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ABSTRACT: We will explore the interesting methodological task for constructing

new activation functions using ”correcting amendments” of ”Gompertz–Makeham–

type” (GMAF). We also define the new family of recurrence generated activation

functions based on ”Gompertz–Makeham correction” - (RGGMAF).

We prove upper and lower estimates for the Hausdorff approximation of the sign

function by means of this new class of parametric activation functions - (RGGMAF).

Numerical examples, illustrating our results are given.
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1. INTRODUCTION

Sigmoidal functions (also known as ”activation functions”) find multiple applications

to neural networks [1]–[11].

In a series of papers, we have explored the interesting task of approximating the

functions – Heaviside function h(t) and sign(t) with all-knowing functions such as

Hyperbolic tangent, Logistic, Gompertz and others (see, for instance [12]–[14]).
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The task is important in the treatment of questions related to the study of the

”super saturation” - the object of the research in various fields - neural networks,

nucleation theory, machine learning and others.

A survey of neural transfer activation functions can be found in [15].

The function sign(t) plays an important role in the theory of impulse technic.

One consequence from Haar’s theorem [18] is the assertion that for any natural

number n and any number 0 < λ < 1 there exists an unique polynomial

Q2n+1(t) =

n
∑

k=0

qkt
2k+1

on the best uniform approximation of the constant 1 in the interval [λ, 1].

The polynomials Q2n+1 take part in some technical problems like antenna synthe-

sis and electrical schemes [19].

Therefore their explicit finding excites a certain interest.

It follows from the generalized Chebyshev theorem in [18] that: if σ1, σ2, . . . , σn are

internal points of maximum deviation ofQ2n+1 in the interval [λ, 1], thenQ′

2n+1(±σi) =

0 for i = 1, . . . , n which leads to

Q′

2n+1(t) =
dQ2n+1(t)

dt
=

n
∏

i=1

(t2 − σ2
i ).

The solution is

Q2n+1(t) = C(n)In(t),

where

In(t) =

t
∫

0

n
∏

i=1

(z2 − σ2
i ) dz

and C(n) is a constant.

In [20] a numerical method is proposed for determination of alternation points

σ1, σ2, . . . , σn whereupon the polynomial Q2n+1, can be explicitly represented.

For the best Hausdorff approximation En,α with parameter α > 0 of the function

sign(t) by algebraic polynomial pf degree ≤ n is valid: En,α = c(α) ln n
n

.

The numerical experiments [20] show that the solution is a hard problem and the

question for computation of the polynomial Q2n+1 for large n is open (see, also [24]).

The polynomial Q2n+1 for n = 8 is visualized on Fig. 1.

For other results, see [21]–[24].

We will explore the interesting methodological task for constructing new activation

functions using ”correcting amendments” of ”Gompertz–Makeham–type” and prove



A NEW CLASS OF ACTIVATION FUNCTIONS 245

Figure 1: The polynomial Q2n+1 for n = 8.

upper and lower estimates for the Hausdorff approximation of the sign function by

means of this new family of parametric activation functions.

2. PRELIMINARIES

Definition 1. The sign function of a real number t is defined as follows:

sgn(t) =











−1, if t < 0,

0, if t = 0,

1, if t > 0.

(1)

Definition 2. [16], [17] The Hausdorff distance (the H–distance) ρ(f, g) between

two interval functions f, g on Ω ⊆ R, is the distance between their completed graphs

F (f) and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (2)

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

Definition 3. The new parametric activation function based on ”amendments” of

”Gompertz–Makeham - type” - (GMAF) is defined as follows

ϕ0(t) =
e−t−c(e−at

−1) − e−t−c(eat
−1)

e−t−c(e−at−1) + e−t−c(eat−1)
. (3)

It is natural to define the following special class of recurrence generated activation

functions
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Definition 4. The new family of recurrence generated activation functions based

on ”Gompertz–Makeham correction” - (RGGMAF) is defined as follows

ϕi(t) = ϕ0(t+ ϕi−1(t)); i = 1, 2, . . . , p, (4)

where ϕ0(t) is defined by (3).

3. MAIN RESULTS

In this Section we prove upper and lower estimates for the Hausdorff approximation of

the sign function by means of families ϕ(t) and ϕi(t) = ϕ0(t+ϕi−1(t)); i = 1, 2, . . . , p,

where p is the number of recursions.

The H-distance d0(sgn(t), ϕ0(t)) between the sgn function and the function ϕ0

satisfies the relation:

ϕ0(d0) =
e−d0−c(e−ad0−1) − e−d0−c(ead0−1)

e−d0−c(e−ad0−1) + e−d0−c(ead0−1)
= 1− d0. (5)

The nonlinear equation (5) has unique positive root d0.

