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1. INTRODUCTION

It is well known that inequalities play a significant role in the study of the qualita-

tive behavior of solutions of differential, integral and integro-differential equations.

Among others Gronwall-Bellman integral inequality plays a significant role to discuss

the boundedness, global existence, uniqueness, stability, and continuous dependence

of solutions to some certain differential equations, fractional differential equations,

stochastic differential equations. Such inequalities have gained much attention of

many researchers [12, 6, 3, 1, 8, 7, 10, 2, 9, 11, 5]. Recent paper is a motivation of an

idea given by Q-X Kong et al. [4].

Moreover, our result can be used to analyze the behavior of solution of fractional

stochastic differential equation. The paper is arranged in such a way that after this

Introduction in Section 2, we give our main result and related consequences. In

Section 3, we discuss the existence and uniqueness of the solution of a stochastic
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differential equation.

2. MAIN RESULTS

Lemma 1. [4] Let a1, a2 ∈ R. Then for ξ > 0, we have

Γ(ξ + a1)

Γ(ξ + a2)
= O

(

ξa1−a2
)

, ξ → ∞.

Definition 2. [4] Let a2 > a1 > 0, ̺ > 0. Then the following definition:

F̺,a1,a2(ξ) :=

∞
∑

n=0

bnξ
n, ξ ∈ R

is well defined, where b0 is a positive constant, and bn+1 =
(

Γ(n̺+a1)
Γ(n̺+a2)

)

bn.

Theorem 3. Let g1(t) be a non-negative and locally integrable function on R+; let

g2(t), g3(t) are nonnegative, nondecreasing continuous functions defined on R+ and

bounded. Further, if r(t) is a nonnegative and ta−1r(t) is locally integrable on R+

such that:

r(t) ≤ g1(t) + g2(t)

∫

t

0

(t− p)b−1pa−1r(p)dp+ g3(t)

∫

t

0

t
b−1pa−1r(p)dp, (1)

for t ∈ R+. Then, for each constant a > 0, 0 < b < 1, c = a + b − 1 > 0, ω > 0,

t ∈ [0, ω], θ, η ∈ N, we have

r(t) ≤



















































g1(t) +
∑∞

θ=1 (Γ(b))
θ−1∏θ−1

i=1
Γ(ic)

Γ(ic+b)

×
∑θ

η=0 C
θ
ηg

θ−η
2 (t)gη3 (t)

×
∫

t

0
(t− p)θc−apa−1g1(p)dp, a, b ∈ (0, 1),

g1(t) +
∑∞

θ=1
(Γ(b))θ t

(θ−1)(a−1)

Γ(θb)

×
∑θ

η=0 C
θ
ηg

θ−η
2 (t)gη3 (t)

×
∫

t

0 (t− p)θb−1pa−1g1(p)dp, a ∈ [1,∞), b ∈ (0, 1).

(2)

Proof. The proof of the inequality (1) would be followed by two cases. In the first

case, we may assume a, b ∈ (0, 1) and in the second case, we may assume that a ∈

[1,∞) and b ∈ (0, 1).

On letting

Ar(t) := g2(t)

∫

t

0

(t− p)b−1pa−1r(p)dp+ g3(t)

∫

t

0

t
b−1pa−1r(p)dp.

In this case, (1) is reshaped as:

r(t) ≤ g1(t) + Ar(t).
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Iterating the inequality for some θ ∈ N, one has

r(t) ≤

θ−1
∑

η=0

A
ηg1(t) + A

θr(t). (3)

We claim that the following inequality does hold:

A
θr(t) ≤



















































(Γ(b))
θ−1 ∏θ−1

i=1
Γ(ic)

Γ(ic+b)

×
∑θ

η=0 C
θ
ηg

θ−η
2 (t)gη3 (t)

×
∫

t

0 (t− p)θc−apa−1r(p)dp, a, b ∈ (0, 1),

(Γ(b))θt(θ−1)(a−1)

Γ(θb)

×
∑θ

η=0 C
θ
ηg

θ−η
2 (t)gη3 (t)

×
∫

t

0
(t− p)θb−1pa−1r(p)dp, a ∈ [1,∞), b ∈ (0, 1),

(4)

for some θ ∈ N, where
∏0

i=1 g(i) = 1.

