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1. INTRODUCTION

This paper is concerned with oscillatory behavior of solutions to a class of second-order

linear neutral differential equations with damping term of the form

z′′(t) + r(t)z′(t) + q(t)x(σ(t)) = 0, t ≥ t0 > 0, (1)

where

z(t) = x(t) + p(t)x(τ(t)).

We will make use of the following conditions:

(C0) p, q : [t0,∞) → R are real-valued continuous functions with p(t) ≥ 1, p(t) 6≡ 1

for large t, q(t) ≥ 0, and q(t) is not identically zero for large t;
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(C1) r : [t0,∞) → (0,∞) is a real-valued continuous function with

∫

∞

t0

exp

(

−

∫ t

t0

r(s)ds

)

dt = ∞; (2)

(C2) τ, σ : [t0,∞) → R are real-valued continuous functions such that τ(t) < t, τ is

strictly increasing, and limt→∞ τ(t) = limt→∞ σ(t) = ∞.

By a solution of equation (1), we mean a function x ∈ C ([tx,∞),R) for some

tx ≥ t0 that has the property z ∈ C2 ([tx,∞),R) and satisfies (1) on [tx,∞). We

consider only those solutions of (1) that exist on some half-line [tx,∞) and satisfy the

condition

sup {|x(t)| : T ≤ t <∞} > 0 for any T ≥ tx;

and moreover, we tacitly assume that (1) possesses such solutions. Such a solution

x(t) of (1) is said to be oscillatory if it has arbitrarily large zeros on [tx,∞), i.e.,

for any t1 ∈ [tx,∞) there exists t2 ≥ t1 such that x(t2) = 0; otherwise it is called

nonoscillatory, i.e., if it is eventually positive or eventually negative. Equation (1)

itself is termed oscillatory if all its solutions oscillate.

In recent years, there has been a great interest in investigating the oscillatory

behavior of solutions of various classes of second order neutral differential equations

without damping term, and we refer the reader to the papers [2, 3, 4, 5, 8, 11, 12,

13, 14, 16, 17, 18, 19, 21] and the references therein as examples of recent results

on this topic. However, determining oscillation criteria for second-order neutral dif-

ferential equations with damping term has not received a great deal of attention in

the literature; moreover, the results obtained are for the cases 0 < p(t) ≤ p0 < 1 or

−1 < p0 ≤ p(t) < 0, see the papers [7, 9, 20] as example. This means that the results

obtained in these papers cannot be applied to the case where p(t) → ∞ as t → ∞.

Motivated by the papers mentioned above, our aim here is to establish some new

oscillation criteria that can be applied to the cases where p(t) > 1 and/or p(t) → ∞

as t → ∞; and moreover, the results obtained in the present paper are new even for

constant delays such as τ(t) = t − a and σ(t) = t − b with a, b > 0. It is therefore

hoped that the present paper partially fill the gap in oscillation theory for second

order neutral differential equation with damping term. We would like to point out

that the results presented in this paper can easily be extended to more general second-

order linear and/or nonlinear neutral differential equations with damping term (see

Remarks 1 and 2 below) and those in [7, 9, 20].
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2. OSCILLATION RESULTS FOR (1) IN THE CASE WHERE

σ(T ) ≤ τ(T )

In this section, we establish some new criteria for the oscillation of equation (1) in

the case where σ(t) ≤ τ(t). For notational purposes, we let

ψ(t) :=
1

p(τ−1(t))

(

1−
1

p(τ−1(τ−1(t)))

τ−1(τ−1(t))

τ−1(t)

)

,

where τ−1 is the inverse function of τ , and throughout this paper we assume that

ψ(t) > 0 for all sufficiently large t.

We begin with the following lemma that will be used to prove our main results.

Lemma 1. (see [6, 10]). Suppose that the function f satisfies f (i)(t) > 0, i =

0, 1, 2, ....,m, and f (m+1)(t) ≤ 0 eventually. Then, for t large enough,

f(t)

f ′(t)
≥

t

m
.

