t), . . . , yn(t))
T

and R
qḠ(t) = Ȳ (t) = (ȳ1(t), . . . , ȳn(t))

T we have that

|Rq+1
k gk(t)−R

q+1
k ḡk(t)| = |RR

q
kgk(t)−RR

q
kḡk(t)| = |Ryk(t)−Rȳk(t)|. (9)

According the induction hypothesis (8) we have

|Rq+1
k gk(t)−R

q+1
k ḡk(t)| = |Ryk(t)−Rȳk(t)|

≤
1

Γ(αk)

t
∫

a

(t− s)αk−1[

m
∑

i=0

(

n
∑

j=1

|

0
∫

−σ

(yj(s+ θ)− ȳj(s+ θ))dθu
i
kj(s, θ)|)]ds

≤
U1

Γ(αk)

t
∫

a

(t− s)αk−1
n
∑

j=1

sup
η∈[a,a+s]

|(yj(η) − ȳj(η))|ds

≤
U1U

q
1

Γ(αk)Γ(1 + qαk)
dΦ1 (G, Ḡ)

t
∫

a

(t− s)αk−1(s− a)qαkds

(10)

Substitute s−a = z(t−a) in the right side of (10) and using the relation between

the gamma and beta functions we obtain
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|Rq+1
k gk(t)−R

q+1
k ḡk(t)| = |Ryk(t)−Rȳk(t)|

≤
U

q+1
1 (t− a)αk(q+1)

Γ(αk)Γ(1 + qαk)
dΦ1 (G, Ḡ)

1
∫

0

(1− z)αk−1zqαkdz

≤
Γ(αk)Γ(1 + qαk)(U1(t− a)αk)q+1

Γ(αk)Γ(1 + qαk)Γ(1 + (q + 1)αk)
dΦ1 (G, Ḡ)

≤
((t− a)αkU1)

q+1

Γ(1 + (q + 1)αk)
dΦ1 (G, Ḡ)

(11)

and hence by mathematical induction we have proved that (8) holds for each q ∈ N,

k ∈ 〈n〉 and every t ∈ [a, a+ 1].

For q ∈ 〈q0〉 from (8) it follows that

dΦ1 (R
qG,RqḠ) ≤

nU
q
1

Γ(1 + qαq)
dΦ1 (G, Ḡ).

For all q > q0 from (8) it follows that

dΦ1 (R
qG,RqḠ) ≤

nU
q
1

Γ(1 + qαm)
dΦ1 (G, Ḡ).

Let for q ∈ 〈q0〉 denote γq =
nU

q
1

Γ(1+qαq)
and for every q > q0 denote γq =

nU
q
1

Γ(1+qαm) .

Consider the one parameter Mittag-Leffler function

Eαm,1 =

∞
∑

q=1

zq

Γ(1 + αmq)
, z ∈ R̄+.

It is simply to be seen that the series
∞
∑

q=1

U
q
1

Γ(1+αmq) is convergent because it is the

considered Mittag-Leffler function evaluated at z = U1. Then we have

∞
∑

q=1

γq =

q0
∑

q=1

nU
q
1

Γ(1 + αqq)
+ n

∞
∑

q=q0+1

U
q
1

Γ(1 + αmq)
< ∞

and from Theorem 1 it follows that the IP (4), (3) has a unique solution in [a, a+1].

Theorem 3. Let the following conditions be fulfilled:

1. Conditions (S) hold.

2. The function F ∈ Lloc
1 (Ja,R

n) is locally bounded.

Then for every initial function Φ ∈ C
∗
a the IP (4), (3) has a unique solution in Ja.

Proof. Let Φ0 ∈ C
∗
a be an arbitrary initial function, l = 1 and denote byX1(t,Φ0) the

unique solution of the IP (4), (3) in the interval [a, a+1] , existing according Theorem
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2. Then we can define the function Φ1(t) = (φ1
1(t), ..., φ

1
n)

T : [a − σ, a + 1] → R
n as

follows: Φ1|[a−σ,a] = Φ0 ∈ C
∗
α,Φ

1|[a,a+1] = X1(t,Φ0), where X1(t,Φ0) is the unique

solution of the IP (4), (3) in the interval [a, a+1] with the initial conditionX1(t,Φ0) =

Φ0(t) for t ∈ [a− σ, a]. By induction if the solution X l(t,Φl−1) exists, we can define

for this l ∈ N the function Φl(t) = (φl
1(t), . . . , φ

l
n)

T : [a−σ, a+ l] → R
n (which will be

used as initial function in the next step) with Φl|[a−σ,a+(l−1)] = Φl−1,Φl|[a+(l−1),a+l] =

X l(t,Φl−1), where X l(t,Φl−1) is the unique solution of the IP (4), (3) in the interval

[a+(l−1), a+l] with the initial conditionX l(t,Φl−1) = Φl−1(t) for t ∈ [a−σ, a+(l−1)].