Case-I: The proof follows the induction criteria on θ. For θ = 1, consider

Ar(t) = g2(t)

∫

t

0

(t− p)b−1pa−1r(p)dp+ g3(t)

∫

t

0

t
b−1pa−1r(p)dp

≤ (g2(t) + g3(t))

∫

t

0

(t− p)b−1pa−1r(p)dp,

which is true by virtue of
∏0

i=1 g(i) = 1.

Suppose it holds for some θ = m. Then, for θ = m+ 1

A
m+1r(t) = A(Amr(t))

= g2(t)

∫

t

0

(t− p)b−1pa−1
A

mr(p)dp

+g3(t)

∫

t

0

t
b−1pa−1

A
mr(p)dp

≤ g2(t)

∫

t

0

(t− p)b−1pa−1 (Γ(b))
m−1

m−1
∏

i=1

Γ (ic)

Γ (ic+ b)

×

m
∑

η=0

Cm
η g

m−η
2 (p)gη3 (p)

∫ p

0

(p− ζ)mc−aζa−1r(ζ)dζdp

+g3(t)

∫

t

0

t
b−1pa−1 (Γ(b))

m−1
m−1
∏

i=1

Γ (ic)

Γ (ic+ b)

×
m
∑

η=0

Cm
η g

m−η
2 (p)gη3 (p)

∫ p

0

(p− ζ)mc−aζa−1r(ζ)dζdp

≤ (Γ(b))
m−1

m−1
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=0

Cm
η g

m−η+1
2 (t)gη3 (t)
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×

∫

t

0

(t− p)b−1pa−1

∫ p

0

(p− ζ)mc−aζa−1r(ζ)dζdp

+(Γ(b))m−1
m−1
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=0

Cm
η g

m−η
2 (t)gη+1

3 (t)

×

∫

t

0

t
b−1pa−1

∫ p

0

(p− ζ)mc−aζa−1r(ζ)dζdp.

Change of order of integration yields the following:

A
m+1r(t) ≤ (Γ(b))

m−1
m−1
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=0

Cm
η g

m−η+1
2 (t)gη3 (t)

×

∫

t

0

ζa−1r(ζ)

∫

t

ζ

(t− p)b−1pa−1(p− ζ)mc−adpdζ

+(Γ(b))
m−1

m−1
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=0

Cm
η g

m−η
2 (t)gη+1

3 (t)

×

∫

t

0

ζa−1r(ζ)

∫

t

ζ

(t− p)b−1pa−1(p− ζ)mc−adpdζ

≤ (Γ(b))
m−1

m−1
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=0

Cm
η g

m−η+1
2 (t)gη3 (t)

×

∫

t

0

ζa−1r(ζ)

∫

t

ζ

(t− p)b−1(p− ζ)mc−1dpdζ

+(Γ(b))
m−1

m−1
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=0

Cm
η g

m−η
2 (t)gη+1

3 (t)

×

∫

t

0

ζa−1r(ζ)

∫

t

ζ

(t− p)b−1(p− ζ)mc−1dpdζ

= (Γ(b))
m−1

m−1
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=0

Cm
η g

m−η+1
2 (t)gη3 (t)

×

∫

t

0

ζa−1r(ζ)
Γ(b)Γ(mc)

Γ(b +mc)
(t− ζ)b+mc−1dζ

+(Γ(b))
m−1

m−1
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=0

Cm
η g

m−η
2 (t)gη+1

3 (t)

×

∫

t

0

ζa−1r(ζ)
Γ(b)Γ(mc)

Γ(b +mc)
(t− ζ)b+mc−1dζ

= (Γ(b))m
m
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=0

Cm
η g

m−η+1
2 (t)gη3 (t)

×

∫

t

0

(t− ζ)(m+1)c−aζa−1r(ζ)dζ
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+ (Γ(b))m
m
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=0

Cm
η g

m−η
2 (t)gη+1

3 (t)

