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1. INTRODUCTION

It is well known that inequalities play a significant role in the study of the qualita-
tive behavior of solutions of differential, integral and integro-differential equations.
Among others Gronwall-Bellman integral inequality plays a significant role to discuss
the boundedness, global existence, uniqueness, stability, and continuous dependence
of solutions to some certain differential equations, fractional differential equations,
stochastic differential equations. Such inequalities have gained much attention of
many researchers [12, 6, 3, 1, 8, 7, 10, 2, 9, 11, 5]. Recent paper is a motivation of an
idea given by Q-X Kong et al. [4].

Moreover, our result can be used to analyze the behavior of solution of fractional
stochastic differential equation. The paper is arranged in such a way that after this
Introduction in Section 2, we give our main result and related consequences. In

Section 3, we discuss the existence and uniqueness of the solution of a stochastic
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differential equation.

2. MAIN RESULTS

Lemma 1. [4] Let a1,a2 € R. Then for £ > 0, we have

'€ +an)
(€ +a2)

Definition 2. [4] Let ag > a1 >0, ¢ > 0. Then the following definition:

=0 (£"™ "), &— .

Fgﬂll,az(g) = Z bnﬁ”, 5 cR

is well defined, where by is a positive constant, and b, 11 = (?E;Liiz;g) by

Theorem 3. Let g1(t) be a non-negative and locally integrable function on RT; let
g2(t), g3(t) are nonnegative, nondecreasing continuous functions defined on R* and
bounded. Further, if r(t) is a nonnegative and t*~1r(t) is locally integrable on R™
such that:

r() < g1(0) + g2(0) / (6= p)*1p* r(p)dp + g3 (0 / )y, (1)

for t € R*. Then, for each constanta > 0,0 <b<1l,c=a+b—1>0, w > 0,
te[0,w], 8,n € N, we have

<>+29 1<r<b>>9 I s
x X Cho (0930
xfo (t—p 05 apa=1g; (p)dp, a,b e (0,1),

(b))? 0-D(a=1)
gi(t) + 352, H

XEU o Clg5 M (t)gi (1)
X [o(t—p)?*=1p*= gy (p)dp, a€(l,00),be(0,1).

Proof. The proof of the inequality (1) would be followed by two cases. In the first

case, we may assume a,b € (0,1) and in the second case, we may assume that a €
[1,00) and b € (0, 1).
On letting

t t
(1) 1= ga() [ (6= "5 @y + 9000 [ €7 o).
0 0
In this case, (1) is reshaped as:

r(t) < g1(t) +2Ar(H).
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Iterating the inequality for some 6 € N, one has
) < 291"91 +2A%7(4).

We claim that the following inequality does hold:

(r®)’"~ Hf‘f T
in 0 77 (t)gg(t)

A7 (t)

IN

(F(b))ét(efl)(afl)
,T@)

Zn 0 Crg 9_"(092(0

for some 0 € N, where H(i):l g(i) = 1.

Case-I: The proof follows the induction criteria on 6. For § = 1, consider

Ar(t)

IN

(g2(t) + g3(t)) /0 (t—p)"'p* 'r(p)dp,

which is true by virtue of H?Zl g(i) = 1.
Suppose it holds for some # = m. Then, for 6 =m + 1

AT = ARA(E)
= gz(t)/o (t—p)"'p* 1A (p)dp

t
ga(t) / -1 1A () dp
0

t
b=1,0-1 ¢ yml
< o) [ (=p HF Lo
n P
X chgg%n(mgg@)/o (p— Q)™ (¢)dCdp
n=0
¢
+g3(t)A tb_lpa 1 m 1 H . Zc+b
n P
3 g (0)g3 v) / (b — Q" r(C)dcdp
n=0
m—1 m
m—1 T (ic) o m
< 0" T g 207l
= n=0