Theorem 2. Let conditions (C0)–(C2) and (2) hold. If there exists a positive

function η ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

∫ t

t0

[

η(s)q(s)ψ(σ(s))
τ−1(σ(s))

s
−
η(s)ξ2(s)

4

]

ds = ∞, (3)

where

ξ(t) =
η′(t)− η(t)r(t)

η(t)
, (4)

then equation (1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1). Without loss of generality, we may

assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0

for t ≥ t1. (The proof if x(t) is eventually negative is similar, so we omit the details

of that case here as well as in the remaining proofs in this paper). From (1) and (C0),

we have

z′′(t) + r(t)z′(t) = −q(t)x(σ(t)) ≤ 0,

i.e.,

z′′(t) + r(t)z′(t) ≤ 0 for t ≥ t1,

which implies
(

exp

(
∫ t

t1

r(s)ds

)

z′(t)

)′

≤ 0 for t ≥ t1.

Thus, exp
(

∫ t

t1
r(s)ds

)

z′(t) is nonincreasing and eventually does not change its sign,

say on [t2,∞) for some t2 ≥ t1. Therefore, z
′(t) eventually has a fixed sign on [t2,∞),

and so we have one of the following cases:
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Case (I): z′(t) > 0 for t ≥ t2,

Case (II): z′(t) < 0 for t ≥ t2.

First, we consider case (I). Since z′(t) > 0 for t ≥ t2, from (1) we have

z(t) > 0, z′(t) > 0, and z′′(t) ≤ 0 for t ≥ t2.

Thus, in view of Lemma 1 with m = 1, there exists t3 ∈ [t2,∞) such that

z(t)

z′(t)
≥ t for t ≥ t3,

which yields
(

z(t)

t

)

′

=
tz′(t)− z(t)

t2
≤ 0 for t ≥ t3,

i.e., z(t)/t is nonincreasing on [t3,∞). In view of the definition of z(t), we get (see

also [1, inequality (8.6) ])

x(t) =
1

p(τ−1(t))

[

z(τ−1(t))− x(τ−1(t))
]

=
z(τ−1(t))

p(τ−1(t))
−

[

z(τ−1(τ−1(t)))− x(τ−1(τ−1(t)))
]

p(τ−1(t))p(τ−1(τ−1(t)))

≥
z(τ−1(t))

p(τ−1(t))
−

1

p(τ−1(t))p(τ−1(τ−1(t)))
z(τ−1(τ−1(t))). (5)

From the fact that τ is strictly increasing and τ(t) < t, we see that

τ−1(t) < τ−1(τ−1(t)),

and so, by the fact that z(t)/t is nonincreasing, we obtain

τ−1(τ−1(t))z
(

τ−1(t)
)

τ−1(t)
≥ z

(

τ−1(τ−1(t))
)

. (6)

Using (6) in (5) gives

x(t) ≥ ψ(t)z
(

τ−1(t)
)

for t ≥ t3. (7)

Since limt→∞ σ(t) = ∞, we can choose t4 ≥ t3 such that σ(t) ≥ t3 for all t ≥ t4.

Thus, from (7) we obtain

x(σ(t)) ≥ ψ(σ(t))z
(

τ−1(σ(t))
)

for t ≥ t4. (8)

Using (8) in (1) gives

z′′(t) + r(t)z′(t) + q(t)ψ(σ(t))z
(

τ−1(σ(t))
)

≤ 0 for t ≥ t4. (9)
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Define the function w(t) by the Riccati substitution

w(t) := η(t)
z′(t)

z(t)
for t ≥ t4. (10)

Clearly, w(t) > 0, and from (4), (9) and (10), we see that

w′(t) =
η′(t)

η(t)
w(t) + η(t)

(

z′′(t)z(t)− (z′(t))2

z2(t)

)

≤
η′(t)

η(t)
w(t) +

η(t)

z(t)

[

−r(t)z′(t)− q(t)ψ(σ(t))z
(

τ−1(σ(t))
)]

−
1

η(t)
w2(t)

= ξ(t)w(t) − η(t)q(t)ψ(σ(t))
z
(

τ−1(σ(t))
)

z(t)
−

1

η(t)
w2(t). (11)

Using the fact z(t)/t is nonincreasing, and noting that σ(t) ≤ τ(t) implies τ−1(σ(t)) ≤

t, we obtain
z
(

τ−1(σ(t))
)

z(t)
≥
τ−1(σ(t))

t
. (12)

Substituting (12) into (11) gives, for t ≥ t4,

w′(t) ≤ ξ(t)w(t) − η(t)q(t)ψ(σ(t))
τ−1(σ(t))

t
−

1

η(t)
w2(t). (13)

Completing the square with respect to w, it follows from (13) that

w′(t) ≤ −η(t)q(t)ψ(σ(t))
τ−1(σ(t))

t
+
η(t)ξ2(t)

4
for t ≥ t4. (14)

Integrating (14) from t4 to t, we see that

∫ t

t4

[

η(s)q(s)ψ(σ(s))
τ−1(σ(s))

s
−
η(s)ξ2(s)

4

]

ds ≤ −w(t) + w(t4) < w(t4),

which contradicts (3).