×

∫

t

0

(t− ζ)(m+1)c−aζa−1r(ζ)dζ

= (Γ(b))
m

m
∏

i=1

Γ (ic)

Γ (ic+ b)
Cm

0 gm+1
2 (t)

∫

t

0

(t− ζ)(m+1)c−aζa−1r(ζ)dζ

+(Γ(b))m
m
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=1

Cm
η g

m−η+1
2 (t)gη3 (t)

×

∫

t

0

(t− ζ)(m+1)c−aζa−1r(ζ)dζ

+(Γ(b))
m

m
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=1

Cm
η−1g

m−η+1
2 (t)gη3 (t)

×

∫

t

0

(t− ζ)(m+1)c−aζa−1r(ζ)dζ

+(Γ(b))
m

m
∏

i=1

Γ (ic)

Γ (ic+ b)
Cm

mgm+1
3 (t)

∫

t

0

(t− ζ)(m+1)c−aζa−1r(ζ)dζ

= (Γ(b))
m

m
∏

i=1

Γ (ic)

Γ (ic+ b)
Cm+1

0 gm+1
2 (t)

∫

t

0

(t− ζ)(m+1)c−aζa−1r(ζ)dζ

+(Γ(b))
m

m
∏

i=1

Γ (ic)

Γ (ic+ b)

m
∑

η=1

(

Cm
η +Cm

η−1

)

g
m−η+1
2 (t)gη3 (t)

×

∫

t

0

(t− ζ)(m+1)c−aζa−1r(ζ)dζ

+(Γ(b))m
m
∏

i=1

Γ (ic)

Γ (ic+ b)
Cm+1

m+1g
m+1
3 (t)

∫

t

0

(t− ζ)(m+1)c−aζa−1r(ζ)dζ

= (Γ(b))m
m
∏

i=1

Γ (ic)

Γ (ic+ b)

m+1
∑

η=0

Cm+1
η g

m−η+1
2 (t)gη3 (t)

×

∫

t

0

(t− ζ)(m+1)c−aζa−1r(ζ)dζ,

which is no more than inequality (4) for θ = m+ 1.

Case-II: For θ = 1, the steps are same as a, b ∈ (0, 1).

Suppose (4) holds for some θ = m. Then, for θ = m+ 1, consider

A
m+1r(t) = A(Amr(t))

= g2(t)

∫

t

0

(t− p)b−1pa−1
A

mr(p)dp + g3(t)

∫

t

0

t
b−1pa−1

A
mr(p)dp

≤ g2(t)

∫

t

0

(t− p)b−1pa−1 (Γ(b))
m
p(m−1)(a−1)

Γ(mb)

m
∑

η=0

Cm
η g

m−η
2 (p)gη3 (p)



264 S. RAFEEQ AND S. HUSSAIN

×

∫ p

0

(p− ζ)mb−1ζa−1r(ζ)dζdp + g3(t)

∫

t

0

t
b−1pa−1

×
(Γ(b))

m
p(m−1)(a−1)

Γ(mb)

×

m
∑

η=0

Cm
η g

m−η
2 (p)gη3 (p)

∫ p

0

(p− ζ)mb−1ζa−1r(ζ)dζdp

≤
(Γ(b))m

Γ(mb)

m
∑

η=0

Cm
η g

m−η+1
2 (t)gη3 (t)

∫

t

0

(t− p)b−1pa−1p(m−1)(a−1)

×

∫ p

0

(p− ζ)mb−1ζa−1r(ζ)dζdp

+
(Γ(b))

m

Γ(mb)

m
∑

η=0

Cm
η g

m−η
2 (t)gη+1

3 (t)

×

∫

t

0

t
b−1pa−1p(m−1)(a−1)

∫ p

0

(p− ζ)mb−1ζa−1r(ζ)dζdp

≤
(Γ(b))

m
tm(a−1)

Γ(mb)

m
∑

η=0

Cm
η g

m−η+1
2 (t)gη3 (t)

∫

t

0

(t− p)b−1

×

∫ p

0

(p− ζ)mb−1ζa−1r(ζ)dζdp +
(Γ(b))

m
t
m(a−1)

Γ(mb)

×

m
∑

η=0

Cm
η g

m−η
2 (t)gη+1

3 (t)

∫

t

0

t
b−1

∫ p

0

(p− ζ)mb−1ζa−1r(ζ)dζdp.