The following Theorem gives upper and lower bounds for d0

Theorem 3.1. Let

W0 = 1 + ac; r0 = 1.1W0.

For the Hausdorff distance d0 between the sgn function and the function ϕ0 the fol-

lowing inequalities hold for

r0 > e1.1 ≈ 3.00417

dl0 =
1

r0
< d0 <

ln r0
r0

= dr0 . (6)

Proof. We define the functions

F0(d) =
e−d−c(e−ad

−1) − e−d−c(ead
−1)

e−d−c(e−ad−1) + e−d−c(ead−1)
− 1 + d (7)

and

G0(d) = −1 + (1 + ac)d = −1 +W0d. (8)

From Taylor expansion we find F0(d)−G0(d) = O(d30) (see, Fig. 2)

In addition G′

0(d) > 0. We look for two reals dl0 and dr0 such that G0(dl0) < 0

and G0(dr0) > 0 (leading to G0(dl0) < G0(d0) < G(dr0) and thus dl0 < d0 < dr0).

Trying dl0 = 1
r0

and dr0 = ln r0
r0

we obtain for r0 > e1.1 ≈ 3.00417
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Figure 2: The functions F0(d) and G0(d) for a = 3; c = 4.5.

Figure 3: Approximation of the sgn(t) by (GMAF) for a = 2; c = 2.5;

Hausdorff distance: d = 0.208803.

G0(dl0) < 0; G0(dr0) > 0.

This completes the proof of the inequalities (6).

Approximations of the sgn(t) by (GMAF)–functions for various a and c are visu-

alized on Fig. 3–Fig. 4.

From the graphics it can be seen that the ”saturation” is faster.

Some computational examples using relations (6) are presented in Table 1. The

last column of Table 1 contains the values of d0 computed by solving the nonlinear
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Figure 4: Approximation of the sgn(t) by (GMAF) for a = 3; c = 4.5;

Hausdorff distance: d = 0.105284.

equation (5).

a c dl0 dr0 d0 from (5)

2 2.5 0.151515 0.28592 0.208803

3 4.5 0.0626959 0.173634 0.105284

4 6.5 0.03367 0.11418 0.0646451

5 10 0.0178253 0.071785 0.0389444

6 20 0.00751315 0.0367476 0.0192617

Table 1: Bounds for d0 computed by (6) for various a and c.

From the above table, it can be seen that the right estimates for the value of the

best Hausdorff distance are precise.

The General Case.

The H-distance dp(sgn(t), ϕp(t)) between the sgn function and the function ϕp

satisfies the relation:

ϕp(dp) = ϕ0(t+ ϕp−1(t)) = 1− dp, p = 1, 2, 3, ... (9)

The following Theorem gives upper and lower bounds for dp

Theorem 3.2. Let

Wp = 1 +

p+1
∑

i=1

(ac)i; p = 1, 2, 3, ...; rp = 1.1Wp.
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For the Hausdorff distance dp between the sgn function and the function ϕp the

following inequalities hold for

rp > e1.1

dlp =
1

rp
< dp <

ln rp
rp

= drp . (10)

Proof. We define the functions

Fp(dp) = ϕp(dp)− 1 + dp (11)

and

Gp(dp) = −1 +Wpdp. (12)

From Taylor expansion we find Fp(dp)−Gp(dp) = O(d3p).

The proof follows the ideas given in Theorem 3.1 and will be omitted.

We note that

Gp(dlp) < 0; Gp(drp) > 0.

This completes the proof of the inequalities (10).

4. REMARKS

Remark 1. We also formulate the following mew Half Gompertz–Makeham Activa-

tion Function (HGMAF) by:

M0(t) =
1− e−t−c(eat

−1)

1 + e−t−c(eat−1)
. (13)

Theorem 3.3. Let

q =
1

2
(3 + ac); r0 = 1.1q.

For the Hausdorff distance d0 between the sgn function and the function M0(t) the

following inequalities hold for

r0 > e1.1

dl0 =
1

r0
< d0 <

ln r0
r0

= dr0 . (14)

The proof follows the ideas given in this note and will be omitted.

Approximation of the sgn(t) by M(t) for a = 4 and c = 5 is visualized on Fig. 6.