><f0 (t—p 90 ap=Lr(p)dp, a,b € (0,1),

« fo Gb 1 (p)dp’ a € []_,OO),b c (07 ].)a

g2(t) /0 (t—p)"'p* r(p)dp + g3(t) /0 7 1p" e (p)dp
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t P
o b—1, a—1 o mc—a ~a—1
an PP p L/@ Qyme=ace=1r()d¢dp

m—1 m
rE)™ " ] Flo+b§jcyg (g3 ()
=1 n=0
b—1, a—1 _ ~\mc—a, a—1
xAt [T - o e

Change of order of integration yields the following:

iy < 00" T g 00000

t t
g/@ld@l@—@b%”@—om“@«

o T gy S s 0st™ 0

n=0

g/@*d@/@—@“%ﬂ@—omﬂ@«

¢

m1H§‘ > Oy 0

ic+b)
/Ca 1

n=0
m 1 m_m— n+1
H s n;ocn 505

/w ‘

IN

—

t
—p)" " Hp — O™ dpd¢

/\

— )" Hp — O™ dpdc¢

/\

t
_ A\(m+1ec—a a—1
an 0 (e
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mm P mmn n+1
H(zc—FbZC )95 (O

i=1

—

) /Ot<t = Q)imHemece e (()dg

= )" ] gy G ) [ (= Qe g
)" T e S Gy~ (a0

1
95" (g3 (1)

_|_
=3
=
T3
jamE
4
/“'—,1

i=1 I (Z )
_ (F(b))m - ](-—;C( ) )Cm+1gm+1(t) /0 (’t _ C)(erl)cfaCaflr(C)dC
T (i ) =

(Cr+Cmy) g5 " 6)gd (1)
1=1 ( 77:1

t
_ A\(m+lec—a, a—1
x /0 (t-0) () de

m : t
H SO [t Qe (O
0
1
m m—41
_ mHF Z Cerl m— n+1 )g (t)
i=1

. /Ot“ — ¢)mHDemaca=lp(()dc,

which is no more than inequality (4) for 6 = m + 1.
Case-II: For 6 = 1, the steps are same as a,b € (0, 1).
Suppose (4) holds for some 6 = m. Then, for § = m + 1, consider

A" rt) = AR r(t))
- gz(t)/o (t—p)b—lpa—lQ[m’r(p)dp—f—gg(t)/o 1190 () dp
b—1_a 1(F(b))mp(mfl)(a71) m

S A O g )l p)
n=0
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t

P
x /0 (b — O™ r(Q)dcdp + g (0 /0 P tpet

(L(p))™ plm—Die—V)

8 T(mb)

m

TR / "o — ™) dcdp

IN

£((Tbr)lzmz m g(t)A(t_p)b—lpa—lp(m—l)(a—l)

x / (b — Q™1 () dCdp
0

L) <= o ey i1
e > O 0si )

t P
b—1,_a—1,(m—1)(a—1) _ ymb—1,a—1
<[ e / (0~ ™ r(Q)dCdp

0

(F(b)) tm(a D m _m— n+1 n ¢ _ b—1
Zc i [ a=p)

IN

(L (p))™ ¢

<[ o= omtetac + S

m

XZC;n 77+1 /tb 1/ p— Cmb 1 a—1 (C)dCdP

Interchanging the order of integration yields

tm(a 1) m

leJrlT’(f) < (P(b)) Zcm m— 77+1 n(,[)

/ ¢ty / PP (p — O™ Ldpd(

tm(a 1)

DS g

n=0

x / ¢ r(Q) /C (6= P (p — O™ dpdc

m(a—1)
_ (F(b) t Zcm m— 77+1 / Ca 1
L(b)T'(mb) mb— (I (b)) ¢
T(b -+ mb) (= QP + I'(mb)

m

xzcmmn n+1 /Cal
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L'(b)I'(mb) b+mb—1
——(t— mTid,
T'(b+ mb) (t=0 ¢

T b m“tma D -

t
x / (t—<><m+l>b*<“*1r<odc
0

m+1 m(a—1)
. (F(ﬁ)()m S Z g0

x /0 (- Qg

m+1 gm(a—1) mt1
- (F(Ili)()(m +t1)b) D O ey T (g3 (1)
n=0

: /Ot<t = QI ()

which is no more than inequality (4) for § = m+ 1. We further, claim that 2Ar(t) — 0
as § — oco. Now, we go back to inequality (4).
For the case a,b € (0, 1), there exists N1 > 0 such that for § > Ny, we have

Oc—a >0,
and hence for an arbitrary w > 0
(t—p)lemr <wi=e te(o,w], pelo,.