Interchanging the order of integration yields

A
m+1r(t) ≤

(Γ(b))
m
tm(a−1)

Γ(mb)

m
∑

η=0

Cm
η g

m−η+1
2 (t)gη3 (t)

×

∫

t

0

ζa−1r(ζ)

∫

t

ζ

(t− p)b−1(p− ζ)mb−1dpdζ

+
(Γ(b))m tm(a−1)

Γ(mb)

m
∑

η=0

Cm
η g

m−η
2 (t)gη+1

3 (t)

×

∫

t

0

ζa−1r(ζ)

∫

t

ζ

(t− p)b−1(p− ζ)mb−1dpdζ

=
(Γ(b))

m
tm(a−1)

Γ(mb)

m
∑

η=0

Cm
η g

m−η+1
2 (t)gη3 (t)

∫

t

0

ζa−1r(ζ)

×
Γ(b)Γ(mb)

Γ(b+mb)
(t− ζ)b+mb−1dζ +

(Γ(b))
m
t
m(a−1)

Γ(mb)

×

m
∑

η=0

Cm
η g

m−η
2 (t)gη+1

3 (t)

∫

t

0

ζa−1r(ζ)
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×
Γ(b)Γ(mb)

Γ(b+mb)
(t− ζ)b+mb−1dζ

=
(Γ(b))

m+1
tm(a−1)

Γ((m+ 1)b)

m
∑

η=0

Cm
η g

m−η+1
2 (t)gη3 (t)

×

∫

t

0

(t− ζ)(m+1)b−1ζa−1r(ζ)dζ

+
(Γ(b))

m+1
tm(a−1)

Γ((m+ 1)b)

m
∑

η=0

Cm
η g

m−η
2 (t)gη+1

3 (t)

×

∫

t

0

(t− ζ)(m+1)b−1ζa−1r(ζ)dζ

=
(Γ(b))

m+1
tm(a−1)

Γ((m+ 1)b)

m+1
∑

η=0

Cm+1
η g

m−η+1
2 (t)gη3 (t)

×

∫

t

0

(t− ζ)(m+1)b−1ζa−1r(ζ)dζ

which is no more than inequality (4) for θ = m+1. We further, claim that Aθr(t) → 0

as θ → ∞. Now, we go back to inequality (4).

For the case a, b ∈ (0, 1), there exists N1 > 0 such that for θ > N1, we have

θc− a > 0,

and hence for an arbitrary ω > 0

(t− p)θc−a ≤ ωθc−a, t ∈ [0, ω], p ∈ [0, t].

Therefore, for θ > N1 and t ∈ [0, ω], we have

A
θr(t) ≤ (Γ(b))

θ−1
θ−1
∏

i=1

Γ (ic)

Γ (ic+ b)

θ
∑

η=0

Cθ
ηg

θ−η
2 (t)gη3 (t)

∫

t

0

(t− p)θc−apa−1r(p)dp

≤ (Γ(b))
θ−1

θ−1
∏

i=1

Γ (ic)

Γ (ic+ b)
(g2(t) + g3(t))

θ

∫

t

0

ωθc−apa−1r(p)dp (5)

≤ (Γ(b))
θ−1

θ−1
∏

i=1

Γ (ic)

Γ (ic+ b)
(g2(t) + g3(t))

θ
ωθc−a

∫ ω

0

pa−1r(p)dp.

For

Bθ := (Γ(b))
θ−1

θ−1
∏

i=1

Γ (ic)

Γ (ic+ b)
(g2(t) + g3(t))

θ
ωθc−a.

Since g2(t) and g3(t) are bounded, so by Lemma 1

Bθ+1

Bθ

=
Γ(b)Γ (θc)

Γ (θc+ b)
(g2(t) + g3(t))ω

c → 0 as θ → ∞
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pa−1r(p) is locally integrable over R+, so

A
θr(t) → 0 as θ → ∞.