Remark 2. It is natural to define the following special class of recurrence generated

activation functions
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Figure 5: The activation functions for a = 1.5; c = 2: ϕ0 (dashed); Hausdorff

distance d0 = 0.288019; ϕ1 (blue); Hausdorff distance d1 = 0.112234; ϕ2

(thick); Hausdorff distance d2 = 0.0464705; ϕ3 (red); Hausdorff distance

d3 = 0.0192846.

Figure 6: Approximation of the sgn(t) by M0(t) for a = 4 and c = 5;

Hausdorff distance: d = 0.109287.

Definition 5. The new family of recurrence generated activation functions based

on the ”Half Gompertz–Makeham correction” - (RHGMAF) is defined as follows



A NEW CLASS OF ACTIVATION FUNCTIONS 251

Mi(t) = M0(t+Mi−1(t)); i = 1, 2, . . . , p, (15)

where M0(t) is defined by (13) and p is the number of recursions.

Let

Wp =
1

2p+1

(

D1
p +

p
∑

i=1

Di+1
p (ac)i +Dp+2

p (ac)p+1

)

; p = 1, 2, 3, ...

where
D1

1 = 7; D1
p = 2Dp−1 + 1; p ≥ 2,

D2
1 = 4; Di+1

p = Di
p−1 +Di+1

p−1; p ≥ 2; 1 ≤ i ≤ p,

Dk+2
k = 1; k ≥ 1.

For example

W1 = 1
4

(

7 + 4ac+ a2c2
)

W2 = 1
8

(

15 + 11ac+ 5a2c2 + a3c3
)

W3 = 1
16

(

31 + 26ac+ 16a2c2 + 6a3c3 + a4c4
)

The following theorem is valid

Theorem 3.4. Let rp = 1.1Wp. For the one-sided Hausdorff distance dp between the

sgn function and the function Mp(t) the following inequalities hold for rp > e1.1

dlp =
1

rp
< dp <

ln rp
rp

= drp . (16)

Proof. We will briefly sketch the proof. Let

Fp(dp) = Mp(dp)− 1 + dp; Gp(dp) = −1 +Wpdp.

From Taylor expansion we find Fp(dp)−Gp(dp) = O(d2p) and

Gp(dlp) < 0; Gp(drp) > 0.

Remark 3.

After the substitution t = kl cos θ + a, where

– k = 2π
λ
, λ is the wave length;

– b is the phase difference;

– θ is the azimuthal angle;

– l is the distance between the emitters (l = λ
2 is fixed),

the activation function ϕ0(θ) has a form of emitting chart of antenna factor.
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Figure 7: Typical emitting chart of antenna factor for a = 2.2; c = 0.006.

Typical emitting chart is visualized on Fig. 7.

Of course, the question of the practical realization of the activation functions which

are generated as emitting charts remains open.
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Figure 8: The model (17) for ω = 92500; a = 0.211503 and c = 0.0775344.

Figure 9: Numbers of susceptible nodes S(t), infected nodes I(t) and recov-

ered nodes R(t) as a function of time t, as inferred from CAIDA’s dataset on

21/Nov/ 2008, the day of Conficker’s outbreak [37].

Remark 4. Here we will present a new analysis of Conficker propagation in 2008

and we explore the Network Telescope project’s daily dataset [37], [38] collected on

November 21, 2008. We will approximate the number of infected nodes I(t), see Fig.

9.

Consider the function

H(t) = ω
e−t−c(e−at

−1) − e−t−c(eat
−1)

e−t−c(e−at−1) + e−t−c(eat−1)
. (17)

for t ∈ [0,∞] and c > 0, a > 0.

The model (17) for ω = 92500; a = 0.211503 and c = 0.0775344 is visualized on

Fig. 8.

For a new analysis and more precise modelling of the data of computer virus

epidemics see [39], [40].

5. CONCLUSION

A family of parametric activation functions (PGHAF) based on ”correcting amend-

ments” of ”Gompertz–Makeham - type” is introduced finding application in neural

network theory and practice.
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Theoretical and numerical results on the approximation in Hausdorff sense of the

sgn function by means of functions belonging to the family are reported in the paper.

We propose a software module within the programming environment CAS Math-

ematica for the analysis of the considered family of (RGGMAF) functions.

The module offers the following possibilities:

- generation of the activation functions under user defined values of the parameters

a, c and number of recursions p;

- calculation of the H-distance dp, p = 1, 2, . . . , between the sgn function and the

activation functions ϕp(t);

- simulation of the emitting chart of antenna factor;

- software tools for animation and visualization.

For other results, see [25]–[36].

In conclusion, we will note that the newly constructed recurrently general families

of sigmoidal and activation functions can be used with success in creating a new higher

order recurrent neural networks.
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