Therefore, for § > Ny and t € [0,w], we have

Wy < (1) 1H A 209 500 [ = e

IA

D 1H e () + (0 / W)y (5)

IA

9 1 0 6Oc—a v a—1
H e )+ aa0) o [
For
. 9 1 0 fOc—a

Since go(t) and g3(t) are bounded7 so by Lemma 1

Bos1 _ TOT (0)
By L (0c+0)

g2(t) + g3(t)) w® =0 as 6 — o
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p®~1r(p) is locally integrable over RT, so
Ar(t) =0 as 0 — oco.

Similarly, we can prove that for § > N3 and t € [0, w],

00 No o0
Salgi) = S Wam+ > A
=1 0=1

O0=Ns+1

No

< Y Wy Z %e/ P~ r(p)dp
0=1 0=N>+1

< 0o0.

.. . . 9—)00
In a similar fashion, in Case-II, some one can prove A%r(t) —= 0 and convergence of

Yo, Agi(t) for t € [0,w)]. O
For g;(t) = gt%~! in theorem 3, the following holds.

Corollary 4. Leta,d >0; 0 <b<1l;¢c=a+b—-1>0 e=a+d—-1 >
0; g > 0; go(t) and g3(t) are nonnegative, nondecreasing, bounded and continuous
functions defined on RT. Further, suppose that r(t) is a nonnegative and t*~1r(t) is

locally integrable on RY such that:
t t
r0 <90 a0 [ (- p) ) ) [ )p (6)
0 0
Then

F() € g Fuvc e (D) (92(8) + g5(0) ), te R, (7)

Proof. From the proof of theorem 3, we have 2%7(t) — 0 as § — oo for the cases
a,b€ (0,1) and a € [1,00), b € (0,1). This, together with (3), leads to

<> (gt
n=0
Now, we show that
n—1 . U
_ 1 I'(ic+e i i
(1ge=1) (0 < 9= (€ 70" [ o DS g b0, (®)
where 7 € N.

For 6 = 0, the result holds by virtue of []/—, ' g(i) = 1. Suppose it holds for some
0 =n. For 8 =n+ 1, one has

@A"gt" ) () = ga(t) /0 (t—p)"'p* ! (A"gp*") (p)dp
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t
+g3(t) / = 1pat (ATgptt) (p)dp
0

n—1

' I (ic+e)
< t t— b—1,a—1__d—1/ c (b n
< @) [ =p e e 1) Mgty
n ) ] t
<> Clgd (p)gh(p)dp + g3(t) / P=1pe=Lgpd=1 (¢ T(b))"
i— 0
n n
T'(ic+e) I
s(p)d
g T(h+icteo) ;C 95 (p)gs(p)dp
s I (ic+e)
< I'(b))" n o n—itligy i
< 900 [T 15 ooy 2Pk (0ak(0
t
+e)
t— blafldlncd 77 ZC
/0( p)" Tt pdp + g (T H b+w+e)
, t
XZC"QQ g5t () / o pt it pedp
0
T (ic+e) (any
< 77 n+1 —i+1 i
- H I'(b+ic+e) X;C (Dg5(t)
t
X/ (t_p)b—lpa+d+nc—2dp
0
(ic+e) any
= K L n—itl oo i
H bﬂcmzq a7 B
XF(b) (a+d+nc_1)ta+b+d+nc—2
Fla+b+d+nc—1)
1 (ic+e) Ay
_ td 1 ;[c 77+ n+1 n—i+1 t i 0.
g H b—l—zc—i—e)zq 92 (H)gs(t)