Similarly, we can prove that for θ > N2 and t ∈ [0, ω],

∞
∑

θ=1

A
θg1(t) =

N2
∑

θ=1

A
θg1(t) +

∞
∑

θ=N2+1

A
θg1(t)

≤

N2
∑

θ=1

A
θg1(t) +

∞
∑

θ=N2+1

Bθ

∫ ω

0

pa−1r(p)dp

< ∞.

In a similar fashion, in Case-II, some one can prove Aθr(t)
θ→∞
−→ 0 and convergence of

∑∞

θ=1A
θg1(t) for t ∈ [0, ω].

For g1(t) = gtd−1 in theorem 3, the following holds.

Corollary 4. Let a, d > 0; 0 < b < 1; c = a + b − 1 > 0; e = a + d − 1 >

0; g > 0; g2(t) and g3(t) are nonnegative, nondecreasing, bounded and continuous

functions defined on R+. Further, suppose that r(t) is a nonnegative and ta−1r(t) is

locally integrable on R+ such that:

r(t) ≤ gtd−1 + g2(t)

∫

t

0

(t− p)b−1pa−1r(p)dp + g3(t)

∫

t

0

t
b−1pa−1r(p)dp. (6)

Then

r(t) ≤ gtd−1Fc,e,b+e (Γ(b) (g2(t) + g3(t)) t
c) , t ∈ R+. (7)

Proof. From the proof of theorem 3, we have A
θr(t) → 0 as θ → ∞ for the cases

a, b ∈ (0, 1) and a ∈ [1,∞), b ∈ (0, 1). This, together with (3), leads to

r(t) ≤

∞
∑

η=0

(

A
ηgtd−1

)

(t).

Now, we show that

(

A
ηgtd−1

)

(t) ≤ gtd−1 (tc Γ(b))η
η−1
∏

i=0

Γ (ic+ e)

Γ (b+ ic+ e)

η
∑

i=0

C
η
i g

η−i
2 (t)gi3(t), (8)

where η ∈ N.

For θ = 0, the result holds by virtue of
∏η−1

i=0 g(i) = 1. Suppose it holds for some

θ = η. For θ = η + 1, one has

(

A
ηgtd−1

)

(t) = g2(t)

∫

t

0

(t− p)b−1pa−1
(

A
ηgpd−1

)

(p)dp
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+g3(t)

∫

t

0

t
b−1pa−1

(

A
ηgpd−1

)

(p)dp

≤ g2(t)

∫

t

0

(t− p)b−1pa−1gpd−1 (pc Γ(b))η
η−1
∏

i=0

Γ (ic+ e)

Γ (b+ ic+ e)

×

η
∑

i=0

C
η
i g

η−i
2 (p)gi3(p)dp+ g3(t)

∫

t

0

t
b−1pa−1gpd−1 (pc Γ(b))

η

×

η−1
∏

i=0

Γ (ic+ e)

Γ (b+ ic+ e)

η
∑

i=0

C
η
i g

η−i
2 (p)gi3(p)dp

≤ g (Γ(b))
η
η−1
∏

i=0

Γ (ic+ e)

Γ (b+ ic+ e)

η
∑

i=0

C
η
i g

η−i+1
2 (t)gi3(t)

×

∫

t

0

(t− p)b−1pa−1pd−1pηcdp+ g (Γ(b))
η
η−1
∏

i=0

Γ (ic+ e)

Γ (b+ ic+ e)

×

η
∑

i=0

C
η
i g

η−i
2 (t)gi+1

3 (t)

∫

t

0

t
b−1pa−1pd−1pηcdp

≤ g (Γ(b))η
η−1
∏

i=0

Γ (ic+ e)

Γ (b+ ic+ e)

η+1
∑

i=0

C
η+1
i g

η−i+1
2 (t)gi3(t)

×

∫

t

0

(t− p)b−1pa+d+ηc−2dp

= g (Γ(b))
η
η−1
∏

i=0

Γ (ic+ e)

Γ (b+ ic+ e)

η+1
∑

i=0

C
η+1
i g

η−i+1
2 (t)gi3(t)

×
Γ(b)Γ(a+ d+ ηc− 1)

Γ(a+ b+ d+ ηc− 1)
t
a+b+d+ηc−2

= gtd−1 (tcΓ(b))
η+1

η
∏

i=0

Γ (ic+ e)

Γ (b+ ic+ e)

η+1
∑

i=0

C
η+1
i g

η−i+1
2 (t)gi3(t).