Next, we consider case (II). Letting u(t) = −z′(t) > 0, it follows from (1) that

u′(t) + r(t)u(t) ≥ 0 for t ≥ t2.

Integrating this relation from t2 to t, we obtain

u(t) ≥ u(t2) exp

(

−

∫ t

t2

r(s)ds

)

,

from which we see that

z′(t) ≤ z′(t2) exp

(

−

∫ t

t2

r(s)ds

)

. (15)



294 E. TUNÇ AND A. KAYMAZ

Integrating (15) from t2 to t and taking (2) into account, we obtain

z(t) ≤ z(t2) + z′(t2)

∫ t

t2

exp

(

−

∫ s

t2

r(u)du

)

ds→ −∞ as t→ ∞,

which contradicts the positivity of z. This proves the theorem.

From Theorem 2, we can establish different conditions for the oscillation of (1)

using different choices of η(t). For example, letting η(t) = 1 and η(t) = tγ with γ ≥ 1,

we obtain the following corollaries, respectively.

Corollary 3. Let conditions (C0)–(C2) and (2) hold. If

lim sup
t→∞

∫ t

t0

[

q(s)ψ(σ(s))
τ−1(σ(s))

s
−
r2(s)

4

]

ds = ∞, (16)

then equation (1) is oscillatory.

Corollary 4. Let conditions (C0)–(C2) and (2) hold. If

lim sup
t→∞

∫ t

t0

[

sγ−1q(s)ψ(σ(s))τ−1(σ(s)) −
[(sγ)′ − sγr(s)]

2

4sγ

]

ds = ∞,

then equation (1) is oscillatory.

In the following theorem, we establish a new oscillation criterion for (1) by using

the integral averaging technique due to Philos [15]. In order to present our theorem,

we first introduce, following Philos [15], the function class P . Namely, let D0 =
{

(t, s) ∈ R
2 : t > s ≥ t0

}

andD =
{

(t, s) ∈ R
2 : t ≥ s ≥ t0

}

. We say that the function

H ∈ C (D,R) belongs to the class P , denoted by H ∈ P if

(i) H(t, t) = 0 for t ≥ t0, and H(t, s) > 0 on (t, s) ∈ D0;

(ii) H has a continuous and nonpositive partial derivative on D0 with respect to

the second variable.

Theorem 5. Let conditions (C0)–(C2) and (2) be fulfilled and let h,H : D → R be

continuous functions such that H belongs to the class P and

−
∂H

∂s
(t, s) = h(t, s)

√

H(t, s) for all (t, s) ∈ D0. (17)

If there exists a positive function η ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[

H(t, s)η(s)q(s)ψ(σ(s))
τ−1(σ(s))

s
−
η(s)Ψ2(t, s)

4

]

ds = ∞, (18)
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where

Ψ(t, s) = −h(t, s) +
√

H(t, s)ξ(s), (19)

and ξ(t) is as in (4), then every solution of (1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1). Without loss of generality, we may

assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0

on [t1,∞). Proceeding as in the proof of Theorem 2, we again have two cases to

consider: (I) z′(t) > 0 for t ≥ t2 or (II) z′(t) < 0 for t ≥ t2. If case (II) holds,

proceeding exactly as in the proof of Theorem 2, we obtain a contradiction to the

positivity of z.

Next, assume that case (I) holds. Then, as in the proof of Theorem 2, we again

arrive at (13) for t ≥ t4. From (13), it follows that

∫ t

t4

H(t, s)η(s)q(s)ψ(σ(s))
τ−1(σ(s))

s
ds

≤ −

∫ t

t4

H(t, s)w′(s)ds+

∫ t

t4

H(t, s)ξ(s)w(s)ds

−

∫ t

t4

H(t, s)
1

η(s)
w2(s)ds. (20)

Using the integration by parts formula, we obtain

∫ t

t4

H(t, s)w′(s)ds = H(t, s)w(s) |tt4 −

∫ t

t4

∂H

∂s
(t, s)w(s)ds

= −H(t, t4)w(t4)−

∫ t

t4

∂H

∂s
(t, s)w(s)ds. (21)

Substituting (21) into (20) yields

∫ t

t4

H(t, s)η(s)q(s)ψ(σ(s))
τ−1(σ(s))

s
ds

≤ H(t, t4)w(t4)−

∫ t

t4

H(t, s)
1

η(s)
w2(s)ds

+

∫ t

t4

[

∂H

∂s
(t, s) +H(t, s)ξ(s)

]

w(s)ds.

In view of (17), the last inequality takes the form

∫ t

t4

H(t, s)η(s)q(s)ψ(σ(s))
τ−1(σ(s))

s
ds

≤ H(t, t4)w(t4)−

∫ t

t4

H(t, s)
1

η(s)
w2(s)ds

+

∫ t

t4

[

−h(t, s)
√

H(t, s) +H(t, s)ξ(s)
]

w(s)ds.
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By completing the square as in Theorem 2, we see that

∫ t

t4

H(t, s)η(s)q(s)ψ(σ(s))
τ−1(σ(s))

s
ds ≤ H(t, t4)w(t4) +

1

4

∫ t

t4

η(s)Ψ2(t, s)ds,

and so

1

H(t, t4)

∫ t

t4

[

H(t, s)η(s)q(s)ψ(σ(s))
τ−1(σ(s))

s
−
η(s)Ψ2(t, s)

4

]

ds ≤ w(t4),

which contradicts (18). This proves the theorem.

From Theorem 5, we immediately have the following oscillation criterion.

Corollary 6. Let all conditions of Theorem 5 are satisfied with (18) replaced by

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)η(s)q(s)ψ(σ(s))
τ−1(σ(s))

s
ds = ∞,

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

η(s)Ψ2(t, s)ds <∞,

where Ψ(t, s) is as in (19), then equation (1) is oscillatory.

3. OSCILLATION RESULTS FOR (1) IN THE CASE WHERE

σ(T ) ≥ τ(T )

In this section, we establish some new criteria for the oscillation of equation (1) in

the case where σ(t) ≥ τ(t). We begin with the following theorem.

Theorem 7. Let conditions (C0)–(C2) and (2) hold. If there exists a positive

function η ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

∫ t

t0

[

η(s)q(s)ψ(σ(s)) −
η(s)ξ2(s)

4

]

ds = ∞, (22)

where ξ(t) is as in (4), then equation (1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1). Without loss of generality, we may

assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0

for t ≥ t1. Proceeding as in the proof of Theorem 2, we again have two cases to

consider: (I) z′(t) > 0 for t ≥ t2 or (II) z′(t) < 0 for t ≥ t2. If case (II) holds,

proceeding exactly as in the proof of Theorem 2, we obtain a contradiction to the

positivity of z.
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Next, assume that case (I) holds. Proceeding as in the proof of Theorem 2, we

again arrive at (11) for t ≥ t4. Using the fact that τ is strictly increasing and noting

that σ(t) ≥ τ(t), we have

τ−1(σ(t)) ≥ t,

from this and the fact that z is increasing, we obtain

z
(

τ−1(σ(t))
)

z(t)
≥ 1. (23)

Using (23) in (11) yields

w′(t) ≤ ξ(t)w(t) − η(t)q(t)ψ(σ(t)) −
1

η(t)
w2(t). (24)

The rest of proof is similar to the first part of the proof of Theorem 2, and so we omit

the details.

Theorem 8. Let conditions (C0)–(C2) and (2) be fulfilled and let h,H : D → R

be continuous functions such that H belongs to the class P and (17) holds. If there

exists a positive function η ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[

H(t, s)η(s)q(s)ψ(σ(s)) −
η(s)Ψ2(t, s)

4

]

ds = ∞, (25)

where Ψ(t, s) is as in (19), then every solution of (1) is oscillatory.

Proof. The proof follows from (23), (24) and Theorem 5, and so we omit the details.

Corollary 9. Let all conditions of Theorem 8 are satisfied with (25) replaced by

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)η(s)q(s)ψ(σ(s))ds = ∞, (26)

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

η(s)Ψ2(t, s)ds <∞, (27)

where Ψ(t, s) is as in (19), then equation (1) is oscillatory.

We conclude this paper with two examples to illustrate our results. The first

example is concerned with the case where p(t) → ∞ as t → ∞, and the second

example is concerned with the case where p is a constant function.

Example 1. Consider the linear neutral differential equation with damping term

z′′(t) +
1

t2
z′(t) + (t2 + t)x

(

t

3

)

= 0, t ≥ 1, (28)
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with

z(t) = x(t) + tx

(

t

2

)

.

Here p(t) = t, r(t) = 1/t2, q(t) = t2 + t, τ(t) = t/2, and σ(t) = t/3. Then, it is easy

to see that conditions (C0)–(C2) and (2) hold, and

τ−1(t) = 2t, τ−1(τ−1(t)) = 4t, τ−1(σ(t)) = 2t/3, and ψ(t) ≥ 1/4t.

Letting η(t) = 1 and using the fact that ψ(t) ≥ 1/4t, it follows from (16) that

∫ t

t0

[

q(s)ψ(σ(s))
τ−1(σ(s))

s
−
r2(s)

4

]

ds ≥

∫ t

1

[

1

2
(s+ 1)−

1

4s4

]

ds

=
t2

4
+
t

2
+

1

12t3
−

5

6
. (29)

Taking lim sup as t → ∞ in (29), we see that (16) holds, and so equation (28) is

oscillatory by Corollary 3.

Example 2. Consider the linear neutral differential equation with damping term

z′′(t) +
1

t
z′(t) + t2x

(

t

2

)

= 0, t ≥ 1, (30)

with

z(t) = x(t) + 16x

(

t

4

)

.

Here p(t) = 16, r(t) = 1/t, q(t) = t2, τ(t) = t/4, and σ(t) = t/2. Then, it is easy to

see that conditions (C0)–(C2) and (2) hold, and

τ−1(t) = 4t, τ−1(τ−1(t)) = 16t, and ψ(t) = 3/64.

Letting H(t, s) = (t− s)2, we see that H ∈ P and h(t, s) = 2. With η(t) = 1, we see

that Ψ(t, s) = −1− t/s and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)η(s)q(s)ψ(σ(s))ds

= lim sup
t→∞

1

(t− 1)2

∫ t

1

3

64
(t− s)2s2ds

≥ lim sup
t→∞

3

64(t− 1)2

∫ t

1

(t− s)2ds

= lim sup
t→∞

t3 − 3t2 + 3t− 1

64(t− 1)2
= ∞,

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

η(s)Ψ2(t, s)ds = lim sup
t→∞

1

(t− 1)2

∫ t

1

(

1 +
t

s

)2

ds = 1 <∞,

i.e., conditions (26) and (27) hold, and so equation (30) is oscillatory by Corollary 9.
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Remark 1. The results of this paper can be easily extended to the second-order

linear neutral differential equation with damping term

(a(t)z′(t))
′

+ r(t)z′(t) + q(t)x(σ(t)) = 0, t ≥ t0 > 0, (31)

under the two conditions
∫

∞

t0

1

a(t)
exp

(

−

∫ t

t0

r(s)/a(s)ds

)

dt = ∞;

and
∫

∞

t0

1

a(t)
exp

(

−

∫ t

t0

r(s)/a(s)ds

)

dt <∞;

where a ∈ C ([t0,∞), (0,∞)), z(t) = x(t)+p(t)x(τ(t)), and the other functions in the

equation are as in this paper.

Remark 2. The results of this paper can be easily extended to the second-order

nonlinear neutral differential equation with damping term

(a(t)(z′(t))α)
′

+ r(t)(z′(t))α + q(t)f(t, x(σ(t)) = 0, (32)

under the two conditions

∫

∞

t0

1

a1/α(t)

[

exp

(

−

∫ t

t0

r(s)

a(s)
ds

)]1/α

dt = ∞;

and
∫

∞

t0

1

a1/α(t)

[

exp

(

−

∫ t

t0

r(s)

a(s)
ds

)]1/α

dt <∞;

where a ∈ C ([t0,∞), (0,∞)), z(t) = x(t) + p(t)x(τ(t)), α is the quotient of odd

positive integers, f(t, u) : [t0,∞)×R → R is a continuous function such that uf(t, u) >

0 for all u 6= 0 and there exists a positive constant M such that

f(t, u)/uα ≥M for u 6= 0,

and the other functions in the equation are defined as in this paper.

Remark 3. It would also be of interest to study equation (1) for the case where

p(t) → −∞ as t→ −∞.
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