Hence, inequality (8) is satisfied for any n € N. In other words, we have proved that

0o n
< d—1 (e ) (ic +e) 1o () gl (1),
H<D gt (T IIPb+”0+@§;q92<w%m

By definition 2
r(t) < gt L e pe (T'(0) (92(1) + g3(1) ) .
O

Remark 5. For g5(t) = 0,t > 0, Corollary 4 reduces to [4, Theorem 2.7] for
be(0,1).
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3. APPLICATION

Consider the following stochastic differential equation:
d(z(t)) = b(t,z(t))dt + o1 (t, z(t))dt* + oa(t, z(t))d By (9)
where 0 < a < 1 and By is the standard Brownian motion.

Theorem 6. Let w > 0; a € (0,1); (2, F,P) be a complete probability space
with an m—dimensional Brownian motion B(t) defined on space R™; let wy be a
random variable such that Elwo|> < oo; let b(.,.),01(.,.) : [0,w] x R" — R™ and
o2(.,.) 1 [0,w] x R™ — R™ ™ be measurable functions such that t+=2b(.,.), t*= %1 (., .),

t'=%5(.,.) are also measurable such that the linear Growth and Lipschitz conditions,

b(t,2))* + |on(t,2))* + |oa(t,2) ] < K2 (1+ [2]?) (10)

b(t,z) = bt y)| + [o1(t,z) —or(ty)| + |oa(t,z) —oa(ty)] < Lz —y| (11)

are satisfied, for some constants K, L > 0. Then the fractional stochastic differential

equation (9) has a t-continuous solution with a filtration F™ such that

E [/Ow |x(t)|2dt} < oo.

Proof. The integral form of the stochastic differential equation (9) is
t ¢
o) = wot [ bEa@)dpta [ (-p) o1 (p.ol) dp
0 0

+ / o2 (p,2(p)) dB,. (12)

By the method of Picard-Lindeléf iteration, define logarithmically z()(t) = zg, for

some 77 € N, as follows:

D) = w4 /t b (p,x(") (p)) dp + a/ot(t —p)* o (p, ) (p)) dp

0
t
+ [ o2 (pa ) aB, (13)
0
Using the inequality |z +y + z|? < 3|z|? + 3]y|? + 3|z|?, we have

E ‘x("“)(t) ) (4)

/ o (na™0) ~ b (020 ) } o

‘2
2
< 3K
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2

soma [ =9 {or (5.5 0) — o (27 0(0) o

/ o2 (na0) - 02 () Y a8, 2

Cauchy Schwartz inequality on the first two integral and It6’s Isometry on the third

+3E

integral yields:

2
E ’x(”“)(t) — (t)‘ (14)
< 3wE /0t [b (p, ) (p)) —b (pafv(”’“(p))}2 dp
+3a'E | = or () = (2 0)]
+38 [ [oa (0 0)) - 02 (5.2010)) " a (15)

Application of the Lipschitz codition (11) yields:

2 ¢ 2
B[a () ~ 2] <3220 +w) [ E[a) -2 dp
0
t 2

#3220 +0) [ (=9 B[ 0) - V)| dp

0
2
- tl_aE ‘x(n-l-l) (t) _ x(n) (t)‘ S 3L2(1 + w)wl—a % [wl—a
t 2
x / ga=tpa=t {pl‘“E ‘x“’) (p) — af("_”(p)‘ }dp+
0
t 2
/ (t—p)*tpt {p”E ‘x(”) () — w(”’”(p)‘ }dp] . (16)
0
For locally integrable function W(t) define an operator € as follows:
t
CU(t) := 3L*(1+w)w'™™ {wl_“/ U (p)dp
0
t
+/(f—p)“1p“1\1f(p)dp] : (17)
0
From (16) and (17), repeating iteration yields:
2 2
d-ap ’x(”“)(t) ) (t)‘ <¢ (tlaE ‘x(n) (t) — x(nfl)(t)‘ >