Hence, inequality (8) is satisfied for any η ∈ N. In other words, we have proved that

r(t) ≤

∞
∑

η=0

gtd−1 (tc Γ(b))
η
η−1
∏

i=0

Γ (ic+ e)

Γ (b+ ic+ e)

η
∑

i=0

C
η
i g

η−i
2 (t)gi3(t).

By definition 2

r(t) ≤ gtd−1Fc,e,b+e (Γ(b) (g2(t) + g3(t)) t
c) .

Remark 5. For g3(t) ≡ 0, t > 0, Corollary 4 reduces to [4, Theorem 2.7] for

b ∈ (0, 1).
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3. APPLICATION

Consider the following stochastic differential equation:

d(x(t)) = b(t, x(t))dt+ σ1(t, x(t))dt
a + σ2(t, x(t))dBt (9)

where 0 < a < 1 and Bt is the standard Brownian motion.

Theorem 6. Let ω > 0; a ∈ (0, 1); (Ω, F, P ) be a complete probability space

with an m−dimensional Brownian motion B(t) defined on space R
n; let w0 be a

random variable such that E|w0|
2 < ∞; let b(., .), σ1(., .) : [0, ω] × R

n → R
n and

σ2(., .) : [0, ω]×R
n → R

n×m be measurable functions such that t1−ab(., .), t1−aσ1(., .),

t
1−aσ2(., .) are also measurable such that the linear Growth and Lipschitz conditions,

|b(t, x)|2 + |σ1(t, x)|
2 + |σ2(t, x)|

2 ≤ K2
(

1 + |x|2
)

(10)

|b(t, x)− b(t, y)| + |σ1(t, x)− σ1(t, y)| + |σ2(t, x)− σ2(t, y)| ≤ L|x − y| (11)

are satisfied, for some constants K,L > 0. Then the fractional stochastic differential

equation (9) has a t-continuous solution with a filtration Fw0
t

such that

E

[
∫ ω

0

|x(t)|2dt

]

< ∞.

Proof. The integral form of the stochastic differential equation (9) is

x(t) = w0 +

∫

t

0

b (p, x(p)) dp+ a

∫

t

0

(t− p)a−1σ1 (p, x(p)) dp

+

∫

t

0

σ2 (p, x(p)) dBp. (12)

By the method of Picard-Lindelöf iteration, define logarithmically x(0)(t) = x0, for

some η ∈ N, as follows:

x(η+1)(t) = w0 +

∫

t

0

b
(

p, x(η)(p)
)

dp+ a

∫

t

0

(t− p)a−1σ1

(

p, x(η)(p)
)

dp

+

∫

t

0

σ2

(

p, x(η)(p)
)

dBp. (13)

Using the inequality |x+ y + z|2 ≤ 3|x|2 + 3|y|2 + 3|z|2, we have

E

∣

∣

∣
x(η+1)(t)− x(η)(t)

∣

∣

∣

2

≤ 3E

∣

∣

∣

∣

∫

t

0

{

b
(

p, x(η)(p)
)

− b
(

p, x(η−1)(p)
)}

dp

∣

∣

∣

∣

2
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+3E

∣

∣

∣

∣

a

∫

t

0

(t− p)a−1
{

σ1

(

p, x(η)(p)
)

− σ1

(

p, x(η−1)(p)
)}

dp

∣

∣

∣

∣

2

+3E

∣

∣

∣

∣

∫

t

0

{

σ2

(

p, x(η)(p)
)

− σ2

(

p, x(η−1)(p)
)}

dBp

∣

∣

∣

∣

2

.

Cauchy Schwartz inequality on the first two integral and Itô’s Isometry on the third

integral yields:

E
∣

∣

∣
x(η+1)(t)− x(η)(t)

∣

∣

∣

2

(14)

≤ 3ωE

∫

t

0

[

b
(

p, x(η)(p)
)

− b
(

p, x(η−1)(p)
)]2

dp

+3ataE

∫

t

0

(t− p)a−1
[

σ1

(

p, x(η)(p)
)

− σ1

(

p, x(η−1)(p)
)]2

dp

+3E

∫

t

0

[

σ2

(

p, x(η)(p)
)

− σ2

(

p, x(η−1)(p)
)]2

dp. (15)

Application of the Lipschitz codition (11) yields:

E

∣

∣

∣
x(η+1)(t)− x(η)(t)

∣

∣

∣

2

≤ 3L2(1 + ω)

∫

t

0

E

∣

∣

∣
x(η)(p)− x(η−1)(p)

∣

∣

∣

2

dp

+ 3L2(1 + ω)

∫

t

0

(t− p)a−1E
∣

∣

∣
x(η)(p)− x(η−1)(p)

∣

∣

∣

2

dp

⇒ t
1−aE

∣

∣

∣
x(η+1)(t)− x(η)(t)

∣

∣

∣

2

≤ 3L2(1 + ω)ω1−a ×
[

ω1−a

×

∫

t

0

t
a−1pa−1

{

p1−aE
∣

∣

∣
x(η)(p)− x(η−1)(p)

∣

∣

∣

2
}

dp+

∫

t

0

(t− p)a−1pa−1

{

p1−aE

∣

∣

∣
x(η)(p)− x(η−1)(p)

∣

∣

∣

2
}

dp

]

. (16)

For locally integrable function Ψ(t) define an operator C as follows:

CΨ(t) := 3L2(1 + ω)ω1−a

[

ω1−a

∫

t

0

t
a−1pa−1Ψ(p)dp

+

∫ t

0

(t− p)a−1pa−1Ψ(p)dp

]

. (17)

From (16) and (17), repeating iteration yields:

t
1−aE

∣

∣

∣
x(η+1)(t)− x(η)(t)

∣

∣

∣

2

≤ C

(

t
1−aE

∣

∣

∣
x(η)(t)− x(η−1)(t)

∣

∣

∣

2
)

≤ ... ≤ C
η−1

(

t
1−aE

∣

∣

∣
x(2)(t)− x(1)(t)

∣

∣

∣

2
)

≤ C
η

(

t
1−aE

∣

∣

∣
x(1)(t)− x(0)(t)

∣

∣

∣

2
)

. (18)
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As, E
∣

∣x(1)(t)− x(0)(t)
∣

∣

2
is locally integrable therefore application of (4), (5) and (18)

yield:

t
1−aE

∣

∣

∣
x(η+1)(t)− x(η)(t)

∣

∣

∣

2

≤ C
η

(

t
1−aE

∣

∣

∣
x(1)(t)− x(0)(t)

∣

∣

∣

2
)

≤ (Γ(a))
η−1

η−1
∏

i=1

Γ (i(2a− 1))

Γ (i(2a− 1) + a)
ω−a

×
[

3L2(1 + ω)ωa(1 + ω1−a)
]η

×

∫

t

0

E

∣

∣

∣
x(1)(p)− x(0)(p)

∣

∣

∣

2

dp. (19)

Again, from (13) applications of the inequality |x + y + z|2 ≤ 3|x|2 + 3|y|2 + 3|z|2,

Cauchy Schwartz inequality, Itô’s Isometry, linear growth condition yields

E
∣

∣

∣
x(1)(t)− x(0)(t)

∣

∣

∣

2

≤ 3K2
(

1 + E|w0|
2
)

(1 + ω)(t+ t
a). (20)

A Combination of (19) and (20) produces

sup
0≤t≤ω

E

∣

∣

∣
x(η+1)(t)− x(η)(t)

∣

∣

∣

2

≤ M0

η−1
∏

i=1

Γ(i(2a− 1))

Γ(i(2a− 1) + a)
[

3L2Γ(a)ωa(1 + ω)(1 + ω1−a)
]η

, (21)

provided that

M0 :=
3K2(1 + E|w0)|

2)(1 + ω)

Γ(a)

(

ω

2
+

ωa

a+ 1

)

.

Thus, for any φ, θ ∈ N such that φ > θ > 0,

∥

∥

∥
x(φ)(t)− x(θ)(t)

∥

∥

∥

2

L2(P)
≤

φ
∑

η=θ

∥

∥

∥
x(η+1)(t)− x(η)(t)

∥

∥

∥

2

L2(P)

=

φ
∑

η=θ

∫ ω

0

E

∣

∣

∣
x(η+1)(t)− x(η)(t)

∣

∣

∣

2

dt

≤ M1

φ
∑

η=θ

[

3L2Γ(a)ωa(1 + ω)(1 + ω1−a)
]η

×

η−1
∏

i=1

Γ(i(2a− 1))

Γ(i(2a− 1) + a)
→ 0,

for sufficiently large φ, θ such that:

M1 :=
3K2(1 + E|w0)|

2(1 + ω)

Γ(a)

(

ω2

2(2 + a)
+

ωa+1

(a+ 1)(2a+ 1)

)

.
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From Doob’s maximal inequality for martingales,

∞
∑

η=1

P

[

sup
0≤t≤ω

∣

∣

∣
x(η+1)(t)− x(η)(t)

∣

∣

∣
>

1

η2

]

≤ M0

∞
∑

η=1

[

3L2Γ(a)ωa(1 + ω)(1 + ω1−a)
]η

×

η−1
∏

i=1

Γ(i(2a− 1))

Γ(i(2a− 1) + a)
η4 < +∞.

The Borel cantelli lemma yields:

P

{

sup
0≤t≤ω

∣

∣

∣
x(η+1)(t)− x(η)(t)

∣

∣

∣
>

1

η2
for infinitely many η

}

= 0,

so there exist a random variable x(t) which is almost surely uniformly continuous on

[0, ω], such that:

x(η)(t) = x(0)(t) +

η−1
∑

θ=0

(

x(θ+1)(t)− x(θ)(t)
)

η→∞
−→ x(t).

Since x(η)(t) is t-continuous for any η ∈ N, so x(t) is also t−continuous. Therefore,

w0 +

∫

t

0

b
(

p, x(η)(p)
)

dp+ a

∫

t

0

(t− p)a−1σ1

(

p, x(η)(p)
)

dp

+

∫

t

0

σ2

(

p, x(η)(p)
)

dBp
η→∞
−→ x(t),

for a stochastic process x(t) satisfying (12).

Theorem 7. Under the conditions of Theorem 6, stochastic integral equation (12)

has at most one solution.

Proof. Let x1(t) and x2(t) be solutions of stochastic integral equation (12), which

have the initial conditions x
(0)
i (t) = ti, 1 ≤ i ≤ 2. Application of Cauchy-Schwartz

inequality, the Itô Isometry, and Lipschitz condition, yield

E |x1(t)− x2(t)|
2 ≤ 4E |t1 − t2|

2 + 4L2(1 + ω)

×

∫

t

0

E |x1(p)− x2(p)|
2
dp

+4aL2ωa

∫

t

0

(t− p)a−1E |x1(p)− x2(p)|
2
dp

which can also be written as:

E|x1(t)− x2(t)|
2 ≤ 4E|t1 − t2|

2 + 4L2(1 + ω)ω1−a
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×

∫

t

0

t
a−1pa−1

{

p1−aE|x1(p)− x2(p)|
2
}

dp

+4aL2ωa

∫

t

0

(t− p)a−1pa−1

×
{

p1−aE|x1(p)− x2(p)|
2
}

dp.

Application of Corollary 4 yields:

E|x1(t)− x2(t)|
2 ≤ 4E|t1 − t2|

2F2a−1,a−1,2a−1

(

4L2Γ(a)

×
{

(1 + ω)ω1−a + aωa
}

t
2a−1

)

.

Since, x1(t) and x2(t) are solutions of stochstic integral equation (12), with the initial

conditions x
(0)
i (t) = ti, 1 ≤ i ≤ 2 therefore t1 = t2 and hence

E|x1(t)− x2(t)|
2 = 0 for all t > 0,

which proves the uniqueness.
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