For the proof of the statement we will use the mathematical induction. Let Φ0 ∈ C
∗
a

be an arbitrary initial function.

Assume that for some l ∈ N the statement holds, i.e. there exists X l(t,Φl−1) as

the unique solution of the IP (4), (3) in the interval [a+(l−1), a+ l] under the initial

conditionX l(t,Φl−1) = Φl−1(t) for t ∈ [a−σ, a+(l−1)]. Note that according Theorem

2 our assumption is true for l = 1. Moreover our assumption allows us to define the

next initial function Φl(t) with Φl|[a−σ,a+(l−1)] = Φl−1,Φl|[a+(l−1),a+l] = X l(t,Φl−1).

Define the sets

ΩΦl

l+1 = {G : [a− σ, a+ (l + 1)] → R
n | G|[a+l,a+(l+1)] ∈ C([a+ l, a+ (l + 1)],Rn);

G(t) = Φl(t), t ∈ [a− σ, a+ l]}

with a metric function dΦ
l

l+1 : ΩΦl

l+1 × ΩΦl

l+1 → R̄+ for each G, Ḡ ∈ ΩΦl

l+1 as follows:

dΦ
l

l+1(G, Ḡ) =

n
∑

k=1

sup
t∈[a+l,a+(l+1)]

|gk(t)− ḡk(t)|.

Obviously the set ΩΦl

l+1 equipped with dΦ
l

l+1 is a complete metric space in respect to

the introduced metric function.

Define the operator (R̃G)(t) = (R̃1g1(t), ..., R̃ngn(t))
T for G = (g1, ..., gn)

T ∈

ΩΦl

l+1 and k ∈ 〈n〉 with

R̃kgk(t) = φl
k(a)

+
1

Γ(αk)
[

t
∫

a

(t− s)αk−1[

m
∑

i=0

(

n
∑

j=1

0
∫

−σ

gj(s+ θ)dθu
i
kj(s, θ))]ds

+

t
∫

a

(t− s)αk−1fk(s)ds]

(12)

for t ∈ (a+ l, a+ (l + 1)] and with R̃kgk(t) = φl
k(t) for t ∈ [a− σ, a+ l].

Taking into account that lim
t→(a+l)+

R̃kgk(t) = φl
k(a+l) as in the proof of Theorem 2

we can conclude that R̃kgk(t) ∈ C([a, a+ (l + 1)],Rn) for k ∈ 〈n〉 and hence R̃ΩΦl

l+1 ⊂

ΩΦl

l+1, i.e. the operator R̃ maps ΩΦl

l+1 into ΩΦl

l+1.
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For arbitrary G, Ḡ ∈ ΩΦl

l+1 from (12) for every t ∈ [a + l, a+ (l + 1)] and k ∈ 〈n〉

the same way as in Theorem 2 we have the estimation

|R̃kgk(t)− R̃kḡk(t)|

≤
1

Γ(αk)

t
∫

a

(t− s)αk−1[

m
∑

i=0

(

n
∑

j=1

|

0
∫

−σ

(gj(s+ θ)− ḡj(s+ θ))dθu
i
kj(s, θ)|)]ds

≤
(t− (a+ l))αkUl+1

Γ(1 + αk)
dΦ

l

l+1(G, Ḡ)

(13)

where Ul+1 =
m
∑

i=0

n
∑

r,j=1

sup
s∈[a,a+(l+1)]

V arθ∈[−σ,0]u
i
r,j(s, θ).