<. <@t (tl—aE ]M(t) . x(l)(t)r) < e (tl‘“E ‘x(l)(t) — 2O (t)f) . (18)
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As, E ‘x(l)(t) — 200 (t)‘Q is locally integrable therefore application of (4), (5) and (18)
yield:

IA

2 2
f-op ‘x("“)(t) — g (t)‘ e (tl—“E ‘x(l)(t) — 2@ (t)‘ )

77 1 20‘ — 1)) —a
H F 2a — 1) )w
X [3L2(1—|—w)w (1—|—w “)}n
Bl 2O do,
< [ B @) -0 a (19)

Again, from (13) applications of the inequality |z + y + 2z|?> < 3|z|? + 3|y|? + 3|z|%,
Cauchy Schwartz inequality, 1t6’s Isometry, linear growth condition yields

IN

E }x@(t) — 2 (t)}2 <3K2(1+ Elwol?) (1 + w)(t + %) (20)

A Combination of (19) and (20) produces

sup E’x("“)() (¢ ‘ <MOHP 2

0<t<w

[BL2T(a)w (1 +w)(1 +w'™)]", (21)

provided that

py o B0 Elug) )1+ ) (442

I'(a) a+1
Thus, for any ¢,60 € N such that ¢ > 6 > 0,

9 ¢
< 3 [atm 0 -2t
L*(P) = L*(®)

¢ w 2
Z/ E‘x(n"’l)(t)—x(")(t)‘ dt
n=6"9

wa) (1) — x(e)(t)‘ :

A

¢
< MY [BLT(a)w(1+w)(1+w'™)]"
n*&

for sufficiently large ¢, 6 such that:

3K2(1+ BElwo)*(1 + w) w? wetl
T(a) <2(2 T Tt 1))

M1 =
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From Doob’s maximal inequality for martingales,

i]P’ { sup |z (1) — x(")(t)’ > 77_12]

g1 lostsw

< My Z [BL2T(a)w (1 + w)(1 +w'™)]"

The Borel cantelli lemma yields:

1
P{ sup ‘x(m’l)(t) — (t)‘ > — for infinitely many 77} =0,
0<t<w 7

so there exist a random variable x(t) which is almost surely uniformly continuous on
[0, w], such that:

20 (8) = 20 (¢) Z ( (0+1) (¢ x<e>(t)) 2 ().

Since (M (t) is t-continuous for any n € N, so z(t) is also t—continuous. Therefore,

wo + /0t b (p,x(n) (p)) dp + a/ot(t ) oy (p,x(") (p)) dp
—|—/0£ o2 (p,a:(”)(p)) dB, "% x(t),

for a stochastic process z(t) satisfying (12). O

Theorem 7. Under the conditions of Theorem 6, stochastic integral equation (12)

has at most one solution.

Proof. Let z1(t) and z2(t) be solutions of stochastic integral equation (12), which
have the initial conditions xEO) (t) = t;, 1 < i < 2. Application of Cauchy-Schwartz
inequality, the 1t6 Isometry, and Lipschitz condition, yield

Elz () —zo()* < 4B — t|* +4L%(1 + w)
t
/ E |o1(p) — 22(p)* dp
0
t
HaLw® [ (= p)" B i (0) ~ a(p) dp
0
which can also be written as:

Elz1() — 200> < 4Bt — to]? +4L%(1 + w)w!' ™
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t
x / @1t [ By (p) — 22 (p)[2) dp
0

t
+4aL2wa/ (t _ p)a—lpa—l
0
< {p' " Bla1(p) — z2(p)|*} dp.
Application of Corollary 4 yields:

E|$1(’£) — 1‘2(’()|2 S 4E|’£1 — t2|2F2a—1,a—1,2a—1 (4L2F(a)
x {(1+w)w' ™+ aw} 271

Since, x1(t) and x2(t) are solutions of stochstic integral equation (12), with the initial
conditions a:l(.o) (t) = t;, 1 <14 < 2 therefore t; = t5 and hence

El|x1(t) — x2(t)|*> = 0 for all t > 0,

which proves the uniqueness. [l
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