As in Theorem 2 we assume that for k ∈ 〈n〉 and every t ∈ [a+ l, a+ (l + 1)] the

inequality

|R̃kgk(t)− R̃kḡk(t)| ≤
((t− (a+ l))αkUl+1)

q

Γ(1 + qαk)
dΦ

l

l+1(G, Ḡ) (14)

holds for some q ∈ N. Note that the inequality (13) implies that (14) holds for every

t ∈ [a+ l, a+(l+1)], k ∈ 〈n〉 and q = 1. Then using the same notations as in Theorem

2 we have that

|R̃q+1
k gk(t)− R̃

q+1
k ḡk(t)| = |R̃R̃

q
kgk(t)− R̃R̃

q
kḡk(t)| = |R̃yk(t)− R̃ȳk(t)|. (15)

In the next calculations, using the induction hypothesis (14) we obtain

|R̃q+1
k gk(t)− R̃

q+1
k ḡk(t)| = |R̃yk(t)− R̃ȳk(t)|

≤
1

Γ(αk)

t
∫

a

(t− s)αk−1[

m
∑

i=0

(

n
∑

j=1

|

0
∫

−σ

(yj(s+ θ)− ȳj(s+ θ))dθu
i
kj(s, θ)|)]ds

≤
Ul+1

Γ(αk)

t
∫

a+l

(t− s)αk−1
n
∑

j=1

sup
η∈[a+l,a+s]

|(yj(η)− ȳj(η))|ds

≤
Ul+1U

q
l+1

Γ(αk)Γ(1 + qαk)
dΦ

l

l+1(G, Ḡ)

t
∫

a+l

(t− s)αk−1(s− (a+ l))qαkds

(16)

Substitute s− (a+ l) = z(t− (a+ l)) in the right side of (16) and using the relation
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between the gamma and beta functions we obtain

|R̃q+1
k gk(t)− R̃

q+1
k ḡk(t)| = |R̃yk(t)− R̃ȳk(t)|

≤
U

q+1
l+1 (t− (a+ l))αk(q+1)

Γ(αk)Γ(1 + qαk)
dΦ

l

l+1(G, Ḡ)

1
∫

0

(1 − z)αk−1zqαkdz

≤
Γ(αk)Γ(1 + qαk)U

q+1
l+1 (t− (a+ l))αk(q+1)

Γ(αk)Γ(1 + qαk)Γ(1 + (q + 1)αk)
dΦ

l

l+1(G, Ḡ)

≤
U

q+1
l+1 (t− (a+ l))αk(q+1)

Γ(1 + (q + 1)αk)
dΦ

l

l+1(G, Ḡ)

(17)

and hence by mathematical induction we have proved that (14) holds for each q ∈ N,

k ∈ 〈n〉 and every t ∈ [a+ l, a+ (l + 1)] .

For q ∈ 〈q0〉 from (14) it follows that

dΦ
l

l+1(R
qG,RqḠ) ≤

nU
q
l+1

Γ(1 + qαq)
dΦ

l

l+1(G, Ḡ).

For all q > q0 from (14) it follows that

dΦ
l

l+1(R
qG,RqḠ) ≤

nU
q
l+1

Γ(1 + qαm)
dΦ

l

l+1(G, Ḡ).

Let for q ∈ 〈q0〉 denote γq =
nU

q

l+1

Γ(1+qαq)
and for every q > q0 denote γq =

nU
q

l+1

Γ(1+qαm) .

Consider the one parameter Mittag-Leffler function

Eαm,1 =

∞
∑

q=1

zq

Γ(1 + αmq)
, z ∈ R̄+.

It is simply to be seen that the series
∞
∑

q=1

U
q

l+1

Γ(1+αmq) is convergent because it is the

considered Mittag-Leffler function evaluated at z = Ul+1. Then we have

∞
∑

q=1

γq =

q0
∑

q=1

nU
q
l+1

Γ(1 + αqq)
+ n

∞
∑

q=q0+1

U
q
l+1

Γ(1 + αmq)
< ∞

and from Theorem 1 it follows that the IP (4), (3) has a unique solution in [a+ l, a+

l + 1].

Thus by mathematical induction (in respect to l) we have proved that the IP (4),

(3) has a unique solution in Ja.

Corollary 1. Let the following conditions be fulfilled:

1. Conditions (S) hold.

2. The function F ∈ Lloc
1 (Ja,R

n) is locally bounded.

Then for every initial function Φ ∈ C
∗
a the IP (1), (3) has a unique solution in Ja.
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Proof. The statement follows immediately from Theorem 3 and Lemma 